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1. Introduction

Quantum mechanics has been plagued with the mea-
surement problem (and non-locality) almost since its
inception. This basically stems from the conjunction
of two hypotheses which are incompatible with each
other. The first hypothesis is that quantum mechan-
ics is a universal theory of everything, including the
measuring apparatus. Consequently, the measurement
interaction between a quantum mechanical system S and
the apparatus A used to measure it inevitably produces
an entangled state

|�〉SA =
∑

i

ci |�i 〉S ⊗ |�i 〉A,
∑

i

|ci |2 = 1

in which the system and apparatus cease to have defi-
nite and independent states of their own. Nevertheless,
definite measurement outcomes |�i 〉S ⊗ |�i 〉A are
empirically observed, indicating abrupt state changes
which cannot be explained by Schrödinger evolution.
To account for such changes, von Neumann introduced
the second hypothesis, the operation of a non-quantum
mechanical process which depends on the measured
value which is unpredictable [1]. It is known as the
‘projection postulate’. In the words of Schrödinger [2],
“every measurement suspends the law governing the
steady change in time of the ψ-function, and brings

about an entirely different change, which is not gov-
erned by a law but by the result of the measurement.”
This is essentially the measurement problem. It is the ad-
hoc nature of the projection postulate and its clash with
Schrödinger evolution that has spawned the plethora of
‘interpretations’ of quantum mechanics [3].

To be more specific, let us consider the pure state
ρ = |�〉SA〈�|SA. It satisfies the conditions ρ2 = ρ,
Trρ = 1. This contains off-diagonal interference terms
in the presence of which it is not legitimate to conclude
that the states |A〉 j are definite eigenstates of the observ-
able. Hence, a second measurement has to be performed
on the apparatus states, leading again to similar conclu-
sions, requiring a third measurement, and this chain is
obviously non-terminating. It has been argued that this
infinite regress must eventually culminate in a ‘non-
quantum mechanical’ subjective perception [1]. von
Neumann represented this termination by a causal pro-
cess in the following way. If an observable Ô = ∑

i ai Pi
with discrete and non-degenerate eigenvalues ai and
projectors Pi = |i〉〈i |S ⊗ |i〉〈i |A, is measured on the
system, then according to the von Neumann projection
postulate, the state changes to

ρ → ρ̂ =
∑

i

PiρPi . (1)

The resulting state ρ̂ is a mixed state, i.e. ρ̂2 �= ρ̂, Tr ρ̂ =
1, showing that the projection process is non-unitary.
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This is an ideal measurement in quantum mechanics
and works for complete and orthogonal basis vectors.
Exactly at which stage the termination is to be applied
is, however, left unspecified and arbitrary.

von Neumann’s postulate was designed always to pro-
duce mixed states on measurement. Note that it implies
that the state changes to

ρ → ρ′
k = PkρPk (2)

on the condition that the result ak was obtained. This is
a mixed state if there are no degeneracies. However, in
the presence of degeneracies the degenerate states can
continue to remain pure if the apparatus fails to dis-
tinguish them. Therefore, for degenerate system, von
Neumann had to introduce the method of ‘lifting’ the
degeneracy by distinguishing them. If an observable A
has degenerate discrete eigenvalues, then first of all a
refinement A′ is found which commutes with A and
has only non-degenerate discrete eigenvalues (such that
A = f (A′), and eigenvalue a of A is also f (a′) where a′
is an eigenvalue of A′) and measurement is performed
on it, lifting the degeneracy in the process. Hence, in
von Neumann’s ansatz the projection operators are typ-
ically one-dimensional projectors on the subspaces of
the refinement observable, and all coherence is lost.

In 1951, Lüders [4] introduced a different postulate
for state change on measurement which works for both
degenerate and non-degenerate systems. The Lüders
postulate states that

ρ → ρ′
k = PkρPk

TrPkρ
(3)

on the condition that the result ak was obtained. This rule
describes a change from a state ρ to a specific pure state
ρ′
k in Hilbert space. It preserves coherence and updates

pure states to pure states. However, if one considers the
total ensemble without selection or reading of individual
results, the state transforms to

ρ̂ =
∑

k

pkρ
′
k =

∑

k

PkρPk, (4)

where pk = Tr Pkρ is the probability weight of the state
ρ′
k in the full ensemble [5]. This is a statistical mixture

of states identical with that given by the von Neumann
rule (1), and clarifies its meaning and applicability. It
‘shows exactly what is meant by the expression “reduc-
tion of the wave function”.’ This meaning will become
gradually clearer in the rest of the paper, particularly in
§3–5. Thus, though the final result for the total ensem-
ble without selection of individual outcomes is the same
in the two schemes, the nature of reduction of the state
for individual outcomes differs markedly even for non-
degenerate systems.

