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Abstract

Hyperscanning approaches represent a shift from single- to two-person neuroscience, enabling a more profound understanding

of the neural mechanisms underlying interpersonal synchronization. In this context, fNIRS has emerged as a valuable tool for

measuring brain activity in a natural, unconstrained environment. While interpersonal synchrony using fNIRS hyperscanning

has been well studied using statistical association analysis, establishing causal relationships that elucidate the direction of

influence remains challenging. This study aimed to investigate the feasibility of testing the direction of influence in dyadic

interactions. Since the ground truth of such direction is not available in a natural setting, we validated our approach in an

experimental setup in which we controlled the direction of influence between two subjects by assigning them the roles of ’Model’

and ’Imitator’ of specified motor tasks. A total of 22 participants, hence 11 dyads, completed the task in a within-subject

design. We adapted concepts from spectral causal-effect decomposition theories to formulate a new measure of the direction

and intensity of influence. The results of this study demonstrate that the direction of influence in the fNIRs data of motor tasks

can be detected with an Accuracy in the range of 69-88%. Furthermore, the proposed spectral causality measure was shown

to significantly reduce spurious causal relationships due to the confounding effects of physiological processes and measurement

artifacts compared to time-domain causal analysis.
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Abstract

Hyperscanning approaches represent a shift from single- to two-person neu-
roscience, enabling a more profound understanding of the neural mecha-
nisms underlying interpersonal synchronization. In this context, fNIRS has
emerged as a valuable tool for measuring brain activity in a natural, uncon-
strained environment. While interpersonal synchrony using fNIRS hyper-
scanning has been well studied using statistical association analysis, estab-
lishing causal relationships that elucidate the direction of influence remains
challenging. This study aimed to investigate the feasibility of testing the
direction of influence in dyadic interactions. Since the ground truth of such
direction is not available in a natural setting, we validated our approach in an
experimental setup in which we controlled the direction of influence between
two subjects by assigning them the roles of ’Model’ and ’Imitator’ of specified
motor tasks. A total of 22 participants, hence 11 dyads, completed the task
in a within-subject design. We adapted concepts from spectral causal-effect
decomposition theories to formulate a new measure of the direction and in-
tensity of influence. The results of this study demonstrate that the direction
of influence in the fNIRs data of motor tasks can be detected with an Accu-
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racy in the range of 69− 88%. Furthermore, the proposed spectral causality
measure was shown to significantly reduce spurious causal relationships due
to the confounding effects of physiological processes and measurement arti-
facts compared to time-domain causal analysis.

Keywords: fNIRS, hyperscanning, interpersonal synchronisation, social
interaction; imaging; spectral causality, mutual information decomposition

1. Introduction1

Hyperscanning involves the simultaneous recording of brain activity from2

two or more individuals to determine the temporal relation between both3

brains (synchronization). Hyperscanning approaches thereby mark a shift4

from single to two-person neuroscience, allowing a much deeper understand-5

ing of the neural mechanisms of interpersonal social interactions [1]. Such6

research revealed synchronized patterns of brain signals in interacting minds,7

especially in brain regions involved in social cognition, emotion, and motor8

control (for an overview, see [2]).9

Different hyperscanning measurements such as EEG, fMRI, and func-10

tional near-infrared spectroscopy (fNIRS) have been used to investigate in-11

terpersonal synchronization during verbal, semi-verbal, and nonverbal inter-12

actions [3]. Compared to fMRI and EEG, fNIRS offers significant advantages13

for monitoring neural activity during natural, unconstrained, real-life inter-14

actions. Its high temporal resolution of oxygenation change and its motion15

tolerance make it particularly valuable for capturing dynamic neural activity16

in naturalistic settings [4].17

While interpersonal synchrony using fNIRS hyperscanning has been well18

studied using statistical association analysis, e.g., temporal correlation [5]19

or wavelet coherence [6], establishing causal relationships that elucidate the20

direction of influence in hyperscanning remains challenging (for an overview,21

see [3]). This study aimed to go one step beyond the direction-blind statistical22

association and investigate the feasibility of testing the direction of influence23

in dyadic interactions using causal discovery methods.24

Causal discovery in multivariate time series aims to elucidate the cause-25

and-effect relationships between variables that evolve over time. The most26

known classical method is Granger causality (GC) [7]. GC analyzes time27

series data to determine if one variable can predict future values of another28

target variable better than using past values of the target variable alone.29
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Recent research has increasingly focused on understanding the synergistic ef-30

