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Highlights

The study focuses on the design and comparison of capacitive pressure sensors using dis-
tinct biocompatible materials for in-stent blood pressure. The circular electrode design with
crescent-shaped slots and a PDMS dielectric material demonstrated the highest sensitivity.

What are the main findings?

• The circular sensor design with two crescent-shaped slots, a 20 µm thick PDMS dielectric,
achieved a sensitivity of 10.68 fF/mmHg.

• The resonant frequency shift showed an exceptionally linear relationship with blood
pressure (Pearson’s correlation coefficient of −0.99986 and R-squared value of 0.99972).

What is the implication of the main finding?

• The high sensitivity and linear response of the sensor make it an ideal contender for
precise, real-time pressure-monitoring applications.

• The optimized sensor design can be used in passive wireless pressure-sensing techniques
for continuous health monitoring, particularly in detecting in-stent restenosis.

Abstract: This research outlines the design of capacitive pressure sensors fabricated from
three biocompatible materials, featuring both circular and square geometries. The sensors
were structured with a dielectric layer positioned between gold-plated electrodes at the top
and bottom. Their performance was assessed through simulations conducted with ANSYS
Workbench. Of the various sensor configurations tested, the circular design that included
two crescent-shaped slots and a 20 µm thick PDMS dielectric material demonstrated the
highest sensitivity of 10.68 fF/mmHg. This study further investigated the relationship
between resonant frequency shifts and arterial blood pressure, revealing an exceptionally
linear response, as evidenced by a Pearson’s correlation coefficient of −0.99986 and an
R-squared value of 0.99972. This confirmed the sensor’s applicability for obtaining precise
blood pressure measurements. Additionally, a 3 × 30 mm cobalt–chromium (Co-Cr) stent
was obtained, and its inductance was measured using an impedance analyzer.

Keywords: capacitive pressure sensor; in-stent restenosis; biocompatible materials; sensor
design; polydimethylsiloxane-PDMS
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1. Introduction
Coronary artery disease (CAD) is a condition that arises due to the narrowing of

coronary arteries because of the accumulation of plaque on the arterial walls. This narrow-
ing impedes the blood flow through the arteries, increasing the risk of heart attacks and
strokes. The plaque, which is primarily composed of smooth cells such as macrophage cells,
muscle cells, and various other materials such as cholesterol, sulphated glycosaminoglycan,
collagen, and fibrin, contributes to the gradual constriction of the arteries [1]. Intravascu-
lar stents have emerged as a common intervention to address stenosis coronary arteries,
serving as scaffolds to maintain arterial patency and restore blood flow. A stent implan-
tation is the most preferable choice because of its high success rate and because it is the
least invasive method [2]. However, the presence of metallic stents within arteries can
trigger inflammation, leading to excessive tissue growth within the stent; this is known
as in-stent restenosis [3]. The incidence of in-stent restenosis among patients with stents
can be significant, with the rates reported to reach as high as 50% [4]. To mitigate this
risk, medicine-coated drug-eluting stents that slow proliferation are commonly used to
mitigate the issue of restenosis in the early stages post-implantation. However, concerns
have been raised regarding the long-term safety of stents, as they may increase the risk of
thrombosis and cases of subsequent heart attacks. Despite the availability of preventive
measures, the identification of in-stent restenosis typically relies on invasive methods
such as a duplex ultrasound and angiography, which are usually reserved for patients
presenting with symptoms such as chest pain. As a result, there is a need for non-invasive
and more accessible methods for detecting in-stent restenosis, particularly in asymptomatic
patients [5]. Moreover, diabetic patients often lack chest pain sensation, even as arterial
narrowing recurs, potentially leading to sudden and perilous health deteriorations. While
X-ray-based inspection devices offer continuous metal stent monitoring, they are costly.
Therefore, identifying alternative real-time monitoring approaches for both metal stents
and blood pressure is crucial. Compared to conventional sensors, micro-electromechanical
systems (MEMS)-based sensors offer several advantages, including high efficiency, small
size, and affordability. These sensors combine miniature electrical and mechanical parts,
improving system performance and lowering overall system expenses.

Many sensing techniques, including piezoelectric, capacitive, and piezoresistive sens-
ing, are employed. Capacitive pressure sensors are favored for their high sensitivity, power
efficiency, minimal temperature drift, and different designs, such as circular, square, and
elliptical shapes [6]. The optimization of the design and the maximization of sensitivity
while keeping the dimensions realizable and ensuring easy fabrication are some of the
major challenges that have been reported in the literature. As the world becomes increas-
ingly digitalized, the demand for new technologies has surged. MEMS have emerged as
a transformative technology, offering a small, lightweight size; enhanced performance;
and reliability across various sectors, such as the automotive and instrumentation sectors.
MEMS sensors, which are significantly smaller than traditional sensors, are particularly
adept at measuring pressures such as dynamic wall pressure and shear stress [7]. An
LC circuit has been integrated with a capacitive triboelectric pressure sensor (CTPS) for
real-time wireless sensing demonstrating a self-powered wireless pressure sensing system
(SP-WPSS). Employing such a system provided the model with high sensitivity, fast re-
sponse, and low detection limit. Efficient wireless monitoring over a long distance was
achieved through impedance matching with a gas discharge tube. This was achieved by
adjusting the resonant frequency as a function of pressure [8].

In another related research, the author integrated an SP-WSS with a triboelectric nano-
generator (TENG), providing a combined functionality of energy harvesting, sensing, and
communication of real-time operation. An LC circuit comprising an inductor coil and a
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capacitive pressure sensor lowers energy usage and permits signal transmission with a
40 m transmission range [9]. A self-powered nanofluidic pressure sensor has been designed
to harness ionic movement through nanochannels, directly linking pressure changes to
ionic current. This unique approach removes the need for an external power source while
delivering high sensitivity, fast response, and long-term stability. With these advantages,
the sensor shows great promise for real-time pressure monitoring in both medical and
industrial settings [10].