Thus, in order to describe the state change after the
measurement, there are two scenarios: one may consider
either the separate subensemble in which a certain mea-
sured value, e.g. ak , occurs (‘measurement followed by
selection’), or one may consider the complete ensemble
after the measurement process (‘measurement followed
by aggregation’) [4]. In the former case of ‘measurement
followed by selection’, the two postulates are quite dif-
ferent. In the von Neumann case, one obtains a mixed
state (after lifting the degeneracy when present) whereas
in the Lüders case one always obtains a pure state. This
understanding of the difference between von Neumann’s
and Lüders’ rules opens up the possibility of studies of
post-selected states in quantum mechanics that are not
possible otherwise, and which we will consider later in
§4.

More generalised measurements can be defined in
quantum mechanics by positive valued operator mea-
sures (POVMs), a collection of positive operators Ei ≥
0 satisfying the conditions

∑
i Ei = I. Such a measure-

ment is denoted by M = {Ei }. Each Ei is associated
with an outcome of the measurement and since Ei ≥ 0,
it has the decomposition Ei = M†

i Mi . For a state ρ

(pure or mixed), the probability of obtaining the result
associated with Ei is Tr(Eiρ). The post-measurement
state after obtaining the result i is

ρ → MiρM
†
i

Tr(Eiρ)
. (5)

The main difference between these projections and pro-
jections like Pi which are orthogonal (Pi Pj = Piδi j )
is that Mi or Ei are not orthogonal. However, by Neu-
mark’s dilation theorem, a POVM can be obtained from
projective measurements acting in a larger Hilbert space
[6].

2. The mathematical nature of Lüders
transformations

2.1 Finite-dimensional Hilbert spaces

In order to illustrate the mathematical nature of Lüders
transformations in a finite-dimensional Hilbert space,
let us consider the state

|ψ〉 =
d∑

i

ci |ψ〉i , (6)

where |ψ〉i form a complete set of orthonormal eigen-
vectors of orthogonal projectors Pi = |ψ〉i 〈ψ | and∑

i |ci |2 = 1 so that |||ψ〉|| = 1. Then,

Pi |ψ〉 = ci |ψ〉i , ||Pi |ψ〉|| = |ci |2 < 1. (7)
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Thus, the norm is not preserved on projections. Further-
more, a projector has no inverse. Consider now a unitary
transformation

U |ψ〉 = |ψ〉′ =
d∑

i

ciU |ψ〉i ,

||U |ψ〉|| =
∑

i

|ci |2 = 1. (8)

The norm is preserved in this case.
Now consider the Lüders transformation

|ψ〉′i = Pi |ψ〉
ci

= |ψ〉i (9)

so that

|||ψ〉′i || = |||ψ〉i || = 1. (10)

Here the norm is preserved. However, defining P ′
i =

Pi/ci , we get P ′2
i = P2

i /c2
i = Pi/c2

i �= P ′
i . Hence,

strictly speaking, P ′
i is not a projector, but nevertheless,

involving Pi as it does, it has no inverse.
However, it is always possible to define a state-

dependent unitary transformation

U (φi )|ψ〉 = |ψ〉i , |||ψ〉i || = 1, (11)

where φi are d − 1 angular coordinates of the basis
state |ψ〉i which gives the same result as the Lüders
transformation (deleted ‘except in cases where |ψ〉 is
entangled because such states are basis independent’).

We shall now illustrate this through a number of con-
crete examples.

2.2 A rotation in R2

To understand what is involved in (11), it will help to
start with the simple case of the projections of a vector
in R

2,

|ψ〉 = cos θ |i〉 + sin θ | j〉 = cos θ

(
1
0

)
+ sin θ

(
0
1

)

:= ai |i〉 + a j | j〉, (12)

where |i〉, | j〉 are unit vectors in the x and y directions.
Let A = ai Pi+a j Pj (ai �= a j ) where Pi = |i〉〈i |, Pj =
| j〉〈 j | are projectors with the properties P2

i = Pi , P2
j =

Pj , Pi Pj = 0, Pi + Pj = I. Then,

Pi |ψ〉 = ai |i〉, Pj |ψ〉 = a j | j〉. (13)

Let us now define the vectors

|ψ〉′i = Pi |ψ〉
ai

= |i〉, |ψ〉′j = Pj |ψ〉
a j

= | j〉. (14)

These transformations are norm-preserving but, as we
saw already, they have no inverses and are therefore

not unitary. However, they can clearly be replaced by
rotations of the vector by the angle θ and by the angle
(θ+3π/2) in the clockwise direction, the rotation matrix
being

Û (θ) =
(

cos θ sin θ

− sin θ cos θ

)

Û (θ)|ψ〉 = |i〉, Û (θ + 3π/2)|ψ〉 = | j〉. (15)

Clearly, in each case the vector ‘rotates’ so as to align
itself ‘fully’ with one of the basis vectors |i〉 and | j〉,
there being no component along the other.