fects of groups of variables acting as a collective subsystem on other groups.31

This focus is particularly critical in complex systems characterized by in-32

tricate interdependencies, such as climate-ecosystem interactions and neural33

activity across distinct brain regions of the same subject [8]. Notable group34

causality methods are the Trace method [9], the 2GVecCI [10], Vanila-PC35

[11] and the Canonical-VAR (MC-VAR) [12]. While these methods operate36

in the time domain, Faes et al. [8] built on the spectral causality approach37

of Geweke [13] and proposed a framework based on mutual information rate38

(MIR) decomposition to assess the interactions among groups of processes,39

both within specific frequency bands of interest and in the time domain.40

fNIRS data is often influenced by various sources of noise steaming from41

measurements and physiological processes, e.g., breathing, heart rate, Mayer42

waves, etc., [14]. In hyperscanning, these processes typically occur at similar43

frequency ranges in both participants and can confound the results, leading44

to spurious associations between participants when using time-domain sta-45

tistical or causal analysis. Furthermore, the strength of coupling may vary46

across different frequency bands. To address these challenges, in our study,47

we adapted the framework of Faes et al., [8] to our problem and then proposed48

a new measure for the direction and intensity of causal effect relationships49

in fNIRS data. Since the ground truth of the direction of interpersonal in-50

fluence is not available in a natural setting, we validated our approach in an51

experimental setup where we controlled the direction of influence between52

two subjects. We compared the results of different state-of-the-art group53

causality methods to the proposed spectral domain causal-effect measure54

and showed the feasibility of detecting the correct cause-effect direction in55

fNIRS time series data. To our knowledge, this paper is the first to provide56

a comprehensive analysis pipeline for identifying the direction of influence in57

fNIRS data.58

2. Materials and Methods59

2.1. Participants60

A total of 11 dyads, 22 participants, were recruited from the student61

population, with a mean age of 23.15 and standard deviation of 2.58. The62

sample was 21 females and one male. Inclusion criteria required participants63

to be at least 18 years old and report to be neurologically healthy. Partic-64

ipants received research participation credits as compensation. The study65
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was conducted following the Declaration of Helsinki and approved by the66

ethics review board of the Faculty of Social and Behavioral Sciences of the67

University of Jena (FSV 22/063).68

2.2. Experimental Design69

Participants were invited in dyads to perform a dyadic movement imita-70

tion task. In the beginning, each person was assigned to either the role of71

Model or Imitator. Both participants were seated opposite each other, so72

the Model faced a screen behind the Imitator, invisible to the Imitator. We73

presented two 20-second videos on the screen, one showing hand-tapping and74

the other foot-tapping. For hand tapping, the video showed a person’s hand75

with each finger (excluding the thumb) sequentially tapping on a surface at76

a rate of approximately 1.5 Hz. For the foot-tapping task, the video showed77

a barefoot tapping on the floor at the same rate. The Model’s task was to78

watch the screen and copy the movement with their right hand or foot. The79

Imitator’s task was to imitate the movement of the Model.80

Figure 1: The optodes layout used for fNIRS measurements (2D and 3D views). The brain
motor regions are M1 (Channels 12, 13, and 17), PMC (Channels 4, 5, 6, 8, and 16 ), and
PMC/M1 (Channels 10 and 15).

A fixation cross was displayed for 60 seconds before each video, serving81

as a baseline during which participants were asked not to move. Videos82

were presented in a pseudo-randomized order five times each, resulting in83

ten trials per Model-Imitator constellation. After a short break, the Model84
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and Imitator switched roles and repeated the experiment with a different85

