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Abstract: The primary objective of this empirical study is to investigate the Indian eq-
uity market network by analyzing its topological properties using the disparity filtering
technique, and a minimum spanning tree. It investigates the backbone structure of the
reduced weighted equity network and highlights the sector-based cluster formation. This
study also examines the relative importance of each sector by utilizing different key net-
work metrics, with comparative analysis against other emerging markets. It observes a
high sector-specific dominance, power imbalance, disparity, and risk concentration in the
healthcare and technology sectors. It also finds that fast-moving consumer goods and
the healthcare sector can play important roles in maintaining economic stability, public
health, and social wellbeing. The findings of this study are highly useful in understanding
the market structure, risk management, and investment decisions in the emerging market
context of India.
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1. Introduction
In recent years, the Indian equity market has become more volatile, which emphasizes

the need for more sophisticated analytical techniques. Due to global uncertainty, a lack
of liquidity, and widespread investor panic, the 2020 COVID-19 crisis caused the BSE
Sensex and NSE Nifty 50 to experience historically heavy drops (Varma et al. 2021; Sreenu
and Pradhan 2023). The inability of conventional risk models to adequately represent the
intricate relationships between stocks during times of crisis was made evident by this era
of severe volatility (Varma et al. 2021). In the aftermath, the Reserve Bank of India’s (RBI)
monetary policy actions, ranging from inflation targeting and liquidity support to interest
rate adjustments, have continued to shape market dynamics (Priya and Sharma 2023;
Sreenu and Pradhan 2023). These events emphasize the critical need to understand systemic
linkages among financial assets to allow for improved risk assessment and market stability.

The introduction of network theory to financial modelling and analysis makes it simple
to understand the complex relationships that are inherent in financial markets (Bonanno
et al. 2003; Jung et al. 2006; Jung et al. 2008; Mantegna 1999; Meng and Chen 2023; Onnela
et al. 2003a, 2003b, 2003c; Samitas et al. 2022). However, most studies focus on western
stock markets. This study extends this type of analysis to the Indian equity market, which
is one of the fastest-growing economies among the BRICS nations, necessitating a more
in-depth examination of its capital market (Maiti et al. 2022). The Bombay Stock Exchange
is one of the oldest and is ranked among the top ten stock exchanges globally in terms of
market capitalization. In terms of statistics, over five thousand four hundred companies are
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listed on it, with a total market capitalization of INR 42,362,278.53 crores in the beginning of
June 2024 (Times Now News 2024). Plenty of regulatory measures are taken by the Security
Exchange Board of India to maintain the financial stability of the Indian capital markets
and retain confidence among investors. All such activities make the Indian capital market
an ideal subject for a complex network study.

Given the Indian equity market’s high volatility (Kumari and Mahakud 2015), struc-
tural inefficiencies (Belhoula et al. 2024), and changeable regulatory framework, network
theory is especially applicable to it. In contrast to developed markets, India’s financial
ecosystem is characterized by significant cross-asset interdependencies, frequent regulatory
interventions, and volatility in its liquidity (Kumari and Mahakud 2015). Investor emotions
(Agarwal et al. 2025), macroeconomic developments, and regulatory changes all have an
impact on the volatility of the Indian equity market (Dhingra et al. 2024), which continues to
be a persistent problem. Particularly in times of financial instability, traditional risk models
frequently fail to capture the complex network of stock relationships. Network-based
approaches, on the other hand, provide a thorough, data-driven strategy to find hidden
connections, giving greater insights into contagion routes and systemic risk (Clemente et al.
2021; 2022). Stock price dynamics are made more difficult to interpret by market ineffi-
ciencies such as inconsistent institutional participation, information asymmetry, and the
dominance of major players in particular industries. By mapping these relationships, net-
work analysis makes it possible to differentiate between equities that are essential to market
stability and those that are more susceptible to speculative activity. The market’s behavior
has been profoundly altered by ongoing regulatory developments, such as the Goods and
Services Tax (GST) (Karmuhil and Murugesan 2024), financial market liberalization, and
SEBI reforms (Kaur 2024). These changes frequently call into question the assumptions of
traditional econometric models, emphasizing the necessity of adaptable, network-driven
methodologies to comprehend the dynamic character of stock interrelationships. Using
network analysis insights, risk managers, investors, and policymakers can better assess
systemic risks, diversify their portfolios, and spot sectoral relationships that traditional
models can miss (Bhattacharjee et al. 2019).

Despite the widespread use of network analysis in extant financial equity market
studies in multiple geographies, most of the extant studies only employ one technique,
which restricts their structural insights. Rarely used in the Indian equity market, this study
employs a dual technique that combines disparity filtering (Yassin et al. 2025) and MST
analysis (Barbi and Prataviera 2019), which provides a more thorough perspective by catch-
ing both important connections and subtle link heterogeneity. Prior research on the network
analysis of Indian equity markets has largely focused on early-stage interconnectedness
using pre-2016 data (Matia et al. 2004; Pan and Sinha 2007; Pan and Sinha 2008; Sinha and
Pan 2007), limited stock samples (Kulkarni et al. 2024), or corporate interlocks (Sankar
et al. 2015). In contrast, the present study offers a comprehensive examination of sectoral
interconnectedness within the Indian equity market. To fill this gap in the literature and
improve the comparative insights regarding other emerging economies, the current study
uses an integrated technique to reveal the intricate structure of the Indian equity market.
This study uses two techniques, namely, the disparity filtering technique for weighted
networks (Serrano et al. 2009), and minimal spanning tree technique (Mantegna 1999). A
rich dataset comprising data from over 10 years (from 1st December 2013 to 30th June 2024)
is used to explore the network topology of different industrial sectors in the Indian context.
This study aims to answer the following research questions:

RQ1:What are the topological properties of the Indian equity market network, and how do
they compare with those of other emerging markets?
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RQ2: How do different industrial sectors contribute to the structure and dynamics of the
Indian equity market?

RQ3: How does network visualization and reduction (using MST analysis and disparity
filtering) improve our understanding of market dynamics?

To gain rich insights, this study estimates different sector-wise average network met-
rics, namely the dominance, weighted clustering coefficient, closeness centrality, influence
strength, disparity, and eigenvector centrality. This study finds a strong power imbalance,
disparity, and risk concentration in the Indian financial sector. Further, the fast-moving
consumer goods (FMCGs) and healthcare sectors are vital in achieving financial stability
and economic growth. These findings are extremely useful in understanding the overall
Indian market structure. The current study offers several key contributions to the existing
literature and has significant practical implications. First, it decodes the level of inter-
connectedness of different sectors within the Indian equity market network. Second, it
provides useful insights on the topological aspects of the Indian equity market network by
estimating different network metrics. Third, these estimates are then used for a compara-
tive analysis with other emerging markets, namely, Brazil and South Africa. Lastly, this
study further deploys reduced network visualization to obtain useful insights at the micro
level (stock). Thus, the addition of value of the present study to the existing literature is
as follows:

• Previous studies done on the network analysis of Indian equity markets are mostly
focused on the study of interconnectedness at the initial level, using old study samples
from before 2016 (Bhattacharjee et al. 2016), considering a smaller number of stocks
for analysis (Kulkarni et al. 2024), or incorporating corporate interlock (Sankar et al.
2015). Keeping these in mind, the present study comprehensively decodes the level of
interconnectedness of different sectors within the Indian equity market network;

• Thereafter, it provides useful insights into the topological aspects of the Indian equity
market network by estimating six different network metrics, namely the disparity,
closeness centrality, eigenvector centrality, influence strength, weighted clustering
coefficient, and domination power;

• Then, this study’s estimates are used for a comparative analysis with other emerging
markets, namely Brazil and South Africa;

• Lastly, this study further deploys reduced network visualization to obtain useful
insights at the micro level (stock).