Let us now define ρ = |ψ〉〈ψ | which has the property
ρ2 = ρ. Then

ρ′
i = PiρPi

a2
i

= |i〉〈i |, (16)

ρ′
j = PjρPj

a2
j

= | j〉〈 j |. (17)

These are Lüders updates in R
2. One can now define an

operator

ρ̂ = a2
i
PiρPi
a2
i

+ a2
j
PjρPj

a2
j

= PiρPi + PjρPj . (18)

This is the analog of the von Neumann projection.
Consider now the vector ψ with ai = a j = a =

1/
√

2 (degenerate case) and Ô = (Pi + Pj ) = I. An
identity operator cannot change a vector, and according
to the Lüders ansatz, |ψ〉 → |ψ〉 and ρ → ρ. But the
von Neumann ansatz implies

ρ̂ = a2(|i〉〈i | + | j〉〈 j |) = 1

2
I. (19)

This is the reason why von Neumann had to think of
‘lifting’ the degeneracy whenever it occurred before
applying his rule.

2.3 Single qubit states

Let us now consider a single qubit state. It can be written
as a vector

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 (20)

of the Bloch sphere. Suppose one measures σz =
|0〉〈0| − |1〉〈1| := P0 − P1 on the state. There are two
possible results, + or −, with the probabilities

Pr{+1} = Tr P0ρ = |〈ψ ||0〉〈0||ψ〉|2 = cos2 θ

2
, (21)

Pr{−1} = Tr P1ρ = |〈ψ ||1〉〈1||ψ〉|2 = sin2 θ

2
, (22)
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Figure 1. The Bloch sphere

and the post-measurement selected states are, according
to Lüders’ rule,

ρ0 = |0〉〈0||ψ〉〈ψ ||0〉〈0|
Tr P0ρ

= |0〉〈0|, (23)

ρ1 = |1〉〈1||ψ〉〈ψ ||1〉〈1|
Tr P1ρ

= |1〉〈1|. (24)

As one can readily see from figure 1, the transformation
in the first case can also be obtained by an anticlockwise
rotation by angle (π/2 − φ) about the Z -axis followed
by an anticlockwise rotation by angle θ about the X -
axis, and in the second case by an anticlockwise rotation
by angle (2π − φ) about the Z -axis followed by an
anticlockwise rotation by angle (π−θ ) about theY -axis.
In each of these cases, the original state with components
along both basis states is rotated and aligned completely
with one of the basis states.

In general, an arbitrary rotation on the Bloch sphere
can be written as the unitary operator

U (θ, φ) = eiφexp

(
−i

θ

2
�σ · �n

)
, (25)

where �σ = (σx , σy, σz) is the Pauli spin vector and
�n is an arbitrary direction of the Bloch sphere [7,8].
Hence, the normalised states produced by the non-
unitary Lüders’ rule applied to a qubit can also be
obtained by rotations on the Bloch sphere.

When no post-selection is done, one obtains the mixed
state

ρ̂ = Tr(P0ρ)ρ0 + Tr(P1ρ)ρ1 = cos2 θ

2
ρ0 + sin2 θ

2
ρ1.

(26)

Note that classical probability theory cannot be
applied to the pre-measurement pure state ρ = |ψ〉〈ψ |,
where |ψ〉 is given by (20), because it has off-diagonal
elements which are interference terms. One can, how-
ever, generalise the definition of probability to take into

account these interference effects by defining a new for-
mula for total probability (FTP). Consider state (20)
corresponding to the point (θ, φ) on the Bloch sphere
and another state corresponding to the point (θ, φ′) and
form their inner product. One then gets the FTP

FTP = p0 + p1 + 2
√
p1 p2 cos δ, (27)

where p0 = cos2 θ/2, p1 = sin2 θ/2 and δ = φ − φ′.
Since −1 < cos δ < +1, the total probability can be
both larger than and less than the classical probability
p0 + p1.