stimulus order. The experiment and the video presentation were programmed86

and controlled using Presentation software (Version 23.0, Neurobehavioral87

Systems, Inc., Berkley, CA).88

2.3. fNIRS Data Acquisition89

Each participant’s cortical hemodynamic activity was recorded using a90

continuous wave fNIRS system (NIRSport2, NIRx, Germany) with a sam-91

pling rate of 10.17 Hz and 16 optodes per participant (eight emitters × eight92

detectors). Based on a finger- and foot-tapping study by Cockx et al. [15],93

the optodes were placed to cover the left and right primary motor cortex94

(M1) and premotor cortex (PMC) (Figure 1) with a distance of 3 cm to95

allow measurement of cerebral blood oxygenation at 2 to 3 cm depth. Addi-96

tionally, eight short-distance channels were placed at each emitter position97

for later offline short-channel correction of non-neuronal signals from long-98

channel data.99

2.4. fNIRS Data Preprocessing100

The preprocessing of the fNIRS time series involved the following three101

steps, which were performed using the fNIRSFilterPipeline function of the102

Homer2 toolbox [16].103

- Bandpass Filtering: A fifth-order Butterworth bandpass filter was ap-104

plied with a low cutoff frequency of 0.02 Hz and a high cutoff frequency105

of 0.15 Hz. The phase of the used filter is almost linear in the pass-106

band, i.e., all signal components undergo a similar delay, and thus, no107

influence on causal analysis is expected due to this filtering process.108

This filtering step removes physiological noise, such as respiratory fluc-109

tuations (≈ 0.25 Hz), cardiac oscillations (≈ 1 Hz) [3], and slow drifts110

in the baseline signal, while preserving neural activity in the typical111

frequency range of interest (≈ 0.029 Hz, depending on the stimulus112

presentation rate [3]).113

- Hemoglobin Concentration Estimation: Changes in oxy/deoxygenated114

hemoglobin (HbO/HbR) concentrations were estimated using the mod-115

ified Beer-Lambert law [17].116

- Normalization: The preprocessed HbO and HbR time series were nor-117

malized to have zero mean and unit standard deviation.118
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(a) Hand-Tapping

(b) Foot-Tapping

(c) Baseline

Figure 2: The average and 50% confidence interval of the normalized oxy-/de-oxygenated
hemoglobin time series (HbO/HbR) in red/blue color. The time series are averaged for
each channel over all dyads and task repetitions (total of 80 intervals) for (a) hand tapping,
(b) foot tapping, and (c) baseline tasks. Each subplot spans a 40-second interval (≈ 407
samples). The start and end of the motor task in motor task intervals are marked in
vertical lines. For baseline intervals, we show the 40 seconds (407 samples) starting 20
seconds after the end of the motor task.
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Data quality was assessed in the time domain using the qualityAssessment119

function within the Homer2 toolbox [16]. A supplementary wavelet-based120

visual quality control procedure [6] was implemented before the filtering pro-121

cess. Figure 5 in 6 shows examples of good and bad quality HbO signals.122

Eight of the eleven dyads exhibited good data quality and were included in123

the subsequent analysis.124

Figure 2 illustrates the preprocessed signals for hand tapping, foot tap-125

ping, and baseline intervals. We can see an apparent increase in HbO signal126

during motor tasks (Figure 2 (a) and (b)) compared to the baseline condi-127

tion (Figure 2 (c)) in the brain motor regions: M1 (Channels 12, 13, and 17),128

PMC (Channels 4, 5, 6, 8, and 16), and PMC/M1 (Channels 10 and 15).129

Residual periodic fluctuations, likely attributed to Mayer waves, are observ-130

able at ≈ 0.1 Hz (≈ two waves in 20 seconds). Some short-distant channels,131

such as channels 7 and 14, displayed motor task-related activations. Thus,132

employing these channels for noise reduction in the fNIRS time series could133

potentially lead to the inadvertent removal of genuine neural activity. Since134

our proposed causal intensity measure, detailed in the following section, relies135

on the difference in cross-spectral densities of the information flow between136

the two participants, we excluded short-distance channels from subsequent137

analyses.138

2.5. The Directionality of Neural Influence: A Spectral Causality Approach139

To identify the direction of influence between the two participants (Model140

and Imitator) within each dyad, we adapted the Spectral Decomposition of141

Mutual Information Rate framework (MIR) of [13, 8], hereafter referred to142

as Spectr-MIR. In the following, we first provide a brief overview of the143

Spectr-MIR method as adapted to our problem and subsequently propose144

our definition of the measure quantifying both the intensity and direction of145

the causal effect between the Model and the Imitator along with the used146

statistical significance test.147

2.5.1. Spectr-MIR Method148

Let X(tn) ∈ RL×2N be L × 2N matrix representing N time series of149

length L of a specific brain region for both the Model (M) and Imitator (I),150

respectively, where tn = n∆t is the time index in iteration n and ∆t = 1/fs151

with fs the sampling frequency. The matrix X(tn) can be represented as152

the concatenation of the HbO channels of the Model XM and Imitator XI153

as X(tn) = [XM(tn) XI(tn)]. The information shared by the two random154
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processes XM(tn) and XI(tn) per unit of time is defined as the mutual infor-155

mation rate (MIR) as follows [18]156

MIRXM ;XI
= lim

k→∞

1

k
MI (XM(tn−k:n−1);XI(tn−k:n−1)) , (1)

where MI(X1, X2) denotes the mutual information (MI) shared by the157

two variables X1 and X2 and defined as158

MI(X1;X2) =E
[
log

p(x1, x2)

p(x2)p(x1)