The remaining study is structured as follows. Section 2 reviews the literature, high-
lighting the need to investigate equity markets in emerging economies using network
models, with a focus on emerging economies, especially the Indian equity market. Section 3
discusses the data and methodology adopted for this study. The results and discussions are
presented in Section 4, followed by the managerial implications (Section 5). It concludes
with a discussion of key policy implications and directives for future studies.

2. Literature Review
2.1. Network Finance Literature

In the network finance and network economics literature, scaling (Mantegna and
Stanley 1995), the fractal dimension (Mandelbrot 1965), power law connection, complex
network analysis (Schinckus and Jovanovic 2013), and volatility proxy identification (Ghosh
and Kozarević 2019) have emerged eventually over the last century. The discipline of
financial economics realizes that the traditional method of analysis has become insignificant
due to the irrational and complex behavior exhibited by financial markets over time. Since
Mantegna’s initial work on stock correlation networks (Mantegna 1999), numerous studies
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have explored the use of financial network analysis across various dimensions (Bonanno
et al. 2003; Brida and Risso 2008; Gilmore et al. 2008; Jung et al. 2006; Jung et al. 2008; Meng
and Chen 2023; Onnela et al. 2003a, 2003b, 2003c; Tumminello et al. 2007, 2010; Samitas
et al. 2022).

According to existing studies, network models are useful for comprehending the
structures of markets (Silva et al. 2016). The studies conducted by Clemente et al. (2021)
and Clemente et al. (2022) highlighted the advantages of using network techniques in
portfolio selection and allocation. In addition, different network centrality metrics are
useful for choosing assets in times of global financial crisis (Wang et al. 2024).

2.2. Network Analysis Methods in the Extant Literature

In response to the 2008 global financial crisis, there was a growing recognition of the
inadequacies of traditional approaches, prompting the adoption of advanced network anal-
ysis techniques to assess systemic risk (Zaheer et al. 2023). Extant network-based studies
have highlighted significant shifts in stock market co-movements during the pandemic,
revealing the profound impact of global health events on market dynamics (Zaheer et al.
2023). Table 1 provides a list of studies which introduced several network-based methods
to the extant financial network analysis literature.

Table 1. Studies introducing complex equity network filtering methodologies.

Sl. No. Author(s) Type of Network Approach Introduced to Investigate Correlation
Structure of Financial Market Data

1 Mantegna (1999) Hierarchical structure
2 Onnela et al. (2003b) Dynamic asset graph
3 Tumminello et al. (2010) Hierarchical clustering
4 Plerou et al. (2002) Random matrix approach to cross-correlations in financial data
5 Tumminello et al. (2005) Planar Maximal Filtering Graph (PMFG)
6 Boginski et al. (2005) Correlation threshold method
7 Mantegna (1999) Minimum Spanning Tree
8 Huang et al. (2009) Threshold filtering method

9 Sinha and Pan (2007) Largest eigenvalue is associated with the market mode (collective
response of all stocks to macroeconomic factors)

10 Namaki et al. (2011) Genuine correlation

All these methods (mentioned in Table 1) have been extensively adopted over the
past several years in different equity market contexts and time periods. Apart from these
methods, many other nonlinear methods have been brought up in the literature on financial
network analysis, such as the mutual information method (Baitinger and Papenbrock 2017),
the Brownian distance method (Zhang et al. 2014), copula-based metrics (Brechmann 2013),
Laplacian energy measures (Huang et al. 2023), the moving-window Bayesian network
model (Chan et al. 2023), and several others. Extended methods have also been brought
in for MST analysis, such as the directed bubble hierarchical tree (DBHT) (Musmeci et al.
2015; D.-M. Song et al. 2011; W.-M. Song 2011; Song et al. 2012) and triangulated maximally
filtered graph (TMFG) (Barfuss et al. 2016; Massara et al. 2016; Musmeci et al. 2015) methods.
Additionally, the real-time monitoring and modelling of financial market behaviours has
been made possible by the integration of AI and machine learning approaches, such as
dynamic correlation analysis and the use of graph neural networks (Hou and Pan 2022;
Gu and Yao 2022). The significance of keeping an eye on network connectivity to evaluate
systemic hazards has been shown by methods such as the use of moving-window Bayesian
network models (Chan et al. 2023).
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The last few years have seen a growing number of research studies that use
network-based methodologies to examine the time-varying dynamics of financial markets.
Chakrabarti et al. (2021) used dynamic network analysis to uncover significant shifts in
global stock market co-movements during the COVID-19 pandemic, and Hatami et al.
(2022) used population analysis and correlation networks to uncover underlying market
structures. Nie (2020) improved our knowledge of market anomalies and their causes by
creating a network-based technique to identify crucial correlation alterations.

Researchers have also ventured into distances at which it is possible to capture non-
linear relationships, entailing the use of information-theoretic measures like the mutual
information (MI) method (Barbi and Prataviera 2019; Fiedor 2014; Goh et al. 2018; Guo et al.
2018), the Brownian distance (Zhang et al. 2014), Copula-based metrics (Brechmann 2013;
Durante and Pappada 2015; Marti et al. 2016), and tail dependence distances (Durante et al.
2015). Nonlinear dependencies can be misleading, as evidenced by distortions in stock
return series characterizations (Hartman and Hlinka 2018).

2.3. Network Based Studies on Indian Equity Market

A limited number of studies have also been performed on cross-security dependencies
in the Indian capital market. The study by Matia et al. (2004) analyzed the 49 largest stocks
listed on the National Stock Exchange (NSE) for the period of November 1994–June 2002. It
was observed that stocks price fluctuations decay in an exponential fashion, rather than by
following power law distribution. Power law distribution has normally been observable in
the price fluctuations of securities in the capital markets of developed countries. A study by
Pan and Sinha (2007) analyzed the high-frequency tick-by-tick data of 489 stocks belonging
to the companies that constitute the S&P BSE 500 index of the Indian capital market for
the period from November 1994 to May 2006. The study demonstrates that, for security
price fluctuations, the inverse cubic law still holds well, even in the case of emerging
markets like India. The same authors conducted another study (Pan and Sinha 2008) where
they analyzed the market indices data of the BSE and NSE. They demonstrated that the
price fluctuations in market indices in the Indian capital market follow inverse-cubic law
distribution. Their findings point to the fact that, even though diversity exists in markets
(diversity in terms of the market’s components, its interactive nature, and its predisposition
to external news), there might be mechanisms of a universal nature that generate market
fluctuations, as reflected by observation of the invariant properties of markets. The study
by Sinha and Pan (2007) investigated the evolutionary trend of the stock price correlation
structures of networks in Indian equity markets. This study presented evidence that there
is a greater likelihood of cluster formation by different business sectors in cases of markets
that move towards a stage of maturity; such clusters can be visualized as tightly coupled
sub-graphs (Sinha and Pan 2007). Recent financial network studies on the Indian equity
market have adopted various measures other than MST analysis and centrality measures,
such as geometry-inspired network measures (Kulkarni et al. 2024), and random matrix
theory (Pawanesh et al. 2025), to name a few.