2.4 Two-qubit entangled states

Next, let us consider the 2-qubit Bell state

|�+〉 = 1√
2

[|0〉A|0〉B + |1〉A|1〉B] (28)

in the tensor product of Hilbert space HA ⊗ HB of
two systems A and B whose basis states are |0〉A|0〉B,

|1〉A|1〉B, |0〉A|1〉B, |1〉A|0〉B . There are four such 2-
qubit maximally entangled states, |�+〉, |�−〉, |
+〉,
|
−〉, which form the Bell basis. A local unitary trans-
formation on any state in the space spanned by these
Bell basis states will result in a linear combination of
the four Bell states. Suppose now that A is the system
on which a measurement is made using system B as
the apparatus. Then, there are two possible outcomes,
|0〉A|0〉B or |1〉A|1〉B . These can only be obtained by
the projection operators P0 = (|0〉A〈0|)⊗(|0〉B〈0|) and
P1 = (|1〉A〈1|) ⊗ (|1〉B〈1|). Then, the probabilities for
the two possible post-measurement states are

Tr P0ρ = |〈�+|P0|�+〉|2 = 1

2
, (29)

Tr P1ρ = |〈�+|P1|�+〉|2 = 1

2
, (30)

and the post-measurement Lüders updates are

|0〉A〈0| ⊗ |0〉B〈0||�+〉〈�+||0〉A〈0| ⊗ |0〉B〈0|
Tr P0ρ

= (|0〉A〈0|) ⊗ (|0〉B〈0|) := ρ0, (31)
|1〉A〈1| ⊗ |1〉B〈0||�+〉〈�+||1〉A〈1| ⊗ |1〉B〈0|

Tr P1ρ

= (|1〉A〈1|) ⊗ (|1〉B〈1|) := ρ1. (32)

With no selection or reading of the measured states, one
obtains the von Neumann mixed state

ρ̂ = [P0ρP0 + P1ρP1] = 1

2
[ρ0 + ρ1]. (33)

Check that ρ̂2 = 1
4(ρ0 + ρ1) �= ρ̂, which means the

transformation is non-unitary.



Pramana – J. Phys.           (2022) 96:34 Page 5 of 10    34 

Note that the normalisation of the Lüders updates is
crucial in ensuring norm preservation, but the processes
are not unitary.

3. Measurement: An example to clarify the
distinction between von Neumann and Lüders
projections

Let us take the case of an observation designed to mea-
sure some observableQ of a particle with wave function
ψ1(�x, t). Let the wave function of the apparatus be
ψ2(y, t) where y is the relevant coordinate of the appa-
ratus. The interaction Hamiltonian is taken to be

HI = −gQpy, (34)

where g is a suitable coupling parameter and py is the
momentum corresponding to y. During the impulsive
interaction, the free evolution of the two systems can be
ignored, and

i h̄
∂�

∂t
= −gQpy� =

(
ig

h̄

)
Q∂�

∂y
(35)

is a good approximation, and where, under the assump-
tion of discrete eigenfunctions,

�(�x, y, t) =
∑

q

ψ1q(�x)ψ2q(y, t), (36)

Qψ1q(�x) = qψ1q(�x). (37)

Initially the electron and the apparatus are independent,
and hence

�(�x, y) = ψ10(�x)ψ20(y)

= ψ20(y)
∑

q

cqψ1q(�x). (38)

The final wave function is given by

�(�x, y, t) =
∑

q

cqψ1q(�x)ψ20(y − gqt/h̄2) (39)

which is an entangled wave function embodying a corre-
lation between the eigenvalue q of Q and the apparatus
coordinate y.

A specific example would be spin measurement with
Q = σz . In this case, the apparatus is a dipole magnetic
field in the xz plane with a gradient in the z-direction,
and let

ψ1(x, z) = (c+|u+〉 + c−|u−〉) f (z)eikx , (40)

σz|u±〉 = ±|u±〉 (41)

be the wave function of a neutral spin- 1
2 particle travel-

ling in the x-direction and passing through the magnet
at t = 0, f (z) being a Gaussian wave packet and c±

the probability amplitudes for the spin-up and spin-
down states |u+〉 and |u−〉 satisfying the condition
|c+|2 + |c−|2 = 1. Then, the initial wave function is

�(x, z) = ψ20(z)ψ1(x, z) (42)

and the interaction Hamiltonian is

HI = i h̄μB
∂B

∂z
. (43)

As a result of the impulsive action of the magnetic field,
two wave packets are created which begin to separate
in the z direction, and after sufficient time t the wave
function has the form

�(x, z, t) = [
c+ f+(x, z, t)|u+〉ψ20(z+)

+c− f−(x, z, t)|u−〉ψ20(z−)
]
, (44)

where f±(x, z, t) are the evolved wave packets whose
overlap is negligible and z± are the corresponding
shifted coordinates of the apparatus [9]. This is a path-
spin entangled state. In the standard theory of the
Stern–Gerlach experiment, the particle enters a detec-
tor at (x, y, z±) and is absorbed, causing an irreversible
macroscopic change in it, and these ‘marks’ are finally
read out. The marks corresponding to the z± positions
are then interpreted as measurements of the spin-up and
spin-down states of the particle according to the spin-
position correlations in the wave function (44).