]
. (2)

where p(., .) and p(.) denote joint and marginal probabilities, and E is the159

statistical expectation operator. Using the relation between transfer entropy160

and mutual information, it is possible to decompose the MIR into three161

components, that is [8, 18]162

MIRXM ;XI
= TXM→XI

+ TXI→XM
+MIRXM .XI

. (3)

MIRXM .XI
represents the instantaneous information shared between XM and163

XI and TXi→Xj
is the entropy transfer from Xi to Xj.164

Following the methodology of [18, 8], we utilize a state-space modeling165

approach to compute all necessary MIR terms. Accordingly, we present the166

process X(tn) as a state space model, i.e.,167

S(tn+1) = AS(tn) +KW (tn), (4)

X(tn) = CS(tn) +W (tn).

S(tn) is the 2N × p state vector of the model, where p is the model168

order; A,C and K are the state-space model matrices, and W (tn) is a169

white Gaussian innovation noise vector of zero mean and Covariance ma-170

trix ΣW = E[WnW
T
n ]. Similar to X(tn), W (tn) also can be written as171

W (tn) = [WM(tn) WI(tn)].172

Taking the Fourier Transform (FT) of the state Equation 4 yields173

S(ω) = AS(ω)e−jω +KW (ω)e−jω, (5)

where S(ω) and W (ω) are respectively the Fourier transforms of S(tn)174

and W (tn) and ω is the normalized angular frequency. From Equation 5 we175

can derive the power spectral density of X(tn) as X(ω) = H(ω)W (ω), where176

H(ω) =
(
I2N×p +C[I2N×p −Ae−jω]−1Ke−jω

)
, (6)
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with I being the identity matrix. H(ω) represents the transfer function relat-177

ing the FT of the innovation process W (tn) to the FT of the process X(tn)178

and can be used together with the innovation covariance matrix to derive179

the power spectral density (PSD) matrix of the process X(tn) using spectral180

factorization.181

SX(ω) = H(ω)ΣWH∗(ω). (7)

The matrix SX(ω) can be then factorized to get the power spectral den-182

sities of XM and XI , SXM
(ω) and SXI

(ω) and the cross-spectral densities183

between XM and XI , SXMXI
(ω) and SXIXM

(ω). A logarithmic spectral mea-184

sure of the interdependence between XM and XI is defined by [13].185

fXI ;XM
(ω) = log

|SXI
(ω)||SXM

(ω)|
|SX(ω)|

, (8)

where fXI ;XM
(ω) is a measure of the total spectral coupling between XI and186

XM , which, in analogy to the time domain decomposition, can be factorized187

into three components.188

fXI ;XM
(ω) = fXI→XM

(ω) + fXM→XI
(ω) + fXI .XM

(ω), (9)

where fX(1)→X(2)
(ω) is a measure of the density of information transferred189

from process X(1) to process X(2), and fXI .XM
(ω) is the information shared190

between the two processes at angular frequency ω. These measures are de-191

fined as192

fXI .XM
(ω) = log

|HM(ω)ΣWM
H∗

M(ω)||HI(ω)ΣWI
H∗

I(ω)|
|SX(ω)|

, (10)

fXM→XI
(ω) = log

|SXI
(ω)|

|HM(ω)ΣWM
H∗

M(ω)|
, (11)

fXI→XM
(ω) = log

|SXM
(ω)|

|HI(ω)ΣWI
H∗

I(ω)|
. (12)

Here,H(·)(ω) describes the transfer fromW(·) toX(·) in the frequency domain193

and ΣW(·) = E[W(·),nW
T
(·),n].194

In our study, the full state space model, as defined in Equation 4, rep-195

resents only the channels of the two regions of interest in the Model and196

Imitator and not the channels of all regions in both participants. We justify197

our choice by arguing that we are only interested in the inter-dependencies198
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of a specific brain region in both Model and Imitator, regardless of the intra-199

dependency of other regions in the same person’s brain. Moreover, focusing200

on a specific brain region at a time can benefit from better model fitting due201

to lower dimensionality since the intervals of the motor task are only of size202