Although network analysis has been used in many studies to investigate the dy-
namics of financial markets, the majority only use one methodological technique, which
may restrict the breadth and depth of their structural findings. A dual strategy that com-
bines minimum spanning tree (MST) analysis and disparity filtering—two complementary
techniques that capture both the backbone structure and finer network nuances of the
market—has rarely been used to analyze the Indian equity market. While disparity filtering
preserves statistically significant edges and the heterogeneity of link strengths (Yassin
et al. 2025), MST analysis efficiently draws attention to the most important connections
in a condensed tree structure (Barbi and Prataviera 2019). A more thorough and accurate
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depiction of the market’s underlying structure can be obtained by combining these tech-
niques. Furthermore, there are not many comparative studies that compare the network
centrality of the Indian equity market to that of other emerging markets, which limits
our comprehension of how the systemic importance and market interconnection differ
depending on the setting. Our study fills these gaps by using a dual-method network
approach and performing cross-market centrality comparisons. This helps to improve
the existing methodological toolset for financial network analysis and provides a more
comprehensive understanding of emerging market dynamics. Thus, given the importance
of financial networks in understanding the complexities inherent in financial markets, this
study characterizes the topology of the Indian equity market networks using the disparity
filtering technique and minimal spanning tree (MST) analysis.

3. Data and Methodology
3.1. Data

This study chose the S&P BSE 500 Index to represent the Indian stock market, as it
represents all major twenty industrial segments. The dataset spans from 1st December
2013 to 30th June 2024. The study period (2013–2024) was chosen to reflect significant
SEBI regulatory reforms, advancements in trading infrastructure post-2013, and enhanced
market stability. SEBI’s corporate governance initiatives that were instituted from 2003 to
2013, such as mandatory quarterly disclosures and the inclusion of independent directors,
strengthened transparency and investor protection. The selected period also captures a
notable rise in IPO activity, with 298 companies raising $16.6 billion in 2024 alone (ANI 2024).
Aligning with similar research in emerging markets, this timeframe ensures methodological
consistency and relevance. The period between 2013 and 2024 is very important with respect
to the Indian stock market due to several reasons. Before 2013, the economic growth was
slower, marked by high inflation, policy paralysis, corruption, and scandals. However,
thereafter, several reforms were seen in the form of political and economic reforms (GST
implementation (2017) (Deshmukh et al. 2022), corporate tax cuts (PTI 2019), and “Make in
India” initiatives (Press Information Bureau 2017)); an increase in FPI inflows; digitalization
drives (UPI, demonetization); structural shifts in the capital markets; the effects of COVID-
19 (sectors like IT, pharma, and EVs booming); an increase in financial literacy programs
(participation of more retail investors in stock markets).

Due to the lack of continuous historical time-series data for the entire 10-year and six-
month study period, stocks with IPOs after 1 December 2013 were excluded. Consequently,
the final dataset included 335 stocks. This study employs the S&P BSE 500 Index, which
spans 500 companies across 20 sectors. In contrast to indices like the NIFTY 50 or Sensex
that emphasize large-cap stocks, the BSE 500 encompasses large-, mid-, and small-cap
firms, providing a holistic view of the systemic risk and market dynamics. To maintain
data consistency, post-2013 IPOs were excluded, ensuring that all selected stocks have
a continuous trading history and minimizing bias from newly listed companies. The
daily closing prices were obtained from BSE historical reports, Yahoo Finance, and the
CMIE Prowess Database. Adjusted closing prices are considered in this study. In cases
where, for specific days, closing prices were found to be missing, the stock price values of
the previous day’s closing prices were used as a substitute. This form of substitution is
generally considered better than substitution with the average value of the closing price
for surrounding previous days because of several reasons. First, stock prices often follow
a continuous path, and the price on any given day is heavily influenced by the previous
day’s price. Second, using the previous day’s closing price maintains this continuity,
reflecting the typical day-to-day movements in the market. Lastly, stock markets often
exhibit momentum, where the direction of price movement tends to continue for some time.
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Using the previous day’s closing price preserves this momentum, which is crucial
for accurately modeling and forecasting the future price behavior of a stock. Replacing a
missing value with the average of surrounding days can distort the true price movement of
the stock. If the stock is trending up or down, an average can misrepresent its price level,
leading to inaccuracies in analysis and modeling. The volatility and daily price variations
of stocks are essential characteristics of stock data. Using the previous day’s price retains
the natural volatility patterns of the market, whereas averaging can smooth out these
variations, leading to an underestimation of the market’s volatility. Several extant studies
on financial networks have used the same methodology as an approach to handling missing
closing price data (Bhattacharjee et al. 2019, 2022). Based on all of the above-mentioned
data-handling procedures, a data series reflecting 10 years and six months’ worth of closing
price data was obtained, which comprised the final study dataset.

3.2. Weighted Network Construction Workflow

The methodological steps for building the weighted equity network model used in
this study are outlined below. The initial step entails computing the weights assigned to the
edges of the equity network. Log returns are calculated for 2622 trading days, generating a
dataset of 2621 log returns that represent a duration of 10 years and six months. Log returns
are more commonly used than raw prices as they ensure time-additivity and stabilize
variance, making log return financial time series ideal for statistical modeling

3.2.1. Rolling Window Methodology

This study examines temporal network dynamics, employing the rolling window
approach to explore temporal variations in the topological metrics of the weighted eq-
uity networks. This technique was applied to a matrix comprising 2621 data points for
335 stocks. The continuous data were segmented into time-frames of 500 data points each
(representing trading days), with each observation separated from the next by a 20-data-
point increment. This procedure generated 106 temporally synchronized observations
spanning a duration of 10 years and six months (from 1 December 2013 to 30 June 2024).
Weighted networks were subsequently constructed for each time-window frame. The
500-trading-day window was chosen due to several reasons. First, it captures a long period
of data that makes the analysis more reliable (Fama 1970). Second, longer periods reduce
the overall market noise as compared to shorter periods, and they also account for business
cycles (Shiller 2005). Lastly, longer period data may experience a minimum impact of
outliers as compared to shorter periods, and are useful in capturing the long-term risk and
market behavior of markets (Malkiel 2003).