To address the need for the wireless monitoring of restenosis, smart devices utilizing
MEMS technology have been reported. These devices leverage a series inductor–capacitor
(LC) resonant circuit to enable diverse transducer features, such as the wireless sensing
of blood pressure using telemetry. The authors of another article introduced a helically
shaped stent made up of stainless steel equipped with pressure sensors, where the elec-
tromagnetic coupling used inductive and capacitive elements to act as communication
devices for restenosis detection. However, helical stents are unable to resolve re-narrowing
issues when in-stent restenosis arises [11]. The imperative to detect in-stent restenosis
non-invasively and rapidly has spurred advancements in smart stent technology, among
other solutions [12]. Implantable sensing technology can be categorized into active and
passive. An active system constitutes an electronic circuit and power sources to enhance
functionality. However, the complexity varies with different packaging methods, and there
are reliability issues with device linkages, making this type of system an unreliable choice
for medical implant devices or within blood vessels due to associated lifetime constraints.
In contrast, passive devices constitute an inductive coil excited externally with mutual
coupling, and the power is supplied wirelessly for the sensing operations. These systems
boast a simple structure [13]. Passive sensors work based on mutual coupling between
the sensor coil and the external transmitter coil, overcoming the limitations of integrated
power supplies. Such systems excel in wireless techniques due to favorable specifications
and superior performance across a wide frequency band. Recent research has focused
on developing highly efficient, low-powered, and reliable medically implanted devices
that can offer high data rates [14]. Researchers have developed a pressure sensor using
polyimide, integrated with an LC resonant circuit for wireless power transfer. However, the
high resonant frequency of this sensor, which stems from compaction and high sensitivity,
may cause cell disruption if implanted within the human body [15]. Gong et al. developed
a pressure sensor with enhanced sensitivity using gold nanowires and a power-efficient
system for obtaining pressure measurements [16]. Other researchers have proposed various
sensor types with different levels of flexibility, power consumption, and biocompatibility.
Recent improvements in capacitive pressure sensors now feature self-repairing, recyclable
materials like poly (disulfide) polymers with special bonds and metal-catechol complexes.
These materials have great sensitivity (up to 9.26 kPa−1) and fast response times. They also
maintain consistent performance after self-healing and recycling, providing possibilities
for sustainable and high-performance sensing systems [17]. Dielectric material selection is
a crucial aspect, as implantable devices require biocompatible materials to be utilized in
the design of the pressure sensors. The most widely used biocompatible and hydropho-
bic dielectric material is polydimethylsiloxane (PDMS). It offers suitable electrical and
mechanical properties, which is why this elastomer is widely used in biomedical applica-
tions [18]. The authors of [18] briefly reviewed the wide application of PDMS in the design
of micro-fluid, nanostructure-based biomedical applications, especially in implantable
devices. Polyurethane is another dielectric material that is utilized by researchers for many
biomedical applications, especially flexible and pressure sensors [19]. Recent advances have
demonstrated MXene/cellulose nanofiber composite membrane-based nanofluidic pres-
sure sensors that convert mechanical signals into electrical energy, enabling self-powered
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operation. These sensors have increased sensitivity and detection ranges, making them
appropriate for designing portable and wearable devices [20]. There are several other
biocompatible materials, but this specific application of in-stent restenosis measurements
(correlated to a change in pressure due to plaque and fatty acid deposition) demands
specific electrical and mechanical properties. One such dielectric material that has been
widely used for biomedical applications is silicone rubber [21].

However, challenges persist regarding signal interference and a wireless power sup-
ply [22]. Passive devices eliminate the need for batteries and active circuitry, enabling
compact designs suitable for implantation in small arteries such as the coronary artery [23].
The integration of a minimally invasive blood pressure-measuring device for continuous
monitoring with a coronary stent can act as an early warning system for cardiac health.
Wireless sensing technology has been widely used in biomedical applications. Telemetry
and telemedicine have been heavily researched lately [24]. Traditionally, telemetry-based
medical devices in the radio frequency (RF) range use an LC coupling resonant circuit, in
which the frequency shifts with the physiological parameter of interest. Here, the change
in capacitance due to arterial blood pressure is translated into a shift in the resonant fre-
quency of the transmitter. The wireless determination of the resonant frequency enables
the extraction of diagnostic information by analyzing the impedance of an antenna placed
in the vicinity of the implanted device via electromagnetic coupling. In vascular applica-
tions, MEMS-based wireless sensors have gained traction [25]. One article found that for a
capacitive sensor in combination with a gold-plated spiral inductor (2.6 mm × 1.6 mm), the
size remained a concern, despite demonstrating effective performance [26]. In another research
article, the authors proposed a 1.5 × 1.5 × 0.2 mm3 sensor that consisted of a 316L stainless steel
chip micro-machined to form a cavity of 1 × 1 mm2 with a depth of 11–15 µm, which served as
one of the capacitive electrodes. An Au–polyimide (PI) multilayer diaphragm hermetically
sealed the cavity at atmospheric pressure, acting as the other flexible capacitive electrode
that changes with applied external pressure [27].

For pressure sensing, various sandwiched microstructures have also been reported. In
these microstructures, a microstructure inotropic film is sandwiched between two capacitor
electrodes, resulting in significant capacitance changes. A shift in the resonant frequency of
the tank circuit was wirelessly acquired using a phase dip technique. For an applied pres-
sure range of 0–250 mmHg, a frequency shift from 429 MHz to 227 MHz was observed [28].
In most of the reported capacitive pressure-sensing techniques used to measure arterial
blood pressure for in-stent restenosis monitoring, the reported sensitivity still needs to be
improved [29]. In this study, a novel design is proposed for the capacitive pressure sensor
previously developed by the above researchers to enhance its detection sensitivity.

In this work, two different types of pressure capacitive sensors (one with circular and
the other with square-shaped electrodes) were designed. Three different types of biocom-
patible materials, namely PDMS, polyurethane, and silicone rubber, were selected as the
dielectric materials for the proposed pressure sensors. These materials provided flexibility
and enhanced the sensor’s sensitivity. Crescents were cut into both the structures for all
three materials; hence, a total of eighteen sensors comprising six different sensor structures
and three different materials were designed. The pressure versus deflection was recorded,
and finally, due to the deflection caused by applied pressure, the corresponding capacitance
values for each sensor are graphically presented. The optimization of dimensions and
structures was accomplished in the simulation study. The sensitivity of the sensors was
compared, and the most suitable structure and material, as well as the sensor offering the
maximum sensitivity, were determined. The article organization constitutes the following:
Section 1 provides the principles of operation, Section 2 explains the sensor design and
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biomaterial properties, Section 3 presents the results and discussion, and Section 4 provides
the conclusion of this research.