200 samples, which is insufficient to accurately fit a higher dimensionality203

model.204

2.5.2. Spectral Causal Intensity Measure205

Our objective was to measure the intensity and direction of the cause-206

effect relationship between a specific region in the brain of the Model and the207

same region of the Imitator. Model and Imitator are, in principle, two inde-208

pendent entities. In our settings, any bidirectional causality and/or detected209

cause-effect during baseline intervals presumably results from some unob-210

served factor influencing both participants, such as a physiological process211

occurring at the same frequency range, task repetition frequency, or common212

noise occurring during signal measurement and acting as a confounder. To213

eliminate, as much as possible, any causality due to confounders, we propose214

to measure the causal effect of the Model on the Imitator in the frequency215

domain at frequency ω as216

CXM ,XI
(ω) = fXM→XI

(ω)− fXI→XM
(ω) (13)

2.5.3. Statistical Significance of Spectr-MIR217

To assess the statistical significance of the causal relationships identi-218

fied, we use a frequency domain surrogate data method [19]. This approach219

preserves the amplitude spectrum of the original HbO time series while ran-220

domising the phase information, effectively breaking the temporal depen-221

dencies within the data. The following steps are applied to the HbO time222

series: 1. Compute the Fourier transform of the original HbO time series. 2.223

Replace the original phase of each Fourier coefficient with a random phase224

drawn from a uniform distribution between 0 and 2π. 3. Perform the inverse225

Fourier transform to produce a surrogate HbO time series. 4. Apply the226

same causal inference method described above to the generated surrogate227

HbO time series. This procedure is repeated several times to produce an en-228

semble of surrogate time series. The spectral causality value of the HbO time229

series data is considered significant at a specific frequency only if it exceeds230

the spectral causality of the surrogate data at this frequency.231
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2.6. The Directionality of Neural Influence: Time Domain Causal Analysis232

2.6.1. Spectr-MIR233

The time domain causal intensity and direction for the Spectr-MIR method234

can be obtained by the integration of CXM ,XI
(ω) over a specific band of fre-235

quencies from ω1 to ω2236

CXM→XI
=

1

4π

∫ ω2

ω1

CXM ,XI
(ω)dω (14)

We define the intensity of the causal effect as the absolute value of CXM→XI
,237

and the direction of the causal effect based on the sign of CXM→XI
. Specifi-238

cally, for CXM ,XI
> 0 the direction of influence is from model XM to Imitator239

XI . Otherwise, if CXM ,XI
< 0 then the direction of influence is from Imita-240

tor XI to Model XM . For CXM ,XI
= 0, we assume there is no causal effect241

between The Model XM and Imitator XI . This definition supports the elim-242

ination of spurious causal influence between the Model and the Imitator due243

to noise and physiological processes that the filtering step of preprocessing244

could not eliminate.245

2.6.2. Baseline Time Domain Group Causality Methods246

To assess the performance of the proposed time domain causal direction247

estimation using the Spectr-MIR method, we compare it with the following248

four state-of-the-art time domain group causality methods.249

- Vanilla-PC Method [11]: A framework for inferring causal directions250

between groups of variables by applying a series of conditional inde-251

pendence tests.252

- Trace method [9]: This method infers whether linear relations between253

two high-dimensional variables X and Y are due to a causal influence254

from X to Y or from Y to X.255

- 2GVecCI [10]: A non-parametric approach for inferring the causal re-256

lationship between two vector-valued random variables from observa-257

tional data based on a series of conditional independence tests.258

- Canonical Granger Causality method (MC-VAR) [12]: This method259

combines ideas from canonical correlation and Granger causality anal-260

ysis to yield a measure that reflects directed causality between two261

regions of interest using optimized linear combinations of signals from262

each region of interest to enable accurate causality measurements.263
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2.6.3. Evaluation Metrics264

To validate the performance of time domain group causal analysis meth-265

ods, we calculated the following metrics: Accuracy, false positive rate (FPR),266

true positive rate (TPR), and F-Score. TPR presents the ratio of intervals267

of a specific motor task of all dyads and task repetitions where the causality268

direction is correctly detected from Model to Imitator. Meanwhile, FPR is269

the ratio of intervals for a specific motor task of all dyads and task repeti-270

tions where the causality direction is falsely detected from the Imitator to271

the Model. Accuracy is the ratio of intervals where the causal link from the272

Model to the Imitator in motor tasks and the absence of causal link in the273

baseline intervals are correctly predicted. The F-score focuses more on the274

correctly detected links in motor task intervals. Formally, these metrics are275

defined as follows.276

Accuracy =
TP+TN

TP+FP + TN+FN
(15)

FPR =
FP

FP + TN
(16)

TPR =
TP

FP + TN
(17)

F-score =
TP

TP + 0.5(FP + FN)
(18)