3.2.2. Calculation of Edge Weights in the Network

The construction of the weighted network followed the methodology proposed by
Kim et al. (2002a, 2002b). Two quantitative measures were utilized in creating the weighted
network model: (i) the residual log return, denoted by Gi(t); (ii) the weighted cross-
correlation coefficient, denoted by wi,j. The first measure allows capturing the inherent
characteristics of stock price changes and is calculated by subtracting the mean value
for a time N from each log return value Si. The computation of this measure is outlined
as follows:

Gi(t) = Si(t)−
1
N ∑

i
Si(t) (1)
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In the current study, the symbol Si(t) represents the log returns of stocks. The value of
Si(t) is computed using Equation (1). Here, the value of N refers to 500 days. The weighted
cross-correlation coefficient is computed as follows (See Equation (2)):

wi,j ≡
〈

GiGj
〉
− ⟨Gi⟩

〈
Gj

〉√(〈
Gi

2
〉
− ⟨Gi⟩2

)(〈
Gj

2
〉
−

〈
Gj

〉2
) (2)

In this study, Pearson correlation coefficients have been used to construct the weighted
network, because this metric measures the linear relationship between stock log returns and
has been widely adopted in financial network analysis in the extant literature (Bhattacharjee
et al. 2022; Wang et al. 2018; Marti et al. 2021). This coefficient is computationally efficient
and provides an intuitive interpretation of stock dependencies, allowing for the construc-
tion of minimum spanning trees (MSTs) and other network models that identify sectoral
clustering and market structures (Marti et al. 2021). Furthermore, it has been observed in
several studies that financial markets often exhibit short-term linear dependencies, par-
ticularly during phases of market stability, making this coefficient a reasonable choice for
detecting sectoral co-movement. Also, one can find extensive usage of this coefficient in the
portfolio optimization, risk management, and systemic risk assessment literature (Laloux
et al. 1999; Plerou et al. 1999; Mantegna 1999; Mantegna and Stanley 2000). Thus, its usage
ensures consistency with established methodologies.

Using these weighted correlation coefficient matrices, undirected weighted stock
networks were constructed, forming a graph with 335 edges representing stocks belonging
to different industry sectors (Figure A1). This is a type of dense graph, and possesses
55,945 edges, wherein all vertices have N − 1 edge connections. The resultant weighted
equity network can be described as follows: The vertices of the network represent the
time series of the stocks’ log returns, and there is a weight wi,j associated with the edges
between each pair (i,j) of nodes. Each of the 335 vertices of the weighted equity network
model represents a time series of the log returns of the individual scripts of the selected
335 stocks. The weighted equity network construction is adopted from Kim (2002b). The
complete weighted equity network, as shown in Figure A1, provides a holistic view of
the interdependencies within the Indian market. It is very useful in understanding the
overall market structure and in studying the correlations and portfolio constructions of
the market. A highly connected network may represent potential channels of systemic
risk flow. Identifying such potential nodes could be highly useful in dealing with the
market’s stability and systemic risk. The next section covers the different network metric
computations that were conducted to understand the overall market structure.

3.3. Network Metric Computation

Six network measures were calculated to characterize the topological properties of the
weighted equity network. These metrics were computed for each of the 106 weighted equity
networks, representing 106 temporally synchronized observations that were generated
using a rolling window approach.

3.3.1. Disparity

This network metric measures the heterogeneity of the edge weights in the network
(Barthélemy et al. 2005). In a vertex Vi that has a connectivity ki and possesses an influence
strength si, all the weights of the edges wij will be of similar order when the value of si

equals ki. Conversely, if the weight of one or a few vertices predominates over others in
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the network, it indicates heterogeneity. The disparity of a vertex i can be calculated using
Equation (3):

D(i)i = ∑
j ̸=i

[wi,j

Si

]2
(3)

where v(i) refers to the set of neighbors of i.

3.3.2. Closeness Centrality

The subsequent metric examined in the context of the weighted equity network is the
“closeness centrality” (Sabidussi 1966). This metric provides an indication of how closely
connected vertex i is to the other vertices within the weighted network. A higher value of
closeness centrality signifies that the vertex is closer to other vertices in the network. For a
vertex k within a weighted graph G, the closeness centrality can be defined as follows:

C(k) =
1

∑h∈G dG (k, h)
(4)

Here, the term dG(k,h) denotes the shortest distance between two vertices k and h (see
Equation (4)).

3.3.3. Eigenvector Centrality

The next metric for the weighted equity network model is the eigenvector centrality,
an extension of the degree of centrality. Newman (2008) introduced the equation for the
eigenvector centrality of a weighted network, which forms the basis for the PageRank
algorithm employed by the Google search engine (Brin and Page 1998). The basic concept
behind the eigenvector centrality measure is that the significance of an edge is solely
dependent on the quality of its connections. This signifies that a vertex connected to a
highly central node is weightier than any other vertex connected to nodes of low centrality.
The general function for an unweighted network is given in Equation (5):

xi =
1
λ

N

∑
j=1

Aijxj (5)

where xi refers to the eigenvector centrality score for node i, and λ refers to a constant value
represented by a vector–matrix system, which is represented in Equation (6):

λx = A.x (6)

where x refers to the eigenvector of the adjacency matrix A that has eigenvalue λ.
The theorem of Perron–Frobenius can be used to establish the fact that the largest

eigenvalue is λ and that x belongs to the associated eigenvector (Friedkin 1991). Normaliz-
ing the value of x can help obtain the eigenvector centrality, which varies between the range
of 0 and 1. The eigenvector centrality of the weighted network is provided by Equation (7)
(Soh et al. 2010).

xw
i =

1
λ

N

∑
j=1

Aijwijxj (7)

where xw
i refers to the average weighted centrality of node i (See Equation (7)).
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3.3.4. Influence Strength

The influence strength (Barthélemy et al. 2005) of stock i in the time period k is defined
as follows:

si = ∑
j ̸=i

wi,j (8)

In Equation (8), wi,j represents the weighted correlation coefficient of the neighbors of
vertex j.

3.3.5. Weighted Clustering Coefficient

Barrat et al. (2004) introduced the equation for the weighted clustering coefficient of a
weighted network, which can be computed using Equation (9) (Sabidussi 1966):

cw(i) =
1

si(ki − 1)∑j,h

(
wi,j + wi,h

)
2

aijaihajh (9)

where si is the influence strength of vertex i and ki refers to the degree of vertex i. The value
of aij will be equal to 1 if there is an existence of an edge connecting i and j. The weighted
clustering coefficient ranges between 0 and 1. For computing this metric, two aspects must
be considered: first, how many closed triplets are adjacent to the node under consideration
and, second, what the total relative weight of the node is with reference to its strength.