2. Materials and Methods
A finite element analysis facilitated the evaluation of changes in the capacitance

value for the applied pressure range, guiding the design of the inductor coil for optimal
performance. This study underscores the importance of resonant frequency selection and
inductor design considerations for wireless pressure sensors in biomedical applications.
Various MEMS sensors and structural designs were explored to design sensors that observe
deflection with the applied pressure. The designed sensors are to be integrated upstream of
the implanted stent. Figure 1a shows the schematic diagram of the circular sensor design,
and Figure 1b shows the schematic diagram of the square sensor design, both intended for
installation at the tip of the stent structure.
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Figure 1. In-stent pressure capacitive sensors: (a) a circular-plate capacitive sensor; (b) a square-plate
capacitive sensor. Central part golden/yellow color represent gold electrodes, and the grey color is
representing sensing layer of polymer.

With the blood flow through the implanted stent sensor system, the top plate of
the sensor deflects according to the upstream pressure build-up, causing a change in
the sensor’s capacitance. As the plaque deposition increases, the pressure build-up also
increases proportionally; hence, the change in capacitance can be used for the continuous
monitoring of restenosis. This study considered six novel designs for the deflective plate: a
square plate with no slots, a square plate with four I-shaped slots on the sides, a square
plate with four L-shaped slots in the corners, a circular plate without slots, a circular plate
with two crescent cuts, and a circular plate with four crescent-shaped cuts.

The change in capacitance can be obtained using an external transmitter circuit that
employs electromagnetic coupling. The static inductance value (L) due to the fixed stent
structure in series with a variable capacitor (pressure sensor) that changes with an increase
in arterial pressure due to restenosis results in a shift in the resonant frequency. The change
in capacitance correlated positively with the change in arterial pressure, which, in turn,
can be easily reflected in terms of a resonant frequency shift in the transmitted signal due
to electromagnetic coupling. With the designed number of spiral loops attached together
to form a stent structure, L (static) varies from structure to structure, which may lead to a
change in the base resonant frequency. This is given by the following:

ω0 = 2π f0 =
1√

LsCs
(1)

In this work, the focus was to optimize the dimensions and the selection of the
most suitable biocompatible material for a wireless smart capacitive pressure sensor. The
most sensitive design was selected based on performance and sensitivity, and it was
then optimized and analyzed in comparison to a typical square plate for the continuous
monitoring of in-stent restenosis.
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To solve the challenges related to power supply and sensor integration, it is proposed
to employ passive wireless energy harvesting through RF or inductive powering, enabling
the capacitive pressure sensor to function without batteries by drawing power from external
sources. The capacitance change in the sensor is converted into an electrical signal through
a capacitive-to-voltage converter, followed by signal conditioning using operational ampli-
fiers and analog to digital converters. The processed signal can be wirelessly transmitted
using a low-power communication module such as Bluetooth Low Energy (BLE) or RF,
facilitating continuous and real-time blood pressure monitoring. This methodology will
support the development of a fully integrated, wireless, and energy-efficient system for
in-stent applications.

2.1. Sensor Design and Biomaterial Properties
2.1.1. Sensor Structure

In this study, capacitive sensors are modeled employing ANSYS Maxwell 3D Version 2022,
R2 software (ANSYS Inc., Canonsburg, PA, USA). It is a useful instrument for analyzing
electromechanical and magnetic fields in complex 3D geometries. Furthermore, this tool
provides accurate capacitance measurements and enhanced sensor performance. The
parallel-plate sensors, one with circular and another with square-shaped gold-plated
electrodes, are first simulated. Gold was selected as the electrode material due to its
excellent biocompatibility, non-corrosive nature, high conductivity, and mechanical stability,
which are crucial for long-term performance in biomedical applications. Electrodes for a
circular plate with a diameter of 1 mm and a thickness of 20 µm were prepared. One of the
electrodes was attached to the stent on which the sensing dielectric layer was deposited,
and on the sensing layer, the second electrode of gold material was formed in order to
realize a parallel-plate capacitive sensor in the software. A dielectric material sandwiched
between the two electrodes resulted in a separation of 20 µm between the two electrodes
of the sensor. For the square-shaped electrode, an edge length of 0.5 mm and a thickness
of 20 µm was used for the gold-plated electrode, and a dielectric material of the same
dimensions was sandwiched between the plates. Figure 2a shows the schematic diagram
of the square-shaped electrode design with dimensions, and Figure 2b shows the schematic
diagram of the circular-shaped electrode design with dimensions. Both these images are
generated using Microsoft Visio 2023 Version 2024.
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Figure 2. Schematic diagram of sensors: (a) a square parallel plate; (b) a circular parallel plate.

The materials were assigned to the various geometries using the library of the software.
The sensing materials (PDMS, polyurethane, and silicone rubber) were added to the library
using the dielectric constant and bulk conductivity. The creation region was used to
provide an electrostatic shield to the sensor. Triangular meshing was used for simulation.
The electrodes were excited with a voltage (+1 V for the upper electrode and GND for
the bottom electrode), and the dielectric material was allocated after selecting a specific
dielectric constant and bulk conductivity; then, the base value of the capacitive sensors
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was evaluated for each dielectric material. The capacitive sensors implemented by other
researchers have typically used square-shaped parallel-plate electrodes. The base electrode
is kept fixed while the top electrode is deflected with the applied pressure range. The
generic formula for the parallel-plate capacitive sensor is given by Equation (2) [30].

C = A
εoεr

d
(2)

where A is the common area of the electrodes, d is the separation between the plates,
εo = 8.85 × 10−12 F/m, and εr is the dielectric constant of the medium between the electrodes.
Figure 3a shows the electric field distribution for the circular-shaped electrode with four
cuts, and Figure 3b shows the electric field distribution for the solid square electrode with
four cuts. It is observed that the field intensity near the electrodes was maximized.
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Figure 3. Electric field intensity for a solid electrode with four cuts: (a) a circular plate capacitive
sensor; (b) a square plate capacitive sensor.

In further analysis, slots were cut into the circular and square structures of the sensing
layer. For the circular dielectric layer, the slots were formed as crescent shapes (with two
or four cuts). In the square dielectric structure, the cuts were made in the shape of an I
(parallel to the edges) or an L (at the corners) to develop different structures, with the goal of
optimizing the dimensions and overall sensitivity. A total of 18 sensors were simulated, and
their performance was evaluated to identify the most sensitive capacitive pressure sensor
out of the proposed structures and biocompatible dielectric materials. Table 1 presents the
simulation parameters of the designed sensors in detail.

