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Abstract: 

Scholars have increasingly focused on understanding different aspects of algorithms since they not only affect individual 
choices and decisions but also influence and shape societal structures. We can broadly categorize scholarly work on 
algorithms along the dimensions of economic gain that one achieves through automation and the ethical concerns that 
stem from such automation. However, the literature largely uses the notion of algorithms in a generic way and overlooks 
different algorithms’ specificity and the type of tasks that they perform. Drawing on a typology of tasks based on task 
complexity, we suggest that variations in the complexity of tasks contribute to differences in 1) their automation potential 
and 2) the opacity that results from their automation. We also suggest a framework to assess the likelihood that fairness 
concerns will emanate from automation of tasks with varying complexity. In this framework, we also recommend 
affordances for addressing fairness concerns that one may design into systems that automate different types of tasks. 
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1 Introduction 

Algorithmic retrieval, classification, ranking, and information ordering (Greenfield, 2006; Kitchin, 2017; 
Kitchin & Dodge, 2011; Manovich, 2013; Polynczuk-Alenius, 2019; Steiner, 2012) not only impact individual 
choices and decisions (Graham & Henman, 2019) but also influence and shape societal structures (Danaher 
et al., 2017). As a result, researchers have increasingly begun to focus on understanding algorithms’ 
different aspects1 (Ananny, 2016; Crawford, 2016; Dwivedi et al., 2019; Introna, 2016; Robert, Bansal, 
Melville, & Stafford, 2020b).  

We can broadly categorize scholarly work on algorithms along the dimensions of economic gain that one 
achieves through automation and the ethical concerns that stem from such automation (Pasquale, 2015). 
The economic perspective highlights the efficiency gains that result from reduction in errors that arise due 
to human judgment and bias (Meadow & Sunstein, 2001) when one employs algorithms for tasks such as 
searching, classifying, retrieving, ranking, and sorting. These efficiency gains, along with the tirelessness 
associated with algorithmic work, lead to consequent increases in throughput and work productivity 2 
(Brynjolfsson & McAfee, 2016; Ford, 2015; Meadow & Sunstein, 2001). However, recent research also 
suggests that not all automation endeavors yield equally encouraging results (Davenport & Ronanki, 2018) 
and that differences in automation potential—the extent to which a machine (or a computer or algorithm) 
can carry out the functions that a human agent performed earlier (Parasuraman, Sheridan, & Wickens, 
2000)—might exist for different tasks. 

The ethical perspective in research on algorithmic automation focuses on concerns that arise from 
algorithmic automation (Shin, Zhong, & Biocca, 2020). Some concerns include biases in decisions that 
algorithms make (Introna & Nissenbaum, 2000), discriminatory outcomes (Gillespie, 2017), fairness 
concerns (Dwork, Hardt, Pitassi, Reingold, & Zemel, 2011), surveillance (Introna & Wood, 2004; Zuboff, 
2018) and accountability concerns (Felten, 2012). Research in this stream also argues that algorithms that 
profit-oriented enterprises control constitute “black boxes” (Hoffmann, 2019; Park & Humphry, 2019; Poon, 
2016). Inded, we can see that many concerns that this research has stream has raised emerge from 
algorithms’ inscrutability (Ziewitz, 2016) due to the opaque manner in which they work (Burrell, 2016). 
Algorithmic opacity can amplify existing discriminations and inequalities in society and, thereby, raise 
fairness concerns (Carter, Liu, & Cantrell, 2020; Massanari, 2017; Matamoros-Fernández, 2017; Pasquale, 
2015; Thorson, Cotter, Medeiros, & Pak, 2019). Furthermore, as algorithms’ opacity increases, it becomes 
difficult to explain algorithmic outcomes, which in turn, reduces algorithmic accountability (Pasquale, 2015). 

These two streams have developed rather individually, and few studies have focused on integrating them(as 
an exception, see Zarsky, 2016). However, studies in both streams have a common problem: they adopt a 
generic notion of algorithms. As a result, they have largely ignored different algorithms’ specificity and the 
typical tasks that they perform. Recent work has corroborated this argument by suggesting that artificial 
intelligence (AI) replaces individuals in jobs fundamentally at the task level rather than at the job level (Arntz, 
Gregory, & Zierahn, 2017; Huang & Rust, 2018). In this paper, we confirm to the position that the task 
constitutes as an important characteristic to consider when evaluating algorithmic automation’s effects. Put 
more precisely, in response to the calls to contextualize the factors that influence algorithmic transparency 
and explainability (Robert, Bansal, & Lütge, 2020a), we argue that a task’s nature affects its automation 
potential and how much opacity arises due to such automation. Therefore, in this study, we focus on 
understanding 1) different types of tasks’ automation potential and 2)   the fairness concerns that arise from 
automation-induced opacity. 

We use task complexity (Campbell, 1988; Wood, 1986) as our theoretical foundation to develop a 
framework. Campbell (1988) categorized tasks into five broad types based on their complexity: 1) simple 
tasks, 2) problem tasks, 3) decision tasks, 4) judgment tasks, and 5) fuzzy tasks. We show that the variation 
in automation potential and opacity that arises due to automation associated with these five task types spans 
the task complexity spectrum. By using task complexity to understand automation potential and opacity 

 
1 We observe increasing attention on “algorithms” as a scholarly topic in many academic journals, such as from recent calls for special 
issues on the governing algorithms in Science Technology and Human Values in 2015, social power of algorithms in Information, 
Communication and Society in 2017, and so on. 
2 Such automation examples include manufacturing automation (Groover, 2008), network management automation (Hämäläinen, 
Sanneck, & Sartori, 2012), stock exchange automation (Naidu & Rozeff, 1994), audit automation (Coderre, 2013), robotic process 
automation (van der Aalst, Bichler, & Heinzl, 2018), healthcare automation (Galetsi, Katsaliaki, & Kumar, 2020), predictive policing 
(Hassan et al., 2019; Mantello, 2016) 
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associated with algorithms, we make three specific contributions to the literature. First, we synthesize 
research streams that address algorithmic automation and opacity to holistically explain how task complexity 
affects automation potential and how the associated opaqueness gives rise to fairness concerns. Using this 
typology, we clarify why AI is associated with higher fairness concerns. Second, using task complexity to 
understand opacity, we explicate why different task types differ in the likelihood that they will cause fairness 
concerns. We also delineate fairness across two dimensions—distributive and procedural (Ambrose & 
Arnaud, 2005; Greenberg & Colquitt, 2013)—and argue that, while some tasks will likely exhibit a greater 
propensity for distributive fairness concerns, other tasks will likely exhibit a greater propensity for procedural 
fairness concerns. Third, we provide recommendations to individuals who design algorithmic automation 
and AI systems about how they can address fairness concerns associated with different task types. We 
propose that algorithms that automate tasks that differ in complexity require different types of affordances 
in situations where one needs to address fairness concerns that arise from automation.  