Let us now see how this experiment is to be interpreted
according to the Lüders postulate. Consider the spin
projection operators P+ = |u+〉〈u+|, P− = |u−〉〈u−|.
Then, the Lüders updated pure states are

P+�(x, z, t)

|c+|
= f+(x, z, t)|u+〉ψ20(z+) := �+(x, z+, t), (45)

P−�(x, z, t)

|c−|
= f−(x, z, t)|u−〉ψ20(z−) := �−(x, z−, t). (46)

This shows that the system enters only ‘one’ of the two
possible channels at a time: �(x, z, t) → �+(x, z+, t)
or �(x, z, t) → �−(x, z−, t), ‘there being nothing in
the other channel’. Contrast this with the case of the
von Neumann projection according to which the wave
function in one of the two channels vanishes abruptly
and acausally on measurement. There is no such abrupt
vanishing of wave functions on Lüders transformations
which are norm-preserving. ‘The measurement problem
is thus shifted from the problem of the dynamics of von
Neumann projections to that of Lüders transformations,
neither of which the theory accounts for’.

This opens up some new possibilities hitherto unex-
plored, to the best of our knowledge. One can obviously
add the Lüders updates in the two channels to obtain the
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pure state �+(x, z+, t) + �−(x, z−, t) and combine
them later to find out whether they interfere. We will
explore this possibility in the next section to propose a
test of the Lüders postulate.

4. Interference of Lüders updates

Let us consider a photon in the polarisation state

|ψ〉i = α|0〉 + β|1〉, (47)

where |0〉, |1〉 are polarisation basis states and |α|2 +
|β|2 = 1. Let it be incident on a lossless 50 : 50 beam
splitter. Then after the beam splitter its state can be writ-
ten as

|ψ〉′ = |ψ〉i 1√
2

[i |a〉 + |b〉] , (48)

where a denotes the reflected path and b the transmitted
path. Let polarisation detectors (Da, Db) be placed in
the paths (a, b). Then

|ψ〉 f = 1√
2

[i |a〉|ψ〉i |D〉a + |b〉|ψ〉i |D〉b]

= 1√
2

[
i |a〉(α′|0〉|D〉a0 + β ′|1〉|D〉a1)

+|b〉(α′|0〉|D〉b0 + β ′|1〉|D〉b1)
]

:= 1√
2

[
iα′|ψ〉a0|D〉a0 + iβ ′|ψ〉a1|D〉a1

+α′|ψ〉b0|D〉b0 + β ′|ψ〉b1|D〉b1
]
. (49)

According to the Lüders rule, the states will be updated
post-measurement to the pure states

Pa0ρ f Pa0

|α′|2/2
:= ρ′

a0ρ
D
a0,

Pa1ρ f Pa1

|β ′|2/2
:= ρ′

a1ρ
D
a1,

Pb0ρ f Pb0

|α′|2/2
:= ρ′

b0ρ
D
b0,

Pb1ρ f Pb1

|β ′|2/2
:= ρ′

b1ρ
D
b1, (50)

where Pλi = |ψ〉λi 〈ψ ||D〉λi 〈D|, λ = (a, b), i = (0, 1).
On completion of reading of the detector states, one
obtains the complete ensemble of pure photon states

ρ′ = ρ′
a0 + ρ′

b0 + ρ′
a1 + ρ′

b1. (51)

Let a post-selection be made of the states (ρ′
a0, ρ

′
b0)

or (ρ′
a1, ρ

′
b1) and let them be combined on a second

lossless 50 : 50 beam splitter. In terms of the updated
state vectors, the states after the second beam splitter
(omitting the primes henceforth) will be

|ψ〉out
ai = −1

2
[|ψ〉ai + eiθ |ψ〉(b→a)i ]

= −1

2
[|ψ〉ai (1 + eiθ ),

|ψ〉out
bi = i

2
[eiθ |ψ〉bi − |ψ〉(a→b)i ]

= i

2
[|ψ〉bi (eiθ − 1)], (52)

where θ is an arbitrary phase that can be introduced by
placing a phase shifter in arm b of the interferometer.
Hence, || |ψ〉out

λi ||2 will contain the interference terms
1
2 || |ψ〉λi ||2(1 ± cos θ).

