Gangwar, Hemlata, Shameem, Mohammad, Patel, Sandeep, Koohang, Alex and Sharma, Anuj
(2025)
Understanding determinants of GenAI usage and its effect on SCM performance using dynamic capability view.
Industrial Management & Data Systems.
ISSN 0263-5577
(In Press)
![[thumbnail of 31 Understanding determinants of GenAI usage and its effect on SCM performance using dynamic capability view.pdf]](https://pure.jgu.edu.in/style/images/fileicons/text.png)
31 Understanding determinants of GenAI usage and its effect on SCM performance using dynamic capability view.pdf - Published Version
Restricted to Repository staff only
Download (2MB) | Request a copy
Abstract
Purpose
Generative artificial intelligence (GenAI) can potentially improve supply chain management (SCM) processes across levels and verticals. However, despite its promise, the implementation of GenAI for SCM remains challenging, mainly due to the lack of knowledge regarding its key drivers. To address this gap, this study examines the factors driving GenAI implementation in an SCM environment and how these factors optimize SCM performance.
Design/methodology/approach
A thorough literature review was followed to identify the drivers. The resultant model from the drivers was validated using a quantitative study based on partial least squares structural equation modeling (PLS-SEM) that used responses from 315 expert respondents from the field of SCM.
Findings
The results confirmed the positive effect of performance expectancy, output quality and reliability, organizational innovativeness and management commitment to GenAI usage. Further, they showed that successful GenAI usage improved SCM performance through improved transparency, better decision-making, innovative design, robust development and responsiveness.
Practical implications
This study reports the potential drivers for the contemporary development of GenAI in SCM and highlights an action plan for GenAI’s optimal performance. The findings suggest that by increasing the rate of GenAI implementation, organizations can continuously improve their strategies and practices for better SCM performance.
Originality/value
This study establishes the first step toward empirically testing and validating a theoretical model for GenAI implementation and its effect on SCM performance.
Item Type: | Article |
---|---|
Keywords: | Supply chain management | Technology implementation | Dynamic capability, Gen-AI | SCM performance |
Subjects: | Physical, Life and Health Sciences > Computer Science Social Sciences and humanities > Social Sciences > Social Sciences (General) |
JGU School/Centre: | Jindal Global Business School |
Depositing User: | Dharmveer Modi |
Date Deposited: | 09 Feb 2025 12:48 |
Last Modified: | 09 Feb 2025 12:48 |
Official URL: | https://doi.org/10.1108/IMDS-08-2024-0773 |
URI: | https://pure.jgu.edu.in/id/eprint/9113 |
Downloads
Downloads per month over past year