This paper proceeds as follows: in Section 2, we briefly describe the literature on algorithmic automation, 
present algorithmic concerns around fairness, and summarize theoretical knowledge of task complexity. In 
Section 3, we conceptualize a framework to assess algorithms along two dimensions—automation potential 
and opacity—while accounting for different levels of task complexity. In Section 4, we discuss the 
implications that arise when conceptualizing algorithmic automation and AI for research and practice in a 
task-based manner. In Section 5, we conclude the paper. 

2 Theoretical Background 

In the 19th century, industrial automation rested on the principle of simplifying a task by breaking it into 
smaller, highly specialized sequences at the expense of workers’ skills; as a result, researches referred to 
these technologies as deskilling technologies (Frey & Osborne, 2017, p. 256). These technologies shifted 
work from artisan shops to factory shop floors where an individual carried out the same repetitive task rather 
than perform the numerous complex tasks that an individual typically performed in the artisan shop. In turn, 
recent advancements in computing technology have made it possible to outsource some of these repetitive 
tasks to algorithms. We define algorithms as “a sequence of unambiguous instructions for solving a problem, 
that is, for obtaining a required output for any legitimate input in a finite amount of time” (Levitin, 2012). Not 
only have algorithms become a means for supporting automation and improving productivity, but, with 
further advancements in computing technology, their capability to perform repetitive tasks has exponentially 
increased (Ford, 2015). As a result, automation has achieved a scale not previously apprehended 
(Brynjolfsson & McAfee, 2016). Consequently, automation has moved beyond routine jobs that followed 
well-defined repetitive procedures as with manufacturing jobs in the 19th century (Acemoglu & Autor, 2011) 
to potentially include complicated tasks that many considered to necessarily require human involvement, 
such as driving a car (Frey & Osborne, 2017). The term artificial intelligence (AI) refers to machines (or 
computers or algorithms) that can perform such tasks; that is, complex tasks that involve cognition, 
perception, and action (Heer, 2019). 

The literature on algorithms in general and AI in particular has broadly explored two dimensions: 1) 
automation and the efficiency gains that algorithmic automation can produce (Shneiderman, 2020) and 2) 
ethical concerns that arise due to algorithmic automation (Pasquale, 2015). We briefly discuss these two 
literature streams in Sections 2.1 and 2.2. 

2.1 Algorithms and Automation 

Research on the efficiency of algorithms has suggested that algorithms result in higher efficiency in routine 
personal and professional settings. This research has argued that process automation, achieved through 
“technology that actively selects data, transforms information, makes decisions, or controls processes” (Lee 
& See, 2004, p. 50), increases processes’ efficiency by reducing errors, working tirelessly, and performing 
tasks at a faster rate than humans (Hoff & Bashir, 2015; Wajcman, 2019).  

As algorithms have slowly entered spaces that human decision making initially dominated, they have 
augmented human capabilities (Heer, 2019; Jordan, 2019; Li, 2018). However, some researchers have 
argued that AI will not completely replace humans (Heer, 2019) as we can fully automate only a small 
percentage of jobs by adapting current technologies. Nonetheless, almost all jobs have some activities or 
tasks that one could potentially automate (Manyika, 2017). Scholars have suggested that researchers 
should focus on the task rather than the job to understand which job aspects algorithms could automate 
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and perform (Arntz et al., 2017). They have further argued that focusing on jobs rather than tasks has led 
some researchers to seriously overestimate automation’s risks.  

In a similar vein, Parasuraman et al. (2000) posited that the level of automation in tasks varies along a 
continuum from completely manual to completely automated decision making. They outlined a 10-level scale 
for automation level based on whether humans or algorithms control decisions. At lower scale levels (i.e., 
levels 1 to 5), human control dominates tasks, while the algorithm dominates at higher levels3. Though this 
framework helps one understand tasks’ automation level, it does not explain tasks’ complexity and 
consequent implications. Instead, it focuses mainly on the automation of four broad function classes in 
human-machine systems: 1) information gathering, 2) information analysis, 3) decision, 4) and action. For 
example, sensors that automatically collect environmental information or smart electricity meters that 
automatically compute electricity bills exemplify systems that automate the functions of information 
gathering and analysis, respectively. However, variations in the permutations and combinations of these 
functions may make different tasks vary in complexity. In this research, we examine how the complexity 
associated with a particular task affects its automation potential, an aspect that the literature has not yet 
adequately explored. 

2.2 Algorithms and Fairness 

The second literature stream on algorithmic automation has discussed algorithms’ wider implications for 
individual, social, and cultural life (Beer, 2009; Greenfield, 2006; Kitchin, 2017; Kitchin & Dodge, 2011; 
Manovich, 2013; Polynczuk-Alenius, 2019; Steiner, 2012). For example, researchers have discussed 
subjects such as “politics of algorithms” (Ziewitz, 2016), “ethicality of algorithms” (Zarsky, 2016), and so on. 
Scholars in this stream have raised wide-ranging concerns with algorithmic automation, such as surveillance 
(Introna & Wood, 2004; Zuboff, 2018), accountability (Felten, 2012), and fairness (Dwork et al., 2011). 
Fairness concerns include those associated with bias (Introna & Nissenbaum, 2000), discrimination 
(Gillespie, 2017), and transparency (Burrell, 2016). Owing to their black boxed (Pasquale, 2015; van 
Couvering, 2007) and self-learning nature, researchers have referred to algorithms as inscrutable entities 
that produce unexpected social influences and outcomes, such as constraints on individual autonomy 
(Executive Office of the President, 2014; Ziewitz, 2016).  

Consider the advanced algorithms that many organizations to automate their recruitment processes. 
Through sophisticated mechanisms, these algorithms learn how to identify good candidates using internal 
organizational databases about performance metrics, tenure records, current and previous employee 
turnover rates, and sometimes even external information from sources such as social media platforms. By 
automatically screening applications and providing a shortlist of candidates fit for the job without any human-
induced bias, these algorithms can save recruiters’ time and money. However, these algorithms’ elaborate 
and complex inner mechanisms often remain unknown, which makes it impossible to ascertain whether they 
use fair and ethical recruitment practices. Similarly, most algorithms’ governance, outcomes, and social 
influence will likely become a cause of concern (Beer, 2017; Mittelstadt, Allo, Taddeo, Wachter, & Floridi, 
2016) due to the complexity associated with these “powerful entities that govern, judge, sort, regulate, 
classify, influence or otherwise the world” (Barocas, Hood, & Ziewitz, 2013). 