If one thinks of the classic double slit experiment with
(a, b) denoting the paths, one cannot directly use the ket
vectors because |ψ〉ai and |ψ〉bi are orthogonal projec-
tions and it would appear that there is no interference
term. This is, of course, not true, and we shall see in the
following how to deal with such cases algebraically. For
the time being, consider the position vectors |x〉 and the
projections 〈x |ψ〉 = ψ(x) where x stands for (x, y, z).
Then, the wave function in the overlap region after the
double slit can be written as

ψ(x)i = 1√
2

[
ψ(x)ai + eiθψ(x)bi

]
, (53)

where the overlapping wave functions ψ(x)ai and
ψ(x)bi (ψ(x)ai ∩ ψ(x)bi �= 0) are not orthogonal, and
hence

|ψ(x)i |2 = 1

2
[|ψ(x)ai |2 + |ψ(x)bi |2

+eiθψ∗(x)aiψ(x)bi + e−iθψ∗(x)biψai ] (54)

which can be written in terms of quantum probabilities
as
Pi = Pai + Pbi + 2

√
Pai Pbi cos θ. (55)

This is the formula for total probability (FTP) in quan-
tum mechanics for the case of the double slit. The
interference term is a perturbation on the classical prob-
ability Pai + Pbi [10,11]. This is the most natural
and consistent interpretation of the quantum double slit
experiment.

One may wonder why polarisation-path entangled
states are necessary to observe the interference of
updated states. The reason is the following. The state
|ψ〉′ (48) is in a tensor product of Hilbert space HP⊗Hp
where HP is the two-dimensional complex Hilbert space
of polarisation states and Hp is the Hilbert space of
paths. A projection in HP cannot affect the phase of
a photon because the phase is in Hp, being associated
with path differences. It is well known that a path detec-
tion by any means wipes out the interference pattern,
although there seems to be no general agreement about
the mechanism of coherence loss.
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A similar experiment can also be done with single
neutrons where the basis states |0〉, |1〉 denote spin-up
and spin-down states [12].

The absence of interference in such experiments will
falsify the Lüders postulate.

5. Non-locality

Finally, let us consider the implications of the Lüders
update postulate regarding non-locality. Quantum non-
locality has remained one of the biggest enigmas. Some
researchers maintain that there are two types of non-
locality in quantum physics, namely the Einstein-type
(highlighted in the 1935 EPR paper [13]) and Bell-
type [14]. It can be argued that while the first type of
non-locality is truly quantum in the sense of spooky
action-at-a-distance, the latter is ‘sub-quantum’. There
have also been contextuality-based interpretations of
violations of Bell’s inequality [15]. Most importantly,
since the norm-preserving Lüders updates do not imply
‘wave function reduction’ in the same sense as von
Neumann projections, as we have seen, it seems fun-
damentally important to enquire what implication they
have on non-locality.

The thorny problem of non-locality arose from the
ontic interpretation of the quantum state. Traditionally,
one can think of two ends of the spectrum, statistical
interpretation of the quantum state mainly due to Ein-
stein, and the ontic interpretation mainly due to von
Neumann. If one accepts the ontic interpretation as a
whole, i.e., the quantum state is the physical state of a
concrete quantum system, and the von Neumann projec-
tions are also physical, then non-locality is inevitable,
at least theoretically. For example, take the maximally
entangled state of two qubits,

|�+〉 = 1√
2

[|0〉A|0〉B + |1〉A|1〉B] , (56)

where A is with Alice and B with Bob who are spatially
separated and at rest relative to each other, and |0〉A, |1〉A
and |0〉B, |1〉B are the eigenvectors ∈ HA and HB . At
time t of the observation, these qubits are two partial
systems S1 and S2 which are “spatially separated and
(in the sense of the classical physics) are without signif-
icant reciprocity” [16]. Now, according to Einstein, “on
one supposition we should, in my opinion, absolutely
hold fast: the real factual situation of the system S2 is
independent of what is done with the system S1.” This is
Einstein’s criterion of separability. However, according
to the von Neumann projection postulate, if Alice mea-
sures her state at time t , she will get one of two possible
results randomly, namely either

1√
2
|0〉A|0〉B, (57)

in which case the state |1〉A|1〉B vanishes instanta-
neously, or

1√
2
|1〉A|1〉B, (58)

in which case the state |0〉A|0〉B vanishes instanta-
neously. In both cases, the vanishing of a part of the
wave function changes the norm of the state. The mixed
density matrix is given by