3.3.6. Domination Power

For computation of the domination power of a node, two things are considered. First,
whether a node is accessible to the centrality in a network and, second, the direction
of the edges of the node and their corresponding weights. Van Den Brink and Gilles
(2000) proposed the degree-based domination measure, known as the β-measure, which is
computed as shown in Equation (10):

β(i) =
n

∑
j=1

w(i, j)
λ(j)

(10)

where w (i, j) refers to the weight of the edges that link vertex i to j. The value of λ refers to
the dominance weight of vertex j and is computed as shown below:

λ(j) =
n

∑
i=1

w(i, j) (11)

This study computes the above-mentioned six network metrics for each of the
335 stocks constituting each of the 106 weighted networks (each network model rep-
resents an observation of 500 data points). The network measures are then aggregated in
sector-wise dimensions, and the aggregated values are plotted graphically and investigated.
The aggregated values are further plotted sector-wise for all 106 observations to examine
the temporal variations in the network over the study period. The following categorical
sectors are considered for analysis: financial, communication, energy, diversified, textiles,
construction, metals, automobile, engineering, services, chemicals, technology, consumer
durables, healthcare, and FMCGs. The industry sectors of the stocks, as listed by the BSE,
are used for sector-wise aggregation, computations, and plotting.

3.4. Network Reduction Methods and Visualization

The three issues with the usage of empirical unfiltered correlation matrices for making
investment models are as follows: (i) the correlation matrices are dominated by a large
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noise content; (ii) there is a problem of instability in the empirical correlation matrices; and,
(iii) in the unfiltered empirical correlation matrix, the actual realized risk of a future
investment period is magnified several-fold in comparison to the predicted risk, whereas,
for filtered correlation matrices, the realized risk is only magnified by a small level (Rosenow
et al. 2003). These three issues make the financial models built using such an unfiltered
matrix a poor decision estimate. Deriving a filtered matrix with a high signal-to-noise ratio
is, thus, necessary for building suitable decision models in the areas of finance management
and investment science. Using different genres of network filtering methods, substantial
noisy edge connections that are traditionally observed in the topology of equity networks
can be suitably removed. Exploratory network analysis comprises visualization and insight
generation. A weighted equity network for the complete dataset of 2621 data points
(representing 10 years and six months’ worth of data) is constructed. In Figure A1 of
Appendix A, the resulting weighted equity network for the complete dataset is also denser
in the topological structure, which inhibits direct visual comprehension. We, hence, use
different network filtering methods such as MST analysis and the backbone extraction
method (disparity filtering) to identify the links of the reduced network.

3.4.1. Minimum Spanning Tree

The MST is the spanning tree of the shortest length and is a graph without cycles
connecting all nodes with links. Mantegna (1999) introduced a methodology and distance
measure to construct an MST for studying correlation-based equity networks. The MST
is constructed using Prim’s algorithm (Prim 1957). The current study adopts a similar
methodology and distance measure for the construction of MSTs from the study datasets

3.4.2. Disparity Filtering

The disparity filtering algorithm for weighted networks was proposed by Serrano
et al. (2009). This filtering method offers a practical approach for extracting the relevant
connection backbone in complex multiscale networks. It preserves the edges that represent
statistically significant deviations with respect to a null model. An essential part of this
technique is that it does not belittle small-scale interactions and operates at all scales, which
are defined by their weight distribution. This method has been used in filtering complex
networks belonging to a diverse set of fields such as food pairing networks (Ahn et al. 2011),
cattle trade movement networks (Bajardi et al. 2011), human disease symptoms networks
(Zhou et al. 2014), metabolic networks (Serrano et al. 2012), and other networks in the fields
of social science, medicine, library science, and climate science.

The disparity filtering algorithm determines which edge should be retained for each
vertex in the network by using hypothesis testing. The following is the step-wise approach
for executing the disparity filtering methodology:

Step 1: Find node strength (nsi) of the ith node:

nsi =
N

∑
j=1

∣∣wi,j
∣∣ (12)

Step 2: Find the normalized weight (nwi,j) of each edge incident from the ith node:

nwi,j =
wi,j

nsi
(13)

Step 3: Fix the value of alpha at which statistically significant edges should be derived.
Consider the value of α to be 0.1;
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Step 4: State the null hypothesis (H0): the normalized weight of the edge for a certain
connection of a node that has the degree k belongs to a random assignment from a uniform
distribution;

Step 5: Calculate the αi,j for each of the edge connections using the following formula:

αi,j =
(
1 − nwi,j

)k−1 (14)

where k refers to the degree of node i
Step 5: Remove the edge connection if

αi,j > α

Changing α, one can progressively remove the irrelevant links, thus effectively extract-
ing the backbone structure of the weighted network. In the case of the disparity filtering,
the first step consisted of obtaining an optimum alpha value for which disparity filtering
could be performed. The alpha value should be such that the backbone structure that is
obtained should essentially retain the multi-scale structure and the intrinsic clustering of
the original network. For determining the optimum alpha value, each one of the following
values was considered: 0.2, 0.15, 0.10, and 0.05. For each of these alpha values, the disparity
filtering was performed on the weighted network, and backbone structures were extracted.

Next, the weighted clustering coefficients were computed for all of the backbone
structures. The current study uses the weighted clustering coefficient given by Barrat et al.
(2004). The equation 9 for computing the weighted clustering coefficient of a weighted
network is given in Equation (9).

The Barrat weighted clustering coefficients are computed for each of the backbone
structures for the range of alpha values (0.2, 0.15, 0.10, 0.05, and 0.01). The Barrat weighted
clustering coefficients are also computed for the unfiltered weighted network. The weighted
clustering coefficients of the backbone structures at different values of alpha are compared
with that of the value of the unfiltered weighted network. The optimum alpha value is the
one for which the weighted clustering coefficient of a filtered network (extracted backbone) is
the closest to that of the unfiltered network. Table 1 exhibits the Barrat weighted clustering
coefficient scores of the backbone structures obtained for each of the alpha values. The table
also lists the value of the Barrat weighted clustering coefficient for the unfiltered network.
It can be clearly seen from Table 2 that, for an alpha value of 0.1, the weighted clustering
coefficient is the closest to the one obtained from the unfiltered network. Thus, the optimum
alpha value determined for the disparity filtering is 0.1. The filtration of the network is next
performed using the disparity filtering method, taking the α value as 0.1.

Table 2. List of weighted clustering coefficients of backbone structures at each of the value of α.

Value of α Barrat Weighted Clustering Coefficient

0.2 0.864
0.15 0.836
0.10 0.771
0.05 0.632
0.01 0.463

Unfiltered network 0.790

4. Results and Discussion
4.1. Topological Properties of the Network

A topological property can be defined as a type of characteristic that is preserved
under a general notion of homeomorphism, for instance, compactness and connectedness.
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In the context of network theory, complex networks are a type of network whose topological
properties are non-trivial and non-observable in simple networks, such as random graphs
or lattices. Nevertheless, the intricate topological features of these networks are indicative
of networks that abstract interdependencies within real-world systems. Equity networks,
classified as complex networks, possess unique topological traits that can be quantified
through specific network metrics.