Ethical and fairness related issues that arise due to algorithmic task automation have led to an increased 
interest and discussion among information systems (IS), computer science, law, management, and public 
policy scholars (Jarrahi, 2018; Robert, Pierce, Marquis, Kim, & Alahmad, 2020c; Veale, van Kleek, & Binns, 
2018; Vellido, 2019; Wang & Siau, 2018). However, the literature that has analyzed algorithmic fairness has 
proposed two opposing arguments. On the one hand, some scholars have argued that algorithmic 
automation can increase fairness by eliminating human biases (Zarsky, 2016, p. 123). For example, unlike 
a banker, an algorithm may never offer a loan at a cheaper rate to an individual with higher social capital. 
On the other hand, other scholars have argued that algorithmic automation and AI can cause greater 
concerns about fair algorithmic outcomes compared to when humans perform tasks (Martin, 2019; Mateeu 
& Nguyen, 2019).  

 

3 For example: at level 4, the machine suggests alternative decisions, but the human retains the authority to accept the suggestion or 
choose an entirely new decision. At higher levels (i.e., levels 6 to 10), algorithmic control dominates the task, and, with each increase 
in level, the algorithm provides less and less feedback. For example, at level 6, the machine gives a limited amount of time for the 
operator to veto the decision, and, at level 9, it only informs the operator if it feels the need to inform. 
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Scholars have generally grounded their discussion fairness on two fundamental legal doctrines: distributive 
fairness and procedural fairness (Ambrose & Arnaud, 2005; Barocas, Hardt, & Narayanan, 2020; Robert et 
al., 2020c). Distributive fairness deals with fairness associated with allocating outcomes (Alexander & 
Ruderman, 1987). For example, an organization may ensure distributive fairness via providing the same 
pay for the same work. A central discussion on gender discrimination concerns distributive fairness as 
women tend to receive usually significantly less pay than men for the same work (Bishop, 2018). An 
algorithm that automates performance appraisal in a company might consider women on maternity leave 
as lower performers compared to men for a given work period, which may, in turn, lead to concerns about 
distributive fairness if such women receiver lower or no pay hikes in comparison to their counterparts. The 
literature on AI and algorithms has discussed distributive fairness more than other types of fairness and 
focused mainly on making algorithms select and allocate organizational resources fairly (Robert et al., 
2020c). Organizations have primarily achieved fairly distributed outcomes with algorithms via computational 
models that operationalize equality based on mathematic functions or legal principles (Glymour & Herington, 
2019; Madras, Creager, Pitassi, & Zemel, 2019). 

Procedural fairness deals with disparate treatment. It focuses on the procedure one employs to reach or 
decide an outcome rather than the outcome itself. For example, an algorithm that automated performance 
evaluation through standard KPIs might ignore informal but significant work that managers would otherwise 
recognize and, thus, create procedural fairness concerns. Research on procedural fairness has focused on 
automating existing procedures through algorithms rather than employing algorithms to create new 
procedures and processes. This research has proposed consistency and transparency as two means to 
achieve procedural fairness4 (Brown, Chouldechova, Putnam-Hornstein, Tobin, & Vaithianathan, 2019; 
Grgić-Hlača, Zafar, Gummadi, & Weller, 2018; Robert et al., 2020c). In other words, algorithms should 
produce the same output and follow the same procedure every time, and they should follow procedures in 
a transparent manner. 

Achieving fairness through transparency rests on the logic that the more one knows an algorithm’s inner 
workings, the easier it will be to attach accountability to it (Ananny & Crawford, 2018; Martin, 2019). It 
assumes that, once one reveals an algorithm’s inner workings (Christensen & Cheney, 2015, p. 74) to an 
audience, the audience can not only comprehend the workings but also suggest necessary corrections to 
them (MacKenzie, 2008; Martin, 2019). However, complexity associated with many algorithms that influence 
personal and professional life5 often make them incomprehensible to humans, which raises concerns about 
algorithmic accountability. Some scholars have argued that, in the case of algorithms and AI, achieving full 
transparency may be inadequate, undesirable, and infeasible (Ghani, 2016; Martin, 2019). Furthermore, 
even though calls for algorithmic transparency have risen (Rader, Cotter, & Cho, 2018; Shin & Park, 2019), 
one cannot easily make algorithms transparent (Burrell, 2016).  

Building on this literature on algorithmic opacity to include algorithms’ characteristics and the data scales 
that algorithms handle, Burrell (2016) argued that contemporary algorithms suffer from the “curse of 
dimensionality” (Domingos, 2012) and suggested that algorithms—specifically those that deal with big data 
and AI, are inherently opaque for three broad reasons (see Table 1). First, an organization may protect its 
algorithms as proprietary information. Second, the difficulty associated with understanding a computer 
program even if it is open for scrutiny may render it to opaque to technically illiterate individuals. Third, 
algorithms’ characteristics and the data scales that algorithms handle will inevitably make algorithms opaque 
because the high dimensional optimization conflicts with the scale at which humans reason and interpret 
semantic information (Burrell 2016)6. To optimize the rate at which algorithms consume resources in the 
presence of multi-dimensionality and address the curse of dimensionality, one often has to use dimensional 
reduction techniques such as principal component analysis, which may add further to algorithms’ opacity. 
Burrell (2016) suggested that changes in algorithms’ logic during their learning phase exacerbate this 

 
4 Recent research in algorithmic design has also suggested addressing fairness issues by 1) excluding protected attributes such as 
race, gender, ethnicity, and their proxies for decision making (Bonchi, Hajian, Mishra, & Ramazzotti, 2017) and 2) training algorithms 
to ensure that their predictive performance stays the same across groups (Agarwal, Beygelzimer, Dudík, Langford, & Wallach, 2018). 
However, some studies have argued that such algorithmic designs do not guarantee fair decisions and may instead harm the very 
groups that they aim to protect (Corbett-Davies & Goel, 2018).  
5 The algorithms that Google’s search engine and Facebook’s news feed use have time and again received criticisms (Aswani, Kar, 
Ilavarasan, & Dwivedi, 2018). For example, in reacting to a Facebook data leak, The Economist (2018) has said: “Facebook needs a 
full, independent examination of its approach to content, privacy, and data… Facebook and other tech firms need to open up [their 
algorithms] to outsiders, safely and methodically”. 
6 Some scholars have argued that some organizations intentionally make their algorithms opaque to avoid scrutiny and accountability 
(Martin, 2017; Pasquale, 2015; Burrell, 2016). 
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opacity. Thus, even if technically literate individuals can initially comprehend a dataset and program’s 
internal logic, the interplay between the two might eventually make the algorithm opaque to these 
individuals.  