ρ̂ = 1

2
[ρ0 + ρ1] . (59)

Both cases imply an instantaneous factual change of
Bob’s state, and hence a violation of Einstein’s sepa-
rability criterion. This has come to be known as non-
locality, a ‘spooky’ action-at-a-distance or ‘telepathy’.
The words ‘spooky’ and ‘telepathy’ used by Einstein are
important here in emphasising that this is different from
the familiar Coulomb or Newtonian action-at-a-distance
where there is a potential. There is no ‘potential’ here
because, by hypothesis, the partial systems S1 and S2
are non-interacting at the time of the measurement [17].
Khrennikov [18] has claimed that such non-locality can
be resolved if probability or state updations are consid-
ered not to be happening in physical space.

Let us now examine the case from the point of view of
the norm-preserving Lüders updates which, as we have
seen, are conditional updates and have a direct refer-
ence to the agent making the measurement. According
to Alice, the Lüders updated states are

|�+〉′0A = PA
0 |�+〉
1/

√
2

= |0〉A|0〉B, (60)

|�+〉′1A = PA
1 |�+〉
1/

√
2

= |1〉A|1〉B . (61)

In terms of the density matrix, one gets

ρ+′
0A = |�+〉′0A〈�+|′ = |0〉A〈0||0〉B〈0| = ρ0, (62)

ρ+′
1A = |�+〉′1A〈�+|′ = |1〉A〈1||1〉B〈1| = ρ1. (63)

It is clear from these that the state |�+〉 is transformed
to the state |0〉A|0〉B if Alice observes the state |0〉A,
or to the state |1〉A|1〉B if she observes the state |1〉A.
This is a feature that is missing from the von Neumann
projections. It is precisely this feature that clarifies the
true meaning of ‘wave function reduction’ according
to Lüders: the ‘conditional’ norm-preserving transfor-
mation |�+〉 → |�+〉′0A or |�+〉 → |�+〉′1A. Hence,
clearly there is no non-locality of the type associated
with von Neumann projection, ‘even for ontic states’.

Nevertheless, Alice’s updates (60) and (61) indicate
that Bob’s states also get updated simultaneously. Since
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state |�+〉 (56) is symmetric in (A, B), Bob’s updates
must also simultaneously update Alice’s states, and so
consistency requires that they be the same. Hence, there
is spooky action-at-a-distance in the theory irrespective
of which projection postulate is adopted, provided the
state is assumed to be ontic.

5.1 Single-particle non-locality

The origin of the debate on non-locality in quantum
mechanics can be traced back to Einstein’s observations
at the 1927 Solvay Conference, seven years before the
1935 EPR paper. Unlike the EPR paper, it deals with
a single particle. Consider a single-particle wave func-
tion suggested by him to demonstrate that an ontic wave
function ψ for the particle and locality are incompatible
[19]. After passing through a small hole in a screen, the
wave function of the particle spreads out on the other
side of it in the form of a spherical wave, and is finally
detected by a large hemispherical detector. The wave
function propagating towards the detector does not show
any privileged direction. Einstein observes:

“If |ψ |2 were simply regarded as the probability
that at a certain point a given particle is found at a
given time, it could happen that the same elemen-
tary process produces an action in two or several
places on the screen. But the interpretation, accord-
ing to which the |ψ |2 expresses the probability that
this particle is found at a given point, assumes an
entirely peculiar mechanism of action at a distance,
which prevents the wave continuously distributed
in space from producing an action in two places on
the screen.”

Einstein later remarked that this “entirely peculiar mech-
anism of action at a distance” is in contradiction with
the postulate of relativity.

Let the stationary wave function of the particle be

ψ(R) = A
e−ikR

R
, (64)

where R is the radius (suitably large) of the hemi-
spherical detector and A is a normalisation constant.
Let ψ(R) = 〈R|ψ〉. Then, the density matrix is ρ =
|ψ〉〈ψ |. The spherical symmetry makes the system
degenerate. To ‘lift’ this degeneracy, let us for sim-
plicity (but without loss of generality) represent the
detector by a very large number N of discrete points
(labelled by the polar and azimuthal angles (θi , φi ))
and write the normalised state vector at each point as
|ψ〉i with 〈ψ | j |ψ〉i = δi j and |ψ〉 = ∑N

i=1 c|ψ〉i |D〉i
with |c|2 = 1/N because of spherical symmetry. Then,
ρ = |ψ〉〈ψ |. Tracing over the detector states, one
obtains the von Neumann mixed density matrix

ρ̂ = 1

N

∑

i

|ψ〉i 〈ψ | = 1

N

∑

i

ρi . (65)

This is a statistical mixture that describes a uniform
probability distribution of particle detections over the
hemisphere. Although the wave is spherical, the von
Neumann projection prevents a particle from being
detected in two places by collapsing the wave function
everywhere except at the place of detection. This is a
peculiar mechanism of action-at-a-distance.