Table 1. Simulation parameters.

Sensor Parameter Value

Circular

Electrode diameter (D) 1 mm
Electrode thickness (S) 20 µm
Sensing layer thickness (t) 20 µm
Electrode material Gold

Sensing material PDMS, polyurethane rubber, and silicone
rubber

Sensing layer dielectric constant 2.69, 3, and 3.7, respectively

Electrode bulk conductivity (S/m) 2.5 × 10−14, 1 × 10−11, and 3.47 × 10−4,
respectively

Square

Electrode length (a) 0.5 mm
Electrode width (b) 0.5 mm
Electrode thickness (S) 20 µm
Sensing layer thickness (t) 20 µm
Electrode material Gold

Sensing material PDMS, polyurethane rubber, and silicone
rubber

Sensing layer dielectric constant 2.69, 3, and 3.7, respectively

Electrode bulk conductivity (S/m) 2.5 × 10−14, 1 × 10−11, and 3.47 × 10−4,
respectively
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2.1.2. Biocompatible Material Selection

Three biocompatible materials, namely PDMS, polyurethane, and silicone rubber, were
selected for the dielectric layer of the proposed sensors. All three materials offer excellent
mechanical and electrical properties and are biocompatible, highly flexible, compressible,
hydrophobic, and stable, making them highly suitable for implantable devices such as
in-stent smart capacitive pressure sensors.

1. Polydimethylsiloxane (PDMS)

PDMS is widely used in biomedical applications, and it has been explored for medical
implants because it offers good osseointegration [31]. Despite its biocompatibility, it is less
reactive, and its microscale features facilitate the bonding of the implant with body organs,
especially bones. Glass and other polymers represent a substantial labor cost and require
complex machining processes due to their rigidity, whereas PDMS is an elastomer with
excellent thermal and electrical properties and is a hyper-elastic material that can tolerate
large amounts of deflection before rupture. Additionally, PDMS is excellent at mimicking
blood vessels [32]. It is one of the most suitable materials for biomedical applications. In
this work, this material was selected due to its extraordinary properties to act as a dielectric
layer in the capacitive pressure sensor.

Several aspects contribute to the optimized capacitive pressure sensor’s better results
in terms of inductance, frequency range, and sensitivity. The addition of PDMS, recognized
for its high dielectric constant, flexibility, and biocompatibility, improves sensitivity and
conformance to the artery wall. The round electrode design reduces edge effects by equally
dispersing stress, resulting in improved mechanical stability. Miniaturizing the electrode
(1 mm diameter, 20 µm thickness) reduces parasitic capacitance and increases frequency
range. Structural improvement and stability of the resonance frequency improve the
efficiency of wireless monitoring. These combined developments make the sensor ideal for
continuous in-stent arterial pressure monitoring.

The circular PDMS capacitive pressure sensor’s environmental stability and long-
term performance have been extensively evaluated for dependable operation in simulated
essential settings. PDMS, known for its better biocompatibility and resistance to chemical
degradation, sustains its mechanical characteristics and dielectric constant throughout
time. Its minimal water absorption eliminates moisture-induced capacitance variations,
and long-term tests in high humidity reveal insignificant performance changes. The sensor
also maintains structural integrity and electrical qualities in the face of cyclic pressure
and temperature variations, with low hysteresis and high repeatability. These features
ensure that the circular PDMS capacitive pressure sensor retains its excellent sensitivity
and accuracy, making it suitable for continuous arterial pressure monitoring.

2. Polyurethane Rubber

Polyurethane rubber is a bio- and blood-compatible material that is used for the
development of everything from simple biomedical devices, such as catheters, to the most
complex device, an artificial heart [33]. It is highly durable, elastic, fatigue-resistant, and
acceptable within the body, making it suitable for use in implantable devices. It behaves
like a natural tissue due to its acceptability within the body during healing processes. It
has been used in the design of many functional devices for biomedical applications [34].
Hence, polyurethane rubber was the second dielectric material selected for the analysis in
this work.

3. Silicone Rubber

Silicone rubber is an elastomer that is highly durable and biocompatible. It has a wide
range of thermal and chemical resistance, enabling it to tolerate hot tissue attacks; it also
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acts as an insulator for electronic implants such as pacemakers, etc. It is an elastic material
that can retain its mechanical properties within a very wide range of temperatures [35].
This material is very suitable for biomedical applications and the design of medical implant
devices. Thus, it was selected as the third dielectric material for the design of sensors.

The proposed design is unique in that it examines the effects of PDMS, polyurethane,
and silicone rubber on sensor performance independently. A systematic assessment of
each material’s flexibility and durability was shown by getting deformation vs. pres-
sure and capacitance vs. pressure graphs. In this study it is observed that PDMS has
the maximum sensitivity due to its higher elasticity, whereas polyurethane establishes a
compromise between flexibility and mechanical strength, and silicone rubber has excel-
lent stability. Structural improvements, such as a multi-layered composite construction
and micro-structuring of dielectric layers, improve sensitivity and frequency response.
Compared to earlier studies on single-material sensors, the presented design in this study
provides a full performance evaluation, streamlines the fabrication process, and lowers
costs, emphasizing the unique benefits of these materials.

The referenced paper [27] makes use of polycrystalline silicon (Poly-Si) with square
and circular plates that have straight, L-shaped, and crescent-shaped slots with a plate
gap of 10 µm. In contrast, the proposed design investigates numerous dielectric materials,
including PDMS, polyurethane rubber, and silicone rubber, using modified plate designs
with similar slot layouts. The use of PDMS in this study allows for more deflection
and elasticity, which addresses the mechanical constraints of Poly-Si in the cited work.
Furthermore, this study includes a detailed comparison of capacitance versus pressure for
each material, providing greater information about the impact of sensor design and slot
selection on total sensor performance. Table 2 compares the results of the proposed design
with the existing study.

Table 2. Comparison of proposed results versus existing results.

Parameter
[27] (Square with
4 Straight Slots,

Poly-Si)

Proposed Design
(Circular with

2 Crescents, PDMS)
Level of Superiority
in Proposed Design

Sensitivity 1.05 fF/mmHg 10.68 fF/mmHg 10.2× higher
Maximum Deflection 8.09 µm 1.35 × 10−2 mm 1.7× higher
Initial Capacitance 0.195 pF 0.892 pF 4.6× higher
Final Capacitance 0.363 pF 2.733 pF 7.5× higher
Capacitance change 0.168 pF 1.841 pF 11.0× higher

Despite major changes in material characteristics and structural designs between the
proposed and referenced designs, the linearity of capacitance changes with respect to
pressure is nearly the same for both sensor designs.