The three forms of opacity suggest that different algorithms vary in their opacity and that the extent to which 
they vary may depend on the task that one uses them for. Consequently, we need to understand how that 
variation in opacity affects fairness concerns that arise when algorithms automate different tasks. However, 
the extant literature has not examined opacity associated with algorithmic automation in a task-based 
manner, which makes it difficult to explicate why algorithms that automate different tasks differ in the fairness 
concerns they raise. Even though the literature has highlighted that we need to understand AI technologies 
in a task-based manner to understand why users adopt these technologies (Rzepka & Berger, 2018), 
researchers have yet to address the issue. We believe that understanding algorithmic automation based on 
task complexity (Campbell, 1988) can help explain the differential opacity and fairness concerns associated 
with different kinds of automated tasks. In Table 1, we define the main concepts associated with fairness 
and opacity that we use in this paper. 

Table 1. Fairness and Opacity Types 

Concept Definition Reference 

Fairness 

Distributive 
The disparate impact: focuses on avoidable or unjustified harm and 
minimizing differences in outcomes. 

Ambrose & 
Arnaud (2005), 

Robert et al. 
(2020) Procedural 

The disparate treatment: focuses on the procedure one employs to 
reach or decide an outcome rather than the outcome itself. 

Opacity 

First source Opacity that results from intentional corporate or state secrecy 

Burrell (2016) 
Second source Opacity due to the need for specialized technical literacy 

Third source 
Opacity that arises from the high dimensional optimization that 
algorithms perform that conflicts with human-scale reasoning 

2.3 Task Complexity 

Researchers have long argued that advancements in information technology would have a “considerable 
effect in [the] office” (Levin, 1956, p. 61) and that it would “suppress most fragmentary and repetitive jobs” 
(Friedmann, 1992, p. 114) through automation. Consequently, they began to develop models to understand 
how automation would affect office jobs (Frey & Osborne, 2017; Koorn, Leopold, & Reijers, 2018; 
Parasuraman et al., 2000; Traumer, Oeste-Reiß, & Leimeister, 2018). While Frey and Osborne (2013) used 
jobs as the unit of analysis for automation, Arntz et al. (2017) argued that using jobs as a unit of analysis is 
too coarse grained and rather suggest “task” as an appropriate unit of analysis for studying automation  

Early task-automation models simply classified tasks as routine and non-routine (Autor, Levy, & Murnane, 
2003). Over time, researchers extended this classification to include further categories such as cognitive, 
analytical, and interactional tasks (Koorn et al., 2018; Spitz-Oener, 2006). However, most of these 
frameworks do not clearly specify what constitutes a task and what distinguishes one task type from another. 
As a result, they fall short in answering why certain tasks are more complex than others.  

However, research on task characteristics from the organization studies discipline provides theoretical 
approaches to understand the concept of task and differences between tasks. These approaches include 
understanding 1) tasks as a pattern of stimuli that one imposes on individuals (task qua task), 2) tasks as 
behavioral responses that a person emits in order to achieve a specific performance level, 3) tasks as 
behavior description that a task performer provides, and 4) tasks based on the abilities that one requires to 
perform that task (Hackman, 1969; McGrath & Altman, 1966). Wood (1986) argued that one can better 
analyze and operationalize tasks theoretically via combining “behavior as requirements” and “task qua 
task”7.  

Campbell (1988) adopted the basic framework that Wood (1986) adopted and suggested a typology of 
complex tasks via refining the notion of task attributes. He argued that an increase in information load, 

 
7 Wood (1986) used the postulates products, acts, and information cues to define tasks. While products refer to a task’s measurable 
outputs (Naylor, Pritchard, & Ilgen, 1980), acts refer to the means to achieve those outputs. Information cues refer to pieces of 
information about a task that assist an individual in making decisions when performing it. 
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information diversity, or rate at which information changes can contribute to a task’s complexity. These 
factors can vary owing to four different complexity sources: 

1) Multiple potential paths to achieving the desired outcome: as the number of paths to reach the 
outcome increase, the amount of information that one needs to process increases, which, in 
turn, increases the task’s complexity. 

2)  Multiple possible outcomes: as the number of outcomes increases, one needs to process 
information related to all possible outcomes, which, in turn, increases the task’s complexity. 

3)  Conflicting interdependence among paths to outcomes: the outcomes that arise from one 
desired outcome might negatively influence other desired outcomes (e.g.,a  focus on quality 
might decrease how much one produces). In this manner, conflicting paths increase the task’s 
complexity). 

4)  Uncertain or probabilistic links between the paths and outcomes: the amount of information that 
one needs to process will substantially increase in this case, which will cause an increase in task 
complexity.  

Based on the different possible combinations between these sources (16 to be specific)—that is, whether 
multiple paths, multiple outcomes, conflicting paths, and uncertainty/probabilistic linkages exist or not—
Campbell (1988) proposed a typology of five different tasks that we show in Table 2 (we describe the task 
types in Section 3).  

Though many research papers have adopted (Hærem, Pentland, & Miller, 2015; Liu & Li, 2012; Zigurs & 
Buckland, 1998) the notion of task complexity that Wood (1986) and Campbell (1988) proposed, few papers 
have advanced the classification’s core ideas8. We adopt the original notion of task complexity since it 
provides a suitable framework to understand the variations in the automation potential and opacity concerns 
associated with different tasks.  

Table 2. Task Complexity Typology (Adapted from Campbell, 1988; Zigurs & Buckland, 1998) 

Task type 

Complexity source 

Examples Multiple 
paths 

Multiple 
outcomes 

Conflicting 
interdependence 

among paths 

Uncertain or 
probabilistic 

linkages 

Simple tasks No No No Not applicable 
Coin sorting and finding the 

maximum number 

Problem tasks Yes No Yes or no Low to high 
Chess problems and 
personnel scheduling 

Decision tasks NR Yes Yes or no Low to high 
Employee selection and 

choosing a house 

Judgment tasks NR NR* Yes or no Low to high 
Intelligence analysis and 

stock market analysis 

Fuzzy tasks Yes Yes Yes or no Low to high Business ventures 

Note: NR means not relevant. 

3 Algorithms and Task Complexity 

In this section, we describe each task type’s complexity sources based on Campbell’s (1988) typology and 
discuss each task type with respect to its automation potential and opacity induced due to its automation. 
We expect this discussion to contribute to the debate surrounding tasks’ automation potential and their 
associated fairness concerns.  