On the other hand, applying a conditional Lüders
update, the state changes to

ρ → ρk = |ψ〉k〈ψ | (66)

on the condition that the particle is detected at a par-
ticular location of the hemispherical detector. Here the
entire wave function does not abruptly ‘vanish’ every-
where except at a single point where its amplitude
remains unchanged – it simply shrinks to a single point
instantaneously. This is also action-at-a-distance but of
a different mechanism. Both these kinds of action-at-a-
distance can be avoided in epistemic interpretations of
the wave function.

6. Concluding remarks

We have clarified the nature of von Neumann and Lüders
projection postulates and pointed out exactly where the
two differ. For example, we have shown through some
explicit examples that the Lüders transformations can
be replaced by equivalent local unitary transformations
for single and product states. However, this does not
work for entangled states involved in measurements for
which the Lüders transformation was suggested in the
first place. Nevertheless, it leads to an important clarifi-
cation of the nature of wave function reduction/collapse,
namely that it is a ‘conditional’ transformation of the
initial pure state ρ = |�〉〈�|, |�〉 = ∑

i ci |ψ〉i to an
individual post-selected ‘normalised’ pure state ρk =
|ψ〉k〈ψ | [20].

The distinction between von Neumann and Lüders
projections has also been further clarified by the analy-
ses of the violation of Einstein locality in the case of both
single-particle and entangled states. Such non-locality
can only be removed by adopting some form of epis-
temic interpretation of the wave function. There exists
a voluminous literature on this subject in which discus-
sions on measurement and locality issues have involved
various shades of ontic-epistemic interpretations of the
quantum state [21].

Also, in discussions on locality, physicists have
adopted different definitions of locality which might
or might not be fully equivalent to each other, as for
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example; ‘no superluminal casual influences’, or ‘no
spooky action between space like separated events’,
or ‘no superluminal signal propagation’, or ‘space-like
separated local observables commute’. Even Bell had
two separate theorems. The 1964 theorem was on local-
ity and predetermination, and the 1976 theorem was on
local causality [22]. Whether they are logically fully
equivalent is still debated [23]. We have closely followed
Einstein’s own definition of locality (i.e. his separabil-
ity criterion) which is different from what appears in
the 1935 EPR paper written by Podolsky which Ein-
stein was not happy with, but which triggered the whole
debate. Fairly soon after the paper was published he
explained his conceptual position very clearly and suc-
cinctly, without using any mathematics, to Schrödinger
[24] and later in his ‘Autobiographical Notes’ [16]. We
have followed this 1949 version which does not refer
to any relativistic space–time, light cones, superluminal
signals or causality.

We have also proposed a simple experiment to test the
Lüders update postulate.

Finally, we must mention that Khrennikov has worked
extensively on questions related to von Neumann and
Lüders projections, particularly as applied to the EPR
paradox and non-locality. [25–28]. He points out that
Einstein, Podolsky and Rosen crucially modified von
Neumann’s projection postulate ‘by extending it to
observables with degenerate spectra (the Lüders postu-
late)’ and that ‘this modification is highly questionable
from a physical point of view and is the real source of
quantum non-locality’. We have studied the allied prob-
lem of measurements on entangled Bell states and shown
that no-locality is inevitable for both forms of projection,
albeit with different meanings, provided these states are
regarded as ontic. He has also claimed that the cor-
rect application of the von Neumann postulate replaces
spooky non-locality by ‘a classical measurement non-
locality, which is related to the synchronization of two
measurements (on the two parts of a composite system)’.
Our analysis of the two-qubit entangled state shows that
there is no non-locality of the type associated with von
Neumann projection if Lüders updates are used.

He further claims that quantum teleportation is impos-
sible in von Neumann’s framework. We have not studied
the problem of teleportation from the points of view of
the two projection postulates.

We would like to end with the following remarks. In
his 1951 paper, Lüders wrote: “Measurement, an act
of cognizance, adds an element not already contained
in the formulation of quantum theory.” He borrowed
this from von Neumann who clearly acknowledged the
cognitive aspect (‘subjective perception’) of a measure-
ment in quantum theory. Quantum mechanics is unique
among physical theories in this respect.
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