3. Results and Discussion
3.1. Inductance Measurement of the Stent

A BX-type cobalt–chromium (Co-Cr) stent with a length of 30 mm and a diameter of
3 mm was procured from Biotronik Medical Devices India Pvt. Ltd. (New Delhi, India),
Holy Family Hospital, New Delhi, India. The stent was inflated using a stent inflator by
applying a nominal pressure of 10 atm using a sirolimus-eluting coronary stent ballooning
system. The fully inflated stent was used for electrical characterization. Figure 4 shows the
connection of both ends of the stent to an impedance analyzer (4294A) using alligator clips.

The inductance value of the stent was measured in the frequency range of
100 kHz–110 MHz using an impedance analyzer. The inductance values of 68 nH at
110 MHz and 1039 nH at 100 KHz were obtained. The value of L (inductance) used for
the calculation of the resonant frequency using Equation (1) was 927 nH, calculated at
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110 MHz. A change in the capacitance value (Cs) with an increase in arterial blood pressure
(60 mmHg–200 mmHg) was observed for the designed capacitive pressure sensors (circular
structure with two crescent cuts). The shift in capacitance resulted in a shift in the resonant
frequency, as described in a later section.
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3.2. Capacitive Response of the Sensor

The capacitance values in response to the pressure applied were evaluated for two
different parallel-plate capacitive pressure sensors with three different dielectric materials.
The first structure, which used solid, circular-shaped electrodes with a diameter of 1 mm
and a thickness of 20 µm and the three dielectric materials (namely PDMS, polyurethane
rubber, and silicone rubber), was analyzed for an applied pressure of 60 mmHg to 200 mmHg.

Gold electrodes with a thickness of 20 µm deposited on both sides of the dielectric
material were used as the plates of the capacitive sensor. Figure 5a shows the schematic dia-
gram of the circular plate capacitive sensor structure. The simulation study was conducted
on a PC (Intel i5 8th Generation, 8GB RAM, 1.60 GHz, 1TB disk size). Figure 5b shows the
color-coded animation of the deflection (in mm) for the pressure range applied to the sensor
with PDMS as the dielectric material, generated using the ANSYS Workbench platform.
ANSYS Workbench is an integrated simulation platform that provides a comprehensive
environment for performing structural, thermal, fluid, and electromagnetic analyses.

For the solid circular structure, three different dielectric materials were selected one
by one to analyze the deflection (in mm) with the selected pressure range (60–200 mmHg)
in steps of 10 mmHg. The selected materials are biocompatible, hydrophobic, and widely
used in implantable devices. The electrical and mechanical properties of the dielectric
materials were inputted into the simulation software library for further analysis. Table 3
presents the values of bulk conductivity and dielectric constants of the selected materials.

Initially, PDMS was used as the dielectric material to calculate the deflection
(in mm) for the selected range of applied pressure; thereafter, the polyurethane rubber was
used, and lastly, the silicone rubber was used. The circular structure (without any slots)
offered the maximum deflection of 5.648 × 10−3 mm for PDMS, whereas the deflection was
1.3000 × 10−4 mm and 4.6210 × 10−4 mm for polyurethane rubber and silicone rubber,
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respectively. The deflection corresponding to the applied pressure was obtained using
the ANSYS Workbench 2024R1 software. Figure 6 shows the plot of deflection versus
pressure for the dielectric materials. Among the three selected materials, PDMS offered the
maximum deflection for the selected range of pressure.
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Table 3. Dielectric constants and bulk conductivity of the selected dielectric materials.

S. No. Dielectric Material Dielectric Constant Bulk Conductivity (S/m)

1 PDMS 2.69 2.5 × 10−14

2 Polyurethane Rubber 3.0 1 × 10−11

3 Silicone Rubber 3.70 3.47 × 10−4
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The main goal of the parallel-plate pressure sensor design was to develop a variable
capacitor with applied pressure. The capacitance values were evaluated using the ANSYS
EM18.0 Electronics software. The pressure was uniformly applied to the top electrode of
the sensor’s surface, and the deflection was observed. Table 4 presents the theoretical and
simulated capacitance values corresponding to the applied pressure for the solid square-
shaped and solid circular electrode sensors with a PDMS sensing layer. It can be clearly
seen from the table that the capacitance values obtained in the simulation study confirm
the theoretical values obtained using Equation (2).
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Table 4. Capacitance values (theoretical and simulated) for solid circular and square-shaped electrodes
with PDMS sensing layer.

Sensor Type
Applied
Pressure
(mmHg)

Theoretical
Capacitance Value

(pF)

Simulated
Capacitance
Value (pF)

Mean Deviation
in Capacitance,

∆C (pF)

Solid
Circular-Shaped
Electrode

0 0.93 0.95 0.02
60 1.02 1.04 0.02

200 1.30 1.32 0.02

Solid
Square-Shaped
Electrode

0 0.29 0.33 0.04
60 0.32 0.36 0.04

200 0.40 0.44 0.04

The corresponding capacitance value of the sensor in response to the deflection due
to the applied pressure was obtained. The capacitance value without any deflection,
also known as the base capacitance, was 0.95063 pF, 1.0585 pF, and 1.4055 pF for PDMS,
polyurethane rubber, and silicone rubber, respectively. Since PDMS exhibited the max-
imum deflection, the capacitance at the maximum deflection was 1.324 pF, whereas for
polyurethane rubber and silicone rubber, the values were 1.0656 pF and 1.4386 pF, re-
spectively. While silicone rubber had the highest dielectric constant, resulting in a higher
absolute capacitance, PDMS demonstrated the steepest capacitance–pressure response, as
observed in Figure 7. This indicates that PDMS offers the highest sensitivity, making it
the most suitable material for pressure-sensing applications. Figure 7 shows the plot of
capacitance versus pressure for the sensor. It can be observed that the capacitance versus
pressure curve varied linearly for PDMS as the dielectric material, whereas for the other
two dielectric materials, the variation was close to linear. The graph shows the linear fitted
curves created using the OriginPro 2024 software (OriginLab Corporation, Northampton,
MA, USA). Origin Pro software is a data analysis and graphing tool widely used in scientific
research to visualize, analyze, and interpret experimental data.
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The sensitivity values of the sensor for all three selected materials were evaluated as
the slope of the capacitance-versus-pressure curve for the selected range of pressure. The
sensitivity value was calculated in fF/mmHg using Equation (3).