3.1 Simple Tasks 

A simple task refers to a task that has a clearly defined path to achieve a single desired outcome. We 
represent a simple task in Figure 1 where the circle labeled “S” represents the first state, the circle labeled 
“i” represents an intermediate state, the arrows represent the path, and the doughnut labeled “E” represents 

 
8 In a recent work, Hærem et al. (2015) extend the concept of task complexity to group activities. 



Transactions on Human-Computer Interaction 112  

 

Volume 13   Issue 1  

 

the end state or the desired outcome. As the number of intermediate steps required to achieve the desired 
outcome increases, the task’s complexity also increases.  

 

Figure 1. A Simple Task 

Since simple tasks have a clearly defined path for achieving their outcome, they have a highly standardized 
and programmable nature. One can easily formalize them and easily question the outcome of algorithms 
that perform them. For instance, banking institutions in India used to calculate interest for savings bank 
accounts semi-annually until late 2010. Bankers used to derive/calculate the interest manually using interest 
charts and the lowest monthly balance available in the account between the tenth and the last day of the 
month. With advancements in technology and automation, banking institutions in India now calculate interest 
based on the available daily balance. While customers and bank officials may lose knowledge about how 
to compute interest over time due to automation such that the formula for finding interest becomes black 
boxed, bank officials can nonetheless open up the black boxed formula for inquiry and demonstrate it to 
consumers in case they suspect computational error. Opacity for a simple task such as this one may at most 
arise from Burrell’s (2016) first opacity source (i.e., corporate or state secrecy). Therefore, we argue that 
simple tasks have the highest potential for automation and the lowest opacity9.  

3.2 Problem Tasks 

Problem tasks are more complex than a simple task because they involve multiple paths that achieve the 
same outcome. We represent a problem task in Figure 2 where the circle labeled “S” represents the first 
state, the doughnut labeled “E” represents the desired outcome, the circle labeled “i” represents an 
intermediate state in one path to the outcome, and the circles labeled “j” and “k” represent intermediate 
states in another path to the outcome. The complexity in a problem task arises from the need to evaluate 
all the paths and then choose the most efficient one. In addition, not all paths may reach the end desired 
state. An example problem task includes the classic travelling salesman problem, which focuses on 
determining the least possible distance a salesman needs to travel to visit all cities on a list.  

 

Figure 2. A Problem Task 

Unlike the simple task (e.g., to calculate interest) where a single procedure (formula) to calculate the 
outcome (interest regardless of the account holder’s identity) exists, for a problem task such as the travelling 
salesman problem, multiple ways (algorithms) to find the shortest route and various shortest routes from 
the source to the destination might exist. Therefore, one cannot straightforwardly find the best possible route 
in the best possible way as in simple tasks. Nonetheless, one can still represent a problem task as a 
mathematical/analytical/heuristic model amenable to standardization and automation even though one may 
not find the exact solution to the model in real time.  

 
9 Though automation might induce automation potential and opacity to a different degree for specific tasks that belong to a particular 
task type (category), we lack the scope to explicate these differences in our framework.  



113 
Understanding the Effect that Task Complexity has on Automation Potential and Opacity: Implications for 

Algorithmic Fairness 

 

Volume 13  Paper 6  

 

Hence, we consider problem tasks as having slightly lower automation potential than simple tasks (maybe 
at level 8 or 9). We can also consider problem tasks as more opaque than simple tasks. In addition to the 
possibility that opacity can stem from Burrell’s (2016) first source (i.e., corporate secrecy), opacity for 
problem tasks primarily arises from the second source (i.e., the need for specialized technical literacy). 
However, one can still open up algorithms that perform problem tasksand make them understandable with 
a little technical literacy. Hence, we consider them as having low opacity though slightly more than simple 
tasks.  

3.3 Decision Tasks 

Decision tasks involve multiple possible outcomes. To complete these tasks, one needs to choose the most 
desirable alternative (that optimizes or maximizes utility) among many available alternatives, which often 
involves trade-offs along multiple dimensions. We represent a decision task in Figure 3 where the circle 
labeled “S” represents the starting state, the circle labeled “i” represents an intermediate state, and the 
doughnuts labeled “E1” to “E6” represent multiple possible outcomes. At the intermediate state “i”, a decision 
point, one needs to make a choice between states E1 and E2. One may achieve E1 or E2 as the eventual 
outcome, or the path that one chooses afterwards may further lead to another end states (i.e., E3, E4, E5, 
or E6). 

 

Figure 3. A Decision Task 

Each outcome among the multiple possible outcomes for a decision task may need a different information 
stream, though one may lack clear or the necessary information to complete the task. A lack of clear or 
necessary information may contribute to the task’s complexity but still keep it amenable to automation. 
Different decision tasks may also increase in complexity when uncertainty or conflicting interdependence 
among outcomes exists (Campbell, 1988, p. 47). Conflicting interdependencies and uncertainty may also 
require high dimensional optimization, which conflicts with the scale at which humans reason and interpret 
semantic information (Burrell, 2016). A recommender system that a websites uses exemplifies a decision 
task. A recommender system suggests content to an individual user based on the user’s consumption 
pattern and the similarity between the user and other users. To make such complex (though often 
standardized) recommendations, an algorithm requires a large volume of information, which further 
contributes to the task’s complexity. Further still, conflicting interdependencies—where one 
recommendation precludes the recommender system from showing other recommendations—exacerbates 
this complexity. Corporate secrecy associated with the algorithms used, technical illiteracy to understand 
the complex computations, and the high dimensional optimization involved definitely contribute to the 
opacity of automated decision tasks. Accordingly, we consider decision tasks to have lower automation 
potential compared to simple and problem tasks due to their higher complexity. Similarly, we consider them 
to have higher opacity compared to simple and problem tasks due to their need for high dimensional 
optimization, the need for technical literacy to understand the complex algorithms that conduct them, and 
corporate secrecy. 
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3.4 Judgment Tasks 

A judgment task requires one to integrate and process information from diverse sources to subsequently 
make a judgment about the likelihood that a future event will occur (Campbell, 1988). The information itself 
is usually uncertain, contradictory, historical, and, in many situations, insufficient to predict the future, which 
contributes to the task’s complexity. As a result, uncertain linkages between the task’s intermediate steps 
emerge. The notions of multiple paths and multiple desired outcomes do not apply to judgment tasks 
(Campbell, 1988). We represent a basic judgment task in Figure 4 where the circle labeled “S” represents 
the starting state, the circles labeled “”" and “j” represent intermediate states, and the doughnut labeled “E” 
represents the end state. In this case, the path between state j and the end state remains uncertain, which 
the dotted line represents. 