4.2. Aggregated Sector-Wise Average Network Measures

A plot of the sector-wise average network measures for 106 observations for the
six-network metrics, i.e., dominance (Figure 1), weighted clustering coefficient (Figure 2),
closeness centrality (Figure 3), influence strength (Figure 4), disparity (Figure 5), and
eigenvector centrality (Figure 6), respectively, is shown below.
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Figure 1. Sector-wise average dominance.
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Figure 2. Sector-wise average weighted clustering coefficients.
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Figure 3. Sector-wise average closeness centrality.
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Figure 4. Sector-wise average influence strength.
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Figure 6. Sector-wise average eigenvector centrality.

Figure 1 shows the sector-wise average dominance within the network. A high value
specifies a high dominance sector that controls most connections within the network. Esti-
mates show that, in India, the consumer durables sector has more dominance while the
textiles sector has less dominance. Thus, the high value of average dominance for consumer
durables indicates that major players within the sector have heavy influences. In contrast,
a low value of average dominance for textiles suggests that the environment within the
sector is well-balanced and competitive. Figure 2 illustrates sector-wise average weighted
clustering coefficients that suggest the degree of clustering within each sector. Sectors
like communications, chemicals, and textiles show a relatively high score compared to
the other sectors, suggesting a strong internal connectivity and collaborative networks
between them. It also implies that these sectors can benefit from innovation, knowledge-
sharing, competitive advantages, and strategic planning. Figure 3 shows the sector-
wise average closeness centrality, identifying which sectors are most accessible to others.
Figure 4 displays the sector-wise average influence strength, with higher values indicating
a stronger influence. The financial sector, with the highest score, plays a pivotal role within
the network. Therefore, policy-wise, maintaining a stable financial sector is crucial for
economic stability. Figure 5 shows the sector-wise average disparity of connections, with
the healthcare and technology sectors having the highest scores, indicating that there are
dominant players, power imbalances, and risk concentration in these sectors. Figure 6
presents the sector-wise average eigenvector centrality, identifying the most influential
nodes. The estimates suggest that the FMCGs sector, followed by the healthcare sector,
shows high values for its average eigenvector centrality. This metric not only measures the
influence of the node but also considers the quality of its connections. The results suggest
that the FMCGs and healthcare sectors can play a vital role in achieving economic stability,
public health, and overall wellbeing. In summary, Figures 1–6 provide diverse metrics
that help to understand the different sectors within the network. This study computes
six key network metrics to analyze the structural properties of the Indian stock market.
Each of these metrics provides distinctive understanding regarding different aspects of risk
propagation, market behavior, risk, and sectoral influence. For example, the eigenvector
centrality draws attention to stocks that are substantially influential within the equity
network, revealing sectors like FMCGs or healthcare that play a critical role in market
stability. The closeness centrality finds stocks that are strategically positioned, implying



Risks 2025, 13, 76 16 of 28

that the price fluctuations of these stocks can promptly influence the broader market. The
disparity measure shows asymmetric dependencies, assisting investors in understanding
risk concentration points and diversification opportunities. These measures can be used by
investors to determine sector leaders, modify portfolio allocations, and reduce systemic
risks. Policymakers may use them to help them make decisions about sector-specific rules
and economic actions, while market regulators might use them to keep an eye on intercon-
nected vulnerabilities and anticipate financial contagion effects. Stakeholders can make
better, data-driven financial decisions by incorporating these network insights into risk
assessment, investment strategies, and systemic market analysis.

4.3. Reduced Network Visualization and Interpretation

This study visually interprets the cluster formation in networks derived from MST
analysis and disparity filtering (Figure 7). It relates these clusters to common economic
factors that affect industrial segments. The reduced network, representing 2621 data points
from over 10 years and six months, provides a comprehensive view of all studied stocks,
excluding cycles and with minimal weights being estimated, offering critical insights into
stock relationships. The visualization of the MST plot (Figure 7) shows the formation of
small local clusters, each possessing a mix of analogous and diverse industry group stocks
in unequal proportion. However, these clusters exhibit a large degree of heterogeneity with
no clearly demarcated homogenous regions emerging.
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The visualization of the reduced network (Figure 8) derived using the disparity filter-
ing method at an alpha value of 0.1 (i.e., 90 percent confidence interval) shows that stocks
associated with similar industrial sectors form clearly demarcated independent clusters.
The clusters derived here exhibit a high degree of variability. This study labels the clusters
with serial numbers. Cluster 1 consists of government-controlled commercial banks in In-
dia, which are similarly affected by macroeconomic changes, resulting in an interconnected
mesh that was observed over 10 years and six months’ worth of data. Cluster 2 shows the
firms belonging to the construction and cement industries. Cluster 3 consists of minerals-
sector companies, mainly steel and aluminum manufacturers. Cluster 4 includes Reliance
Group’s core companies: Reliance Capital, Reliance Industries, and Reliance Infrastructure.
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Cluster 5 groups three government-controlled petrochemical marketing companies, Indian
Oil Corporation, Bharat Petroleum Corporation, and Hindustan Petroleum Corporation,
which handle downstream product distribution and retail. Cluster 6 consists of all top IT
services firms. Cluster 7 consists of housing financial corporations while cluster 8 consists
of three petrochemical refineries, namely Essar Oil, Chennai Petroleum, and Mangalore
Refinery. Cluster 9 consists of automobile companies, namely Maruti Suzuki India Ltd. and
Hero Moto Corp.
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The use of disparity filtering and MST analysis offers two major insights into stock
market relationships. The MST (Figure 7) method creates a network by retaining the most
crucial connections while ensuring a cycle-free structure. This results in small, mixed-
industry clusters, highlighting both inter- and intra-sector influences on market dynamics.
Disparity filtering (Figure 8), on the other hand, preserves only the statistically significant
links, leading to well-defined sector-based clusters. Unlike MST analysis, it does not
impose a tree structure, allowing clearer industry segmentation. This method identifies
dominant economic forces that influenced stock relationships, forming distinct clusters such
as petrochemical companies, IT firms, and government-controlled banks which showcase
similar reactions to macroeconomic factors. The comparison reveals that the MST method
offers a broader view of stock interconnectivity but lacks strict industry segregation, while
disparity filtering enhances the interpretability by emphasizing sectoral cohesion. The MST
method captures indirect cross-industry influences, whereas disparity filtering isolates
industry-specific linkages by eliminating weaker connections. The complementary nature of
these methods highlights the value of multi-method network analysis in financial research.
Combining both techniques provides a multi-dimensional perspective, balancing a high-
level overview of market interactions with a detailed breakdown of sectoral relationships.
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4.4. Comparative Analysis of Findings with Studies in Emerging Market

The findings of this study are in line with the Brazilian (Tabak et al. 2010) and South
African (Majapa and Gossel 2016) contexts. Table 3 exhibits a summarized comparative
analysis of the network metrics among the three markets and the associated industry
rankings in each market. Similarly, Table 4 shows a comparative analysis of the findings.

Table 3. Inference from the plots of network metrics.

Sl. No. Network Metric Observation (for Average Values
for 106 Observations)

Inference from the Average
Measures of 106 Observations

1 Dominance

Highest ranked sector (Consumer
Durables) differs by considerable
amount from the lowest ranked

sector (Textiles). Also, it is
noteworthy that the average

value of the highest-ranked sector
is approximately 14 times that of

the lowest-ranked sector.