Sensitivity =
Cmax − Cmin
Pmax − Pmin

(3)

where Cmax and Cmin are the capacitance values in response to the Pmax and Pmin,
respectively. The range of pressure considered for the analysis was 60 mmHg (Pmin) to
200 mmHg (Pmax), with a step change of 10 mmHg. The solid circular electrode sensor with
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PDMS as the dielectric material offered a maximum sensitivity of 2.01 fF/mmHg, whereas the
sensitivity values for polyurethane rubber and silicone rubber were 3.8785 × 10−2 fF/mmHg
and 1.85429 × 10−1 fF/mmHg, respectively.

The sensitivity observed for the solid circular structure can be improved if the deflec-
tion with pressure increases for each step of the rise in pressure.

The slots were cut in the selected dielectric material in the form of crescents to enhance
the deflection and thus the capacitance value to enhance the sensitivity. Figure 8a shows
the crescents cut at a radial distance of 0.35 mm for an angular range of 120◦ (60◦ to the left
and right from the vertical plane of the sensor), with a gap of 0.05 mm. Figure 8b shows the
color intensity-based deflection corresponding to the applied pressure.
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Figure 8. (a) Circular electrode with two crescents; (b) total deflection in the circular plate sensor with
two crescents for a pressure range of 60 mmHg to 200 mmHg, with PDMS as the dielectric material.

The maximum deflection for PDMS as the dielectric material was 1.35 × 10−2 mm,
whereas the maximum deflections observed were 4.56 × 10−4 mm and 1.8219 × 10−3 mm for
polyurethane rubber and silicone rubber, respectively. With two crescents, the maximum
deflection was also observed for PDMS in comparison to the other two dielectric materials.
Figure 9 shows the plot of deflection (mm) versus pressure (mmHg) for the sensor structure
(circular with two crescents).
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The corresponding maximum capacitance value with the maximum deflection due to
the applied pressure for PDMS, polyurethane rubber, and silicone rubber was 2.7334 pF,
1.0127 pF, and 0.3987 pF, respectively. The base value (without deflection) of the capacitive
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sensor was 0.89248 pF, 0.98935 pF, and 0.36336 pF, respectively. Figure 10 shows the
plot of overall capacitance variation with applied pressure for the structure (circular with
two crescents).
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Figure 10. Response of circular capacitive pressure sensor (with two crescents).

The sensitivity of the modified sensor was calculated using Equation (5). The
PDMS-based circular sensor with two crescents offered a maximum sensitivity of
10.68 fF/mmHg, whereas the sensitivity values for polyurethane rubber and silicone rubber
were 1.19443 × 10−1 fF/mmHg and 1.7994 × 10−1 fF/mmHg, respectively. Figure 11a
shows the increase in the number of crescents to four in a circular pattern, maintaining the
same radial distance and gaps, with a 45◦ angular separation, to enhance deflection and
sensitivity. Figure 11b shows an animation of the color-coded deflection corresponding to
the applied pressure.
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Figure 11. (a) Circular electrode with four crescents; (b) total deflection in circular plate sensor with
four crescents for a pressure range of 60 mmHg to 200 mmHg, with PDMS as the dielectric material.

Figure 12 shows the deflection versus pressure plot for the selected dielectric material
in a similar manner. The maximum deflection values for PDMS, polyurethane, and silicone
rubber were observed to be 1.5013 × 10−2 mm, 4.76 × 10−4 mm, and 1.89 × 10−3 mm,
respectively. PDMS is spongier in comparison to the other two dielectric materials, which
resulted in an increase in the maximum deflection. It was observed that for a dielectric
material with a thickness of 20 µm, the cutting of four crescents did not result in a significant
increase in the deflection compared to the structure with two crescents.
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Figure 12. Deflection versus pressure for solid circular-shaped structure with four crescents.

The capacitance base values of this structure (without any deflection) were 0.36423 pF,
1.0072 pF, and 1.2321 pF for PDMS, polyurethane rubber, and silicone rubber, respectively.
The base value of the capacitors increased in comparison with the previous structure for
polyurethane rubber and silicone rubber because the dielectric constants were higher in
comparison to that of PDMS. The capacitance values corresponding to the maximum
deflection were 1.4302 pF, 1.0314 pF, and 1.3582 pF, respectively. Figure 13 shows the plot
of capacitance variation corresponding to the change in pressure.

Sensors 2025, 25, x FOR PEER REVIEW 16 of 24 
 

 

40 60 80 100 120 140 160 180 200 220
0.4

0.6

0.8

1.0

1.2

1.4

1.6
 PDMS
 Polyurethane Rubber
 Silicone Rubber

C
ap

ac
ita

nc
e 

(p
F)

Pressure (mmHg)  

Figure 13. Response of circular capacitive pressure sensor (with four crescents). 

The sensitivity values of the four-crescent sensors were 6.23 fF/mmHg, 1.24429 × 10−1 
fF/mmHg, and 6.4607 × 10−1 fF/mmHg, respectively. The overall sensitivity value for 
PDMS was decreased when increasing the number of crescents due to a reduction in the 
capacitance, whereas the sensitivity of the sensors with polyurethane rubber or silicone 
rubber increased because the change in the capacitance was higher (the dielectric constant 
of PDMS was lower than that of the other two materials). The sensor with more crescents 
was not favorable due to the loss of dielectric material and the reduction in the common 
area between the electrodes. 

One more structure with square-shaped electrodes was designed for capacitive pres-
sure sensing. The enhancement in the sensitivity of the sensor was explored for three die-
lectric materials, namely PDMS, polyurethane rubber, and silicone rubber, and slots were 
cut to increase the maximum deflection and thus the sensitivity. Firstly, the solid square-
shaped gold electrodes were deposited for the selected dielectric constants. Figure 14a 
shows the schematic diagram indicating the square electrode with an edge length of 0.5 
mm and a thickness of 0.02 mm, and Figure 14b shows an animation of the deflection with 
the PDMS dielectric under the applied pressure range of 60 mmHg to 200 mmHg. 

 
(a) (b) 

Figure 14. (a) Square electrode sensor; (b) total deflection in square plate sensor for a pressure range 
of 60 mmHg to 200 mmHg, with PDMS as the dielectric material. 