 

  

 

Figure 4. A Judgment Task 

The large amount of information that one requires to make predictions/judgments contributes to judgment 
tasks’ complexity, which makes machine learning (ML) algorithms the preferred agents for these tasks as 
opposed to humans. Furthermore, bounded rationality and inherent human biases do not constrain these 
algorithms (Meadow & Sunstein, 2001). However, judgment tasks also have significant risk (of making/not 
making the correct judgment) due to which one cannot automate all judgment tasks. This risk explains why 
automation in judgment tasks range from highly automated in some tasks to a human-machine partnership 
in others. ML algorithms’ dynamic nature coupled with the informational uncertainties involved in judgment 
tasks make such tasks more opaque compared to simple and problem tasks with the opacity arising due to 
technical illiteracy, high dimensional optimization, and corporate secrecy in most cases (Burrell, 2016).   

For instance, consider high-frequency trading (HFT) and credit appraisal. In HFT, a form of automatic 
trading, an algorithm processes information from diverse, historic, and often uncertain sources and learns 
to make high volumes of profitable trade judgments at very high speed (in fraction of seconds) while 
minimizing risk. Credit appraisal requires one to decide whether to extend a loan by computing the 
probability that an application will default by using information on an applicant’s demographics, credit history, 
past financial behavior. Complexity arises due to uncertainty with respect to different information types’ 
(variables) relevance to and importance in (weights) predicting a future default. Since both these judgment 
tasks involve processing highly uncertain information to arrive at a judgment, they have lower automation 
potential than simple, problem, and decision tasks. Further, these judgment tasks have higher opacity than 
simple, problem, and decision tasks since they may encounter opacity from all three opacity sources (Burrel, 
2016). However, the two examples we discuss (HFT and credit lending) both differ in their social 
embeddedness and the extent to which the judgment will affect society. A human-machine partnership is 
the more desirable option for many judgment tasks, such as credit lending and decisions about whether to 
grant or deny someone bail, due to their higher social embeddedness. 

 

 

 

 

3.5 Fuzzy Tasks 

Fuzzy tasks have many desired outcomes and multiple (often uncertain and/or conflicting) paths to achieve 
them. We represent a fuzzy task in Figure 5 where the circle labeled “S” represents the starting state, the 
circles labeled “i”, “j”, and “k” represent intermediate states, and the doughnuts labeled “E1” to “E6” 
represent multiple outcomes or ending states. Fuzzy tasks require information that pertains to all paths and 
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to all possible permutations and path combinations that lead to all possible outcomes so that one can identify 
the outcome with the maximum benefit. Compared to simple, problem, decision, and judgment tasks, fuzzy 
tasks have the highest complexity since they demand that one processes information from multiple sources 
through multiple permutations and combinations to arrive at the optimal choice. The information that one 
needs to process may come in many (both structured and unstructured) forms and from varied sources. 
The complexity increases further when uncertain or conflicting paths exist. 

 

Figure 5. A Fuzzy Task 

Despite advances in machine learning, the combinatorial processing of unstructured information makes 
fuzzy tasks poor candidates for complete automation. However, algorithms’ ability to quickly process large 
amounts of information and reduce it to a form and size that people can manually handle makes these tasks 
amenable for partial automation (e.g., via decision support systems). Consider, for example, self-driving 
cars. Most advanced cars come with a semi-auto driving mode that uses algorithms to ensure a safer driving 
experience via algorithmically processing data from sources as varied as global positioning systems (GPS), 
satellites, sensors installed on the car, and historical data. In this case, complexity arises from not only the 
multiple information sources and information uncertainty but also the complicated combinatorial 
computations that one needs to perform in near real time. As a result, algorithms have not yet been able to 
replace human drivers; instead, they augment drivers’ capability to deal with various possible scenarios 
when driving by predicting and pre-empting certain situations. Hence, fuzzy tasks have the lowest 
automation potential compared to simple, problem, decision, and judgment tasks. Furthermore, fuzzy tasks 
have the highest opacity compared to the other tasks since they will likely encounter all three opacity sources 
that Burrell (2016) suggested. Note that, like judgment tasks, many fuzzy tasks are also socially embedded 
and may have wide-reaching social impacts, which makes even partially automating these tasks socially 
undesirable. Therefore, even if algorithms gain the ability to fully automate fuzzy tasks such as driving, their 
social acceptability might still remain problematic due to ethical dilemmas such as the trolley problem (i.e., 
a problem in which one needs to decide on the action to take when one cannot avoid a collision). 

Based on the above discussion, we now position the five different task types in a grid along the automation 
potential and opacity dimensions in Figure 6. We observe that, depending on a task’s nature, an algorithm’s 
automation potential and the opacity that automation induces vary. In Table 3, we also summarize the 
relationship between task complexity, automation potential, and opacity.  
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Figure 6. Task Relations according to Automation Potential and Opacity 

 

Table 3. Influence that Task Complexity has on Automation and Opacity 

Task type 
Automation 

potential 
Opacity Examples 

Primary source 
of complexity 

Primary source 
of opacity 

Simple tasks High Low Interest calculation None Corporate secrecy 

Problem tasks High Medium 
Finding the shortest route 

(e.g., Waze) 
Multiple paths Technical illiteracy 

Decision tasks Medium High 

Recommender systems 
(e.g., Google search / 

Facebook news 
recommendations) 

Multiple 
Outcomes 

High dimensional 
optimization 

Judgment tasks Low High 
High-frequency trading / 

credit appraisal 

Interdependent 
and/or uncertain 

linkages 

Fuzzy tasks Very low High 
Autonomous driving 

 
All sources 

4 Task Complexity, Artificial Intelligence, and Fairness Concerns 

In this research, we use Campbell’s (1998) typology of five task types based on their complexity to 
understand how a task’s nature affects both its automation potential and the opacity that arises from such 
automation. In this section, we elaborate our study’s implications. 
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4.1 Task Complexity and Artificial Intelligence 

Our research contributes towards current debates about adopting and implementing artificial intelligence 
(AI) for social and organizational tasks. While many organizations have begun to invest in AI technology 
and fervently explored AI system use cases, they have adopted AI relatively slowly. AI—which we define as 
machines performing cognition, perception, and action (Heer, 2019)—primarily deals with automation of 
judgment and fuzzy tasks that possess high complexity and low automation potential owing to uncertainty 
and conflicting interdependence between paths to outcomes.  

While research in general has contended that algorithmic automation leads to an increase in throughput 
and work productivity (Brynjolfsson & McAfee, 2016; Ford, 2015; Meadow & Sunstein, 2001), recent 
research has suggested that all automation endeavors do not yield equally encouraging results (Davenport 
& Ronanki, 2018). For example, Davenport and Ronanki (2018) found that a cancer center’s investment in 
AI systems did not help it detect cancer but that its investment in automating its backroom increased cost 
efficiency and patient satisfaction. Based on our work, we can explain their findings as follows: backroom 
tasks constitute simple tasks and, hence, possess higher automation potential, which makes them good 
candidates for automation. However, using AI to detect cancer constitutes a fuzzy task that possesses much 
more complexity compared to a simple task, and, thus, has a lower automation potential.  