There is an observable differential
scoring pattern in the dominance

measure of the sectors. This indicates
that the industry sectors within the

network exhibit high degrees of
heterogeneity.

2 Weighted clustering
coefficients

Ratio of the highest-ranked sector
(communications) to the

lowest-ranked sector (financials &
others) are close to 1

Minimal heterogeneity is observed in
this measure.

3 Closeness centrality Highest: financial sector
Lowest: Healthcare sector

Higher closeness centrality stocks are
strategically positioned, implying
that the price fluctuations of these
stocks can promptly influence the

broader market.

4 Influence strength Highest: financial sector
Lowest: FMCGs

High influence strength values in the
financial sector indicate that the asset
returns of its stocks have the greatest
direct influence on the asset returns
of stocks in other sectors within the
study dataset. This high influential
pattern may be an outcome of the

pivotal role played by financial
institutions in the functioning of the

overall Indian economy.

5 Disparity

Technology and healthcare
sectors: High values.

All other sectors except
technology, healthcare, and

finance have low disparity values

The high values of disparity in the
stocks belonging to the technology
and healthcare sectors indicate that
the equity returns of these sectoral

stocks exhibit low levels of
interdependency among themselves
and are highly heterogeneous. Thus,

they have heterogeneity within
themselves.

6 Eigenvector centrality Highest: FMCGs sector
Lowest: financial sector

Stocks possessing larger value of
eigenvector centrality will have

larger number of linkages to other
high-scoring stocks and vice versa.
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Table 4. Comparative analysis between present findings and reported findings of analogous studies
in Brazilian and South African markets.

Sl. No. Network Metric
(or Visualization)

Observation in the
Current Study

Observation in the
Empirical Study on
the Brazilian Market

Observation in the
Empirical Study on the
South African Market

1 Euclidian distances (di,j) 0 to 1.422 0 to 1.38 0 to 1.456

2 MST Visualization

Formation of small
local clusters among
analogous industry
group stocks and a

large degree of
in-cluster

heterogeneity

Large in-cluster
homogeneity

Large in-cluster
homogeneity

3

Number of stocks in
study dataset

(Number of industries
represented)

335 stocks
(15 sectors) 47 stocks (8 sectors) 100 stocks (9 sectors)

4 Average dominance
strength

Consumer durables
sector: highest

Financial: second
ranked

Textiles: lowest

Materials: Highest
Industrials: Lowest

Financial: Highest
Oil & Gas: Lowest

5 Average weighted
clustering coefficient

Communication,
textiles, chemicals:

highest
Constructions &
others: lowest

Financial: Highest
Telecommunication:

Lowest
Not computed

6 Average closeness
centrality

Finance: highest
Healthcare: lowest

Finance: Highest
Telecommunication:

Lowest
Not computed

7 Average disparity

Healthcare,
technology: highest
Textiles and others:

lowest

Energy: Highest
Telecommunication:

Lowest
Not computed

Through comparison of the MSTs of the three markets, we observed some interesting
facts. First, the visual analysis of the MST shows that, in contrast to the Brazilian and South
African markets where large homogeneity among clusters is formed, the MST derived from
this study’s dataset does not form such clusters. Instead, there is the formation of small
local clusters among analogous industry group stocks and a large degree of heterogeneity
in these clusters. This study examines 335 stocks from 15 industrial sectors, compared
to the 47 stocks from 8 sectors in the Brazilian market and 100 stocks from 9 sectors in
the South African market. Due to the larger and more diverse sample, clear demarcated
clusters are not observed, but clusters of 10–12 stocks appear in the finance, construction,
and FMCGs sectors. After applying disparity filtering, distinct industry-oriented stock
clusters emerge.

Our study enriches the existing literature on stock market relationships by analyzing
financial network structures through disparity filtering and minimum spanning tree (MST)
analysis. Specifically, our finding from the MST that economic forces cause stocks from
diverse sectors to form loosely defined clusters provides evidence for sector-specific be-
haviors and larger market interdependencies. This suggests that, while industry-specific
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firms share common trends, they also do so with firms from diverse sectors. The disparity
filtering, on the other hand, shed light on sectoral clustering, implying that some sectors,
for example, IT firms and government-controlled banks, show highly independent and
localized structures. This finding aligns with economic expectations wherein technological
advancements and regulatory policies prompt distinct market behavior.

Our findings align with the existing literature (e.g., Mantegna 1999; Tumminello
et al. 2005; Carvalho and Araújo 2024; Choi and Kim 2024; Rakib et al. 2024) that has
demonstrated the efficacy of MST analysis in identifying financial market structures and
the efficacy of disparity filtering in identifying vital interlinkages in financial networks
(Serrano et al. 2009). This study is, however, unique in applying both MST analysis and
disparity filtering simultaneously, which allowed us to observe heterogeneity in the MST
analysis and clearer clustering in the disparity filtering, demonstrating how different
methodologies can uncover complementary aspects of stock associations. For instance,
stock market structures are influenced by both industry-specific dynamics and larger
market inter-dependence, a fact that existing studies have failed to consider.

The novelty of this research lies in unearthing mixed-industry clusters in the MST
visualization. Existing studies have identified relatively homogeneous clusters in their MST-
based analyses in the context of mature markets such as Europe and the USA (Tumminello
et al. 2010), whereas our study unearths greater diversity within local clusters, which can
probably be attributed to the unique nature of the Indian markets, where major corporates
hold business interests in diverse sectors, blurring traditional industry boundaries. For
instance, India’s leading conglomerate, Reliance, operates several core companies within
a single cluster despite having interests in diverse sectors, highlighting the role of group
influence and corporate ownership on stock market structures.

A comparison of our findings with studies in other markets shows that developed
economies show much clearer clustering, even in networks that are just based on MST
analysis (Aste et al. 2010), compared to the developing economies like India, where family
ownership, sectoral inter-dependencies, and government policies lead to more intercon-
nected networks. This finding reiterates the need for tailored network analysis methods for
studying diverse markets in diverse market settings.

5. Theoretical Contributions
This research enhances the existing body of work on financial network analysis by

illustrating how different network-based methodologies provide complementary insights
into stock market structures. Unlike previous studies (Rakib et al. 2024; Berouaga et al.
2023) that primarily employed either MST analysis or disparity filtering in a silo, this study
integrates the two techniques and finds a multi-faceted perspective, with the MST analysis
capturing the broader market interconnectivity while the disparity filtering highlights
the most statistically significant sectoral relationships. By examining how conglomerates,
government-controlled enterprises, and sector-specific factors contribute to stock clustering,
this study enriches theoretical perspectives on market complexity and industry interdepen-
dencies. Contrary to conventional asset pricing models (Pástor and Stambaugh 2000) that
focus primarily on returns and volatility, this study emphasizes the structural topology
of financial markets, offering a novel understanding of stock relationships beyond price
dynamics.