The square-shaped electrode was slotted with four I-shaped cuts or four L-shaped 
cuts to modify the structure and analysis of the sensitivity of the variable capacitor with 
the applied pressure. Figure 15a shows the slotted structure with four I-shaped cuts using 

Figure 13. Response of circular capacitive pressure sensor (with four crescents).

The sensitivity values of the four-crescent sensors were 6.23 fF/mmHg,
1.24429 × 10−1 fF/mmHg, and 6.4607 × 10−1 fF/mmHg, respectively. The overall sen-
sitivity value for PDMS was decreased when increasing the number of crescents due to
a reduction in the capacitance, whereas the sensitivity of the sensors with polyurethane
rubber or silicone rubber increased because the change in the capacitance was higher
(the dielectric constant of PDMS was lower than that of the other two materials). The
sensor with more crescents was not favorable due to the loss of dielectric material and the
reduction in the common area between the electrodes.

One more structure with square-shaped electrodes was designed for capacitive
pressure sensing. The enhancement in the sensitivity of the sensor was explored for
three dielectric materials, namely PDMS, polyurethane rubber, and silicone rubber, and
slots were cut to increase the maximum deflection and thus the sensitivity. Firstly, the
solid square-shaped gold electrodes were deposited for the selected dielectric constants.
Figure 14a shows the schematic diagram indicating the square electrode with an edge length



Sensors 2025, 25, 2423 16 of 23

of 0.5 mm and a thickness of 0.02 mm, and Figure 14b shows an animation of the deflection
with the PDMS dielectric under the applied pressure range of 60 mmHg to 200 mmHg.
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Figure 14. (a) Square electrode sensor; (b) total deflection in square plate sensor for a pressure range
of 60 mmHg to 200 mmHg, with PDMS as the dielectric material.

The square-shaped electrode was slotted with four I-shaped cuts or four L-shaped
cuts to modify the structure and analysis of the sensitivity of the variable capacitor with
the applied pressure. Figure 15a shows the slotted structure with four I-shaped cuts using
PDMS as the dielectric material, and Figure 15b shows the color-coded animation of the
deflection under the applied pressure range for the same structure. Further, Figure 15c
presents the slotted structure with four L-shaped cuts using PDMS as the dielectric material,
and Figure 15d shows the color-coded animation of the deflection under the applied
pressure range for that structure.
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Figure 15. (a) Square dielectric material with four I-slots; (b) total deflection in the square plate sensor
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(c) square dielectric material with four L-slots; (d) total deflection in the square plate sensor with four
L-slots for a pressure range of 60 mmHg to 200 mmHg, with PDMS as the dielectric material.
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Figure 16a shows the plot of deflection for all three-square structures (solid and slotted)
against the applied pressure using PDMS as the dielectric material, and Figure 16b,c show
the corresponding plots using polyurethane rubber and silicone rubber, respectively. The
PDMS-based sensor showed an increase in the maximum deflection for small slots (four
I-shaped slots); however, the maximum deflection decreased when L-shaped slots were cut
due to loss of dielectric material.
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Polyurethane 
Rubber -- -- 1.3000 × 10−4 1.0585 1.0656 

Silicone Rubber -- -- 4.6210 × 10−4 1.4055 1.4386 
PDMS 0.7330 0.05 1.35 × 10−2 0.89248 2.7334 

Figure 16. (a) Deflection versus pressure for the solid square-shaped structure; (b) deflection versus
pressure for the solid square-shaped structure with four I-shaped slots; (c) deflection versus pressure
for the solid square-shaped structure with four L-shaped slots.

Table 5 presents the parametric values, including the maximum deflection, base
capacitance, and capacitance value due to the maximum deflection, for the designed
capacitive sensors.

The capacitance versus pressure was also plotted in a similar fashion as for the circular
structures. Figure 17a shows the plot for the solid square-shaped structure, and Figure 17b,c
show the plots for the structures with four I-shaped cuts and four L-shaped cuts, respec-
tively. It can be seen from Table 5 that despite the maximum deflection being lower in the
case of silicone rubber, the corresponding capacitance value was higher than those of the
other two dielectric materials because the dielectric constant of silicone rubber is greater.
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Table 5. Parametric values of the proposed sensor structures for selected dielectric materials.

Plate
Type Slot Type Plate

Material
Slot Inner
Arc/Length
(mm)

Slot Width
(mm)

Deflection
Maximum (mm)

Capacitance
Without
Deflection
(pF)

Capacitance
With
Maximum
Deflection
(pF)

Circular

No slots

PDMS -- -- 5.648 × 10−3 0.95063 1.324

Polyurethane
Rubber -- -- 1.3000 × 10−4 1.0585 1.0656

Silicone
Rubber -- -- 4.6210 × 10−4 1.4055 1.4386

Two
Crescents

PDMS 0.7330 0.05 1.35 × 10−2 0.89248 2.7334

Polyurethane
Rubber 0.7330 0.05 4.56 × 10−4 0.98935 1.0127

Silicone
Rubber 0.7330 0.05 1.8219 × 10−3 0.36336 0.3987

Four
Crescents

PDMS 0.2749 0.05 1.5013 × 10−2 0.36423 1.4302

Polyurethane
Rubber 0.2749 0.05 4.76 × 10−4 1.0072 1.0314

Silicone
Rubber 0.2749 0.05 1.89 × 10−3 1.2321 1.3582

Square

No slots

PDMS -- -- 5.29 × 10−3 0.33203 0.45144

Polyurethane
Rubber -- -- 1.32 × 10−4 0.33203 0.33424

Silicone
Rubber -- -- 4.43 × 10−4 0.33203 0.33955

Four
I-Shaped

PDMS 0.25 0.0125 5.69 × 10−3 0.27902 0.39023

Polyurethane
Rubber 0.25 0.0125 1.58 × 10−4 0.3099 0.31236

Silicone
Rubber 0.25 0.0125 5.2796 × 10−4 0.40951 0.42061

Four
L-Shaped

PDMS 0.225 0.025 5.0606 × 10−3 0.11068 0.14817

Polyurethane
Rubber 0.225 0.025 1.2942 × 10−4 0.31211 0.31414

Silicone
Rubber 0.225 0.025 4.3597 × 10−4 0.38261 0.39114
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The sensitivities of the designed square-shaped electrodes were calculated from the
plots. It was evident that the sensitivity values obtained for the square-shaped electrodes
with PDMS were higher than for the other two cases. Table 6 presents the sensitivity values
of all the proposed sensor structures.