Researchers have also shown algorithmic automation to be associated with an increase in efficiency due to 
a reduction in errors and tireless and fast work performance (Hoff & Bashir, 2015; Wajcman, 2019). For 
example, researchers have contended that deep AI technologies may improve the efficacy of the task of 
drug selection to about 60 to 70 percent compared to about 20 to 30 percent currently when clinicians 
recommend combinations of drugs for treatment (Singh, 2020). Even though one cannot easily automate 
such tasks, automating them may produce a significant consequent increase in efficiency. However, one 
should note that the task-based manner in which we examine automation in this paper has a limited ability 
to address questions regarding which tasks when automated would yield maximum efficiency gains.  

Our examination also implies that all opacity sources associated with judgment and fuzzy tasks (i.e., 
corporate secrecy, technical illiteracy, and high-dimensional optimization (Burrell, 2016)) will likely affect 
AI). Hence, AI systems will likely be highly opaque, which raises concerns about ethics and their eventual 
social desirability. Our framework can further our current knowledge of AI adoption by explicating the specific 
concerns for fairness associated with AI and design solutions that might alleviate those concerns (see 
Section 4.2). 

4.2 Task Complexity and Likelihood of Fairness Concerns: Implications for 
Designing Task-aware Technology Artefacts 

Based on our task complexity-based understanding of algorithmic automation, we can better explain why 
all algorithmic automation may not be equally problematic from an ethical and social desirability perspective 
(e.g., Martin, 2019). In this section, we discuss how different tasks may be associated with different concerns 
for algorithmic fairness. We then extend that discussion to indicate the implications that a task complexity 
based-understanding of algorithmic automation has for technology artefact design.  

Scholarship on designing artefacts has drawn inspiration from the concept of affordance, which researchers 
developed in ecological psychology (Gibson, 1986) and refers to a relationship between an object’s 
properties and a user’s properties that determines how the user may use the object (Norman, 2013). IS 
scholars have appropriated this concept to refer to the goal-oriented action that a technical object offers to 
a specified user group (Markus & Silver, 2008). Some studies have recently called for scholars to pay more 
attention to the affordances that AI-enabled systems offer to their users that enhance user experience, user 
acceptance, willingness to delegate decision making, and trust in such systems (Rzepka & Berger, 2018; 
Sundar, 2020).  

Research on affordances in the AI and automation domain has focused on how AI systems can perceive 
their environment in terms of affordances (Min, Yi, Luo, Zhu, & Bi, 2016; Nye & Silverman, 2012), how big 
data analytics affords opportunities for informed decision making (Zeng, Tim, Yu, & Liu, 2020), and 
innovation (Achmat & Brown, 2019; Lehrer, Wieneke, vom Brocke, Jung, & Seidel, 2018). Recently, scholars 
have also argued in favor of supporting AI fairness and transparency by designing AI systems that afford 
transparency, explainability, visualization, and voice (Robert et al., 2020c). While these scholars have 
researched the AI domain for human-resources management, we believe that these affordances, to an 
extent, address fairness concerns associated with automation and AI in general. Transparency affords 
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fairness by making underlying AI mechanics visible and known. Explainability affords fairness by describing 
AI decisions and actions that impact individuals in human terms. Visualization affords fairness by 
representing information visually so that one can understand AI decisions’ multidimensionality. Finally, voice 
affords fairness by providing the opportunity for feedback to AI.  

We argue that the AI affordances that Robert et al. (2020c) developed coupled with our task complexity-
based understanding of fairness concerns associated with different task types can help designers design 
automated systems. For each task type, we propose the affordances that designers need to incorporate 
into an automated system to address fairness concerns. Hence, we argue in favor of using a task-aware 
methodology for designing technology artefacts.  

4.2.1 Simple Tasks 

Simple tasks lack all four complexity sources that Campbell (1988) discussed. When one automates a 
simple task, the automation follows a common, consistent procedure to achieve the single desired outcome, 
which reduces the chance that it will produce a biased outcome and ensures consistent allocation. Simply 
tasks have only one source of opacity (if any): the need for corporate secrecy (Burrell, 2016). As a result, 
procedural fairness concerns have a low probability to emerge in such tasks when automated. Similarly, the 
lack of multiple desired outcomes that may exhibit a negative relationship with one another indicates that 
distributive fairness concerns will not likely emerge automated simple tasks. Since automated simple tasks 
will likely pose low fairness concerns, they represent the best candidates for automation. We propose that, 
by making a automated simple task’s underlying mechanics visible and transparent, one can address the 
procedural fairness concerns (if any) that arise due to opacity. Hence, we posit that: 

P1:  One must incorporate the transparency affordance in a system that automates a simple task 
in order to address any procedural fairness concerns. 

4.2.2 Problem Tasks 

Multiple paths to a single desired outcome constitute problem tasks’ defining feature. Automating these 
tasks requires an algorithm to computationally evaluate, execute, and compare multiple paths across the 
entire solution space to arrive at the desired outcome (Campbell, 1988). The possibility of exhaustive 
comparison leaves little possibility of bias or inconsistent allocations due to automation. Therefore, 
distributive fairness concerns associated with the outcome will not likely emerge when one automates these 
tasks. However, from the perspective of procedural fairness, some concerns owing to the 
mathematical/analytical/heuristic formulation of these tasks may arise. Opacity may arise from users’ lack 
of skill to understand coded logics in addition to the need for corporate secrecy (Burrell, 2016). Hence, to 
address procedural fairness concerns associated with automating these tasks, one needs to not only enable 
transparency but also design affordances that explain the computational logic in human terms. Hence, we 
posit: 

P2: One must incorporate the transparency and explainability affordances into a system that 
automates a problem task in order to address procedural fairness concerns. 