Our findings also contribute to ongoing discussions on network resilience and systemic
risk (Peron et al. 2012; Cerqueti et al. 2024; Glasserman and Young 2016) by demonstrating
variations in internal cohesion across industries. This has important implications for
financial stability theories, illustrating that, while highly clustered industries may be more
resilient to localized disruptions, loosely connected sectors could facilitate the spread of
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systemic risk. The network analysis throws light on market stability, systemic risk, and
investment strategies. FMCG and healthcare stocks with high eigenvector centrality are
key nodes, amplifying shocks during crises and stabilizing the market. Their significant
interconnectivity and influence within the obtained network indicate that they serve as
critical nodes, amplifying market shocks when under financial distress. This underscores
the importance of continuous monitoring of these highly central stocks to enhance portfolio
risk management and mitigate contagion effects.

The MST analysis reveals clear sectoral clustering, especially among government-
owned banks, IT companies, and petrochemical firms, which is indicative of strong inter-
and intra-sector connections within the Indian stock market. These clusters correspond
with economic cycles, such that IT firms react to global demand, financial institutions to
macroeconomic shifts, and commodity sectors to price changes in raw material. Insights
into these patterns can help investors create sector-focused diversification strategies in
order to minimize correlated risks and improve their returns. Sectoral disparities in the
network analysis provide key insights when viewed through the lens of modern portfolio
theory (MPT) (Lukomnik and Hawley 2021; Akkaya 2021) and factor models (Ng et al.
1992; L’Her et al. 2004). Increased disparity levels in certain sectors signal structural
imbalances and differing degrees of systemic relevance. These findings will enable investors
to optimize their portfolio allocation by reducing their exposure to highly volatile or tightly
interconnected sectors. For example, strong connections among petrochemical companies
indicate that shocks like crude oil price changes could affect the entire sector. Understanding
such interdependencies enables the development of resilient, risk-adjusted investment
strategies that protect against downturns while supporting long-term growth. Based on
the investment and systemic risk frameworks, this study offers actionable guidance for
investors, analysts, and policymakers in navigating the complexities of the Indian stock
market.

6. Managerial Implication of the Study
Empirical evidence from the existing literature demonstrates that the filtered networks

used herein, derived from various network pruning techniques, are statistically robust and
capable of handling both non-stationarity and fat-tailed distributions in equity market time-
series data. Additionally, applying network filtering methods in equity networks can be
utilized for portfolio selection tasks by investment and portfolio managers. The data-driven
insights generated from this cross-security interdependency study provide key information
for the systemic risk monitoring of Indian equity markets by financial policymakers, mutual
fund managers, and the fund managers of foreign Portfolio investors, pension funds, and
hedge funds. Currently, as foreign portfolio investors increasingly invest in Indian markets
for stable and high returns, this information is crucial. Unlike past decades, today’s
Indian equity market is highly integrated with major global markets, making country-
level diversification insufficient for hedging systemic shocks. In such scenarios, inside a
country-specific equity market, increasing understanding of the collective dynamics of
the price fluctuations of companies belonging to different sectors or industries and their
susceptibilities to systemic shocks through the use of network metrics as decision support
tools will be helpful in furthering risk management functionality.

7. Conclusions
This study examines the abstraction and capturing of interdependencies of equity

returns in a complex system framework using network models. The initial inquiry was fo-
cused on determining the most suitable method for capturing the inter-stock dependencies
among asset returns. The analysis showed that weighted network models form the best
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approximation strategy to capture such interdependencies. The second set of questions
addressed the topological measures of equity network models, concluding that six network
metrics capture intrinsic information and can differentiate and diagnose industry-specific
asset return interdependencies. Sector-wise analysis suggests that stocks in the financial,
FMCGs, healthcare, technology, and diversified sectors are more significant and influential.
Therefore, continuous monitoring of equity patterns using network metrics could be a
valuable strategy for portfolio managers. The third series of inquiries compared equity
network models from Indian markets with those of other emerging markets. The analysis
concludes that each market has unique financial traits, such as taxation regimes, circuit
filters, and volume allowances, leading to distinct asset interdependency patterns with
few similarities. Therefore, an investment strategy that performs well in one emerging
market may encounter failure in the other. The fourth set of questions addresses reduced
network visualization. Our analysis shows that more efficient disparity filtering produces
an information-rich, noise-poor network compared to MST analysis. Disparity filtering
effectively visualizes ‘local interdependency patterns’ in asset returns, unlike MST analysis.

Visualizing network clusters provides a multidimensional view of stock interconnec-
tions, revealing cross-sector and inter-industry linkages that are not immediately apparent
through traditional analysis. In diverse markets, such as India, the role of these linkages in
minimizing investment risk requires further analysis. Unlike traditional strategies, network-
based clustering can identify hidden correlations among stocks, which in turn, enables
greater portfolio diversification and the dynamic mapping of real-time interactions, thereby
reducing exposure to highly interconnected stocks that are vulnerable to sector-wide disrup-
tions. However, not all stocks within a group behave uniformly, given the heterogeneous
nature of the observed clusters. Some clusters include a mix of industries in varying
proportions, which can result in risk spillovers. Conglomerates and cross-sector linkages
within clusters may also introduce more uncertainties, necessitating complementary fi-
nancial indicators for accurate risk assessment. To enhance risk mitigation, cluster-based
approaches should be integrated with other financial analysis techniques, including stress
testing, macroeconomic factor evaluation, and volatility modeling under various market
conditions. Identifying clusters that remain stable over time may also provide insights into
long-term sectoral resilience, whereas highly volatile clusters may indicate increased risk
exposure.

Future research could refine this approach by examining temporal shifts in network
structures to understand how they evolve during financial crises or economic booms.
Sensitivity analyses with varying time windows (beyond the standard 500 trading days)
would also help to determine whether patterns remain consistent across periods, reinforcing
the robustness of the methodology. While Pearson correlation captures linear dependencies,
it may not fully reflect extreme market conditions or nonlinear relationships. Alternative
dependency measures, such as Kendall’s tau or Spearman’s rank correlation, offer a more
detailed analysis of stock relationships, particularly during periods of increased volatility.
Exploring these methods would enhance the understanding of market dynamics and
improve risk management strategies in the Indian stock market.

The findings and the methodological approach of the current study have significant
implications for qualified institutional buyers, foreign institutional investors, domestic
institutional investors, and foreign direct investments, as the traits of all of them emerge
distinctively. The findings of this study highlight the possibilities for investigating the
dynamics of stock price movements in equity markets and could also be suitably employed
for systemic risk monitoring of the Indian equity market. The issues of cross-country and
intra-country systemic spread have become even more relevant in today’s highly inter-
connected world, where large data-streams pass through most of the emerging economy
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at a brisk pace. Rather unwillingly, a tiny turbulence in one corner of the globe generates
a ‘butterfly effect’ in another remote corner, making these complex constructs brittle. To
minimize the sudden shocks which may impact the system in a destructive fashion, fund
managers could well be using these complex network constructs as supporting instruments
to avoid humiliation. Further research could examine samples from the Chinese and Greek
market crashes to observe how network metrics and industry sector significance evolved
during these periods.
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