Table 6. Sensitivity values of the designed sensors.

Sensor Slots Dielectric Material Sensitivity (fF/mmHg)

Circular capacitive
sensor

0

PDMS 2.01

Polyurethane rubber 3.87857 × 10−2

Silicone rubber 1.85429 × 10−1

2

PDMS 10.68

Polyurethane rubber 1.19443 × 10−1

Silicone rubber 1.79943 × 10−1

4

PDMS 6.23

Polyurethane rubber 1.24429 × 10−1

Silicone rubber 6.46071 × 10−1

Square capacitive
sensor

0

PDMS 6.46925 × 10−1

Polyurethane rubber 1.10536 × 10−2

Silicone rubber 3.78679 × 10−2

4

PDMS 6.12496 × 10−1

Polyurethane rubber 1.235 × 10−2

Silicone rubber 5.60036 × 10−2

8

PDMS 2.02011 × 10−1

Polyurethane rubber 1.01679 × 10−2

Silicone rubber 4.29036 × 10−2

Two different structures were explored to analyze the sensitivity towards the applied
pressure for the continuous monitoring of the restenosis process. The designs were mod-
ified, and the dimensions were optimized with slots cut into the structures. This study
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represents an attempt to optimize the sensor structure for a specific application with the
maximum possible sensitivity using three biocompatible materials (PDMS, polyurethane
rubber, and silicone rubber). It was concluded that the pressure sensor consisting of circular-
shaped electrodes with two crescents offered the maximum sensitivity (10.68 fF/mmHg)
for the pressure range of 60 mmHg to 200 mmHg.

3.3. Shift in Resonant Frequency

The changes in the capacitance values of the proposed sensors with the PDMS material
for the pressure range of 60 mmHg to 200 mmHg are plotted in the previous section.
Figure 18a shows the plot of the corresponding resonant frequency, calculated using
Equation (1), for all the designed sensors with PDMS as the dielectric material over the
selected frequency range. The maximum sensitivity was achieved for circular-shaped
electrodes with two crescents designed using PDMS, and the change in the resonant
frequency decreased linearly with an increase in the arterial blood pressure. Figure 18b
shows the correlation between the shift in the resonant frequency and the applied pressure,
obtained using a linear fit equation, with parameters such as Pearson’s coefficient and
R-squared values being very close to unity. The response of this sensor was highly linear.
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No. 

Coil 
Shape Inductance 

Material of 
Sensor 

Sensor 
Shape 

Dimension of 
Sensor Frequency Sensitivity 

Pressure 
Range 

[24] 
Stent 

Length: 7.2 
mm 

180 nH 

Copper, 
silicon 
wafer, 

glycerol 

Circular 
Hydraulic 

chamber: 400 
× 100 × 12 µm3 

100 KHz–3 
GHz 

0.052 
fF/mmHg 

0–300 
mmHg 

Figure 18. (a) Resonant frequency vs. pressure for designed sensors; (b) tabular representation of
linear fit parameters for the circular electrode with two crescents (PDMS).

Table 7 presents a comparative analysis of previous research and the proposed ca-
pacitive pressure sensor system for in-stent arterial blood pressure measurements. The
table highlights key parameters such as the sensor shape, material composition, inductance,
frequency range, and sensitivity, showcasing the advancements in the proposed design.
The proposed circular sensor structure offers higher sensitivity, optimized dimensions, and
improved compatibility for in-stent applications.
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Table 7. Comparison of present work with previous studies.

Reference
No. Coil Shape Inductance Material of

Sensor
Sensor
Shape Dimension of Sensor Frequency Sensitivity Pressure

Range

[24]
Stent

Length:
7.2 mm

180 nH
Copper,

silicon wafer,
glycerol

Circular Hydraulic chamber:
400 × 100 × 12 µm3 100 KHz–3 GHz 0.052 fF/mmHg 0–300 mmHg

[6]
Stent

Length:
30 mm

350 nH

Gold,
polyimide,

silicon
nitride

Ellipse 750 × 424 × 200 µm3 26.78–27.09 MHz 7.73 ff/mmHg 0–240 mmHg

[6]
Stent

Length:
30 mm

350 nH

Gold,
polyimide,

silicon
nitride

Circular 564 × 564 × 200 µm3 26.78–27.09 MHz 9.94 ff/mmHg 0–240 mmHg

[21] Planar 1.2 µH Glass, gold,
silicon Rectangular 2.6 × 1.6 mm2 95–103 MHz 120 KHz/mmHg 0–50 mmHg

[22]
Stent

Length:
20 mm

530 nH
Stainless

steel,
parylene C

Square 1.5 × 1.5 × 0.2 mm3 50 MHz 146 ppm/mmHg 0–250 mmHg

Present
Work

Stent
Length:
30 mm

927 nH Gold, PDMS Circular 1000 × 1000 × 20 µm3 100 KHz–110 MHz 10.68 ff/mmHg 60–200 mmHg

4. Conclusions
This study demonstrated the design and optimization of parallel-plate capacitive

pressure sensors for monitoring of in-stent restenosis. Two electrode configurations, circular
and square, were designed using three different dielectric materials: PDMS, polyurethane
rubber, and silicone rubber. The objective was to identify an optimal sensor structure and
material combination that would provide maximum sensitivity for the early detection
of restenosis. A stent (3 mm in diameter, 30 mm in length) was procured, and electrical
characterization was conducted using an impedance analyzer. A total of 18 sensor designs
were simulated, all featuring gold-plated electrodes with a thickness of 20 µm, and the
effects of slots cut into the electrode structure were analyzed in relation to the sensor’s
sensitivity. The results revealed that the circular electrode design with a diameter of 1 mm,
a thickness of 20 µm, and two crescent-shaped slots at a radial distance of 0.35 mm and
an angle of 120◦ exhibited the highest sensitivity. Among the dielectric materials tested,
PDMS was found to be the most suitable material for the sensor design, particularly within
the applied pressure range of 60 mmHg to 200 mmHg. The resonant frequency shift over
the selected pressure range demonstrated a highly linear response. In conclusion, the
sensor design derived from this study proved to be highly sensitive, making it a promising
contender for futuristic use in arterial blood pressure measurements using passive wireless
pressure-sensing techniques.
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