4.2.3 Decision Tasks 

Decision tasks feature multiple possible outcomes (Campbell, 1988). They often involve uncertainty and 
conflicting interdependence in paths to outcomes and complicated trade-offs between them. Automating a 
decision task requires an algorithm to computationally execute all paths to all desired outcomes and, thus, 
achieve an eventual outcome at the cost of other desired outcomes. Hence, automating decision tasks may 
give rise to some concerns about distributive fairness. Automating decision tasks often requires high-
dimensional algorithmic computations that cognitively conflict with human reasoning and interpretations 
(Burrell, 2016). Hence, opacity for automated decision tasks arises not only from corporate secrecy and 
users’ technical illiteracy but also from the mismatch between the high-dimensional computations that 
algorithms perform and limitations in human reasoning and semantic interpretation (Burrell, 2016). 
Accordingly, to address procedural fairness concerns associated with automating these tasks, one needs 
to incorporate not only the transparency and explainability affordances but also affordances that represent 
intermediate steps of the high-dimensionally computed outcomes visually for analysis and comparison in 
systems that perform them. Further, to alleviate concerns about distributive fairness, we suggest that one 
needs to incorporate the comparability affordance, which we define as the possibility to compare outcomes 
using what-if analysis and simulate multiple scenarios on actual data that the automated system uses, into 
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the automated system. This comparability capability, when actualized in tandem with the visualization 
affordance, can specifically help in alleviating concerns with respect to distributive fairness. Hence, we posit: 

P3a: One must incorporate the transparency, explainability, and visualization affordances into a 
system that automates a decision task in order to address procedural fairness concerns. 

P3b: One must incorporate the visualization and comparability affordances into a system that 
automates a decision task in order to address distributive fairness concerns. 

4.2.4 Judgment and Fuzzy Tasks 

Judgment tasks and fuzzy tasks feature conflicting interdependence between paths and probabilistic and/or 
uncertain linkages between paths and outcomes. For these tasks, algorithms need to perform high-
dimensional optimization, which makes it difficult to discern the actual path that they use to reach the 
outcome. Hence, automating judgment and fuzzy tasks through AI systems likely raises concerns about 
procedural fairness due to users’ and even technology designers’ inability to understand how they perform 
high-dimensional computations (Burrell, 2016). The socially embedded assumptions that AI systems make 
in order to contend with information’s uncertainty and stochasticity further exacerbate concerns about 
procedural fairness. In addition, when conflicting interdependence exists between paths to multiple 
outcomes, AI systems achieve one outcome at the cost of other desired outcomes, which raises concerns 
about distributive fairness. The high likelihood for concerns about both procedural and distributive fairness 
to emerge when AI automates judgment and fuzzy tasks makes AI a highly contentious topic with respect 
to ethical concerns (e.g., Zarsky, 2016; Sweeney, 2013; Noble, 2018; Martin 2019). 

Consider the example algorithmic judgment in courts of law to decide whether to grant or deny someone 
bail. The system that automates this judgment task has to account for the task’s uncertainties and 
stochasticity by making possibly socially embedded assumptions, which could result in the system 
systematically marginalizing certain historically disadvantaged groups further and, thus, in concerns about 
distributive and procedural justice (Zarsky, 2016, Park & Humphry, 2019). Similarly, consider autonomous 
cars and the ethical dilemma associate with the trolley problem. One cannot possibly solve the ethical 
dilemma associated with such a case computationally, which means a system would need to use some 
socially embedded assumptions that further aggravate concerns about procedural and distributive fairness.  

The stochastic and uncertain information that AI systems use and the socially embedded assumptions they 
make means one cannot simply incorporate the transparency, explainability, and visualization affordances 
in such systems to alleviate fairness concerns. We argue that the voice affordance can address procedural 
and distributive fairness concerns to some extent. Further, an affordance for comparability coupled with the 
visualization affordance can specifically help to alleviate concerns with respect to distributive unfairness.  

P4a: One must incorporate the transparency, explainability, visualization, and voice affordances into 
a system that automates judgment or/and fuzzy tasks in order to address procedural fairness 
concerns. 

P4b: One must incorporate the visualization, comparability, and voice affordances into a system that 
automates judgment or/and fuzzy task in order to address distributive fairness concerns. 

We summarize the likelihood of concerns about distributive and procedural fairness across task types by 
using different colors (blue: negligible likelihood of concerns; green: low likelihood of concerns; yellow: 
medium likelihood of concerns; orange: high likelihood of concern). In the figure, we also list the affordances 
that one needs to incorporate into an automated system to alleviate distributive and procedural fairness 
concerns.  
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Figure 7. Distributive and Procedural Fairness Concerns across Task Types and Necessary Affordances 
that Address These Concerns 

Using affordances to address fairness concerns that arise from algorithmic automation and AI also highlights 
the heterogeneity among task performers (i.e., technology users). Since affordance represents a relational 
notion, it means that actualizing an affordance accounts for a user’s capabilities and a technical object’s 
properties/features (Leonardi, 2011; Markus & Silver, 2008)—in this case, the information system that 
automates tasks algorithmically. Hence, simply incorporating an affordance into an automated system does 
not sufficiently actualize an affordance that addresses fairness concerns. For example, even if one makes 
an algorithm’s code public, users who do not possess the skill to read and understand it will not be able to 
actualize the transparency affordance (Strong et al., 2014), which explains why all the propositions that we 
formulate in this section mention the necessary affordances to address fairness concerns that pertain to 
different task complexities and not the sufficient ones. 

The fact that technology affordances are relational also underscores their contingent nature; that is, 
affordances merely constitute potentials for action and need not always be actualized (Strong et al., 2014). 
We believe that this aspect has strong repercussions for all ethical and moral concerns, such as fairness 
and accountability (Orr & Davis, 2020; Robert et al., 2020c), associated with algorithmic automation even 
for the simplest tasks. Specifically, fixing ethical accountability for corporations that design and use 
algorithmic automation and AI becomes untenable given responsibility’s distributed nature (across users, 
designers, and technological artefacts) (Orr & Davis, 2020) and affordance actualization’s contingent nature 
(across users and technological artefacts). Therefore, we argue that designing affordances that enhance 
the degree to which users perceive automated and AI systems as fair constitutes a necessary first step to 
alleviate associated ethical and moral concerns. Furthermore, these affordances must be coupled with due 
legal and regulatory oversight in order to protect users’ interests and drive them to adopt automated and AI-
based information systems (Pumplun, Tauchert, & Heidt, 2020). 

5 Conclusion 

In this paper, we examine the variations in algorithmic automation potential and opacity and fairness 
concerns associated with such automation across different tasks. To do so, we developed a framework 
based on the complexity-based task typology from Campbell (1988). This framework helps to explain the 
reasons for differences in different tasks’ automation potential and opaqueness across the task-complexity 
spectrum. Further, we use this framework to explicate why different task types vary in the likelihood that 
they will exhibit fairness concerns. We analyze the fairness concerns across two legal doctrines, distributive 
and procedural fairness, and show variations in them across the task-complexity spectrum. We also provide 
recommendations to actors who design algorithmic automation and AI systems for addressing fairness 
concerns associated with different task types. We propose that algorithms that automate tasks that vary in 
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complexity require different types of affordances if one needs to address fairness concerns that arise from 
automation. 
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