Here, TP is the number of trials where the correct direction from Model to277

Imitator is detected; TN is the number of trials where no causal link from278

Model to Imitator or from Imitator to Model is correctly detected in baseline279

intervals. FP is the number of baseline intervals where a causal link is falsely280

detected; FN is the number of motor task intervals where no causal link is281

detected in either direction. Accuracy is our primary metric for evaluation,282

but other metrics help better understand the methods’ overall performance.283

3. Results284

3.1. Spectral Causal Analysis Results285

To evaluate the performance of the Spectr-MIR method in the frequency286

domain, we applied the method for each motor task and for each of the287

brain motor regions of interest, namely M1 (Channels 12, 13, and 17), PMC288

(Channels 4, 5, 6, 8, and 16), and PMC/M1 (Channels 10 and 15) separately.289
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As we noted a delay in the activation of HbO in response to the motor task,290

we chose to work with an interval length of 224 samples, which is equal to the291

samples of task interval (20seconds × 10.17Hz ≈ 204 samples) and a slight292

shift of 10 samples (one-second of data) before and after the start and end of293

the motor task respectively. The spectral causality components (Equation 9)294

are calculated for each interval and each dyad and then averaged over all295

dyads and the ten repetitions of the same motor task.296

In all our experiments, we used the oir mir function of the Matlab toolbox297

of Faes et al., [8] to calculate the different components of spectral causality298

with adaptation to our definition of the state-space model as detailed in299

Section 2.5.1. Experimental results for the spectral group causality analysis300

using the Spectr-MIR method and for different brain regions are shown in301

Figure 3. These results indicate that the average spectral causality from302

Model to Imitator is higher than from Imitator to Model in hand-tapping303

and foot-tapping in almost all brain regions of interest. However, in baseline304

intervals of all brain regions, we see almost equal spectral causality in both305

directions. The statistically significant spectral causality in both directions306

during baseline intervals can be attributed to the confounding effect of the307

task repetition frequency as well as the confounding effect of measurement308

and physiological processes. The causal intensity at a specific frequency can309

be measured as defined by Equation 13 or directly from the difference between310

the green and orange lines.311

Region-wise, we can notice in Figure 3 a higher causal intensity from312

Model to Imitator in motor task intervals in M1 and PMC/M1 regions com-313

pared to PMC. The hand-tapping intervals have a higher average causal314

intensity in the PMC/M1 region, while the causal intensity due to the foot-315

tapping task is higher in the M1 region. This difference in causal intensity316

between regions could be because the PMC/M1 covers more lateral parts,317

M1 covers more central parts, and the hand region is better represented in318

the lateral areas than the foot region [20].319

3.2. Time-Domain Causal Analysis Results320

In this section, we compare the Accuracy of estimating the direction of321

influence using the time domain Spectr-MIR (Section 2.6.1) with the time-322

domain group causality baseline methods described in Section 2.6.2: Trace323

methods [9], Vanilla PC [11], MC-VAR [12] and 2GVecCI [10].324

The time domain causal intensity and direction for the Spectr-MIR using325

the integral of Equation 14 is calculated to include only statistically signifi-326
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cant values in the frequency range 0.02-0.15 Hz. The statistical significance327

for each dyad was estimated using the frequency surrogate data method de-328

scribed in Section 2.5.3 averaged over 10 surrogates.329

Results are shown in Figure 4 for the brain regions PMC, M1, and330

PMC/M1. As a performance measure, we show the Accuracy and the false331

positive rate (FPR) in Figure 4, while the True Positive Rate (TPR) and332

F-score are shown in Figure Figure 6 in section 6.333

For the foot tapping task, the best result of Spectr-MIR is from the M1334

region (Accuracy= 88%, FPR = 0), and the worst is from the PMC region335

(Accuracy= 69%, FPR=0.08). On the other hand, for the hand tapping336

task, the best results are from the PMC/M1 region (Accuracy= 82%, FPR337

= 0), and the worst is from the M1 regions (Accuracy= 63%, FPR = 0.02).338

These ROI-wise results are consistent with similar differences in causal in-339

tensity results in PMC/M1 and M1 regions, as discussed in Section 3.1. For340

baseline intervals, the absence of causality is best detected in the M1 region341

(Accuracy= 88%, FPR=0.06) and worst in the PMC/M1 region (Accuracy=342

75%, FPR = 0.12).343

On average, Accuracy is higher for the foot-tapping task than the hand-344

tapping task. The higher Accuracy for foot tapping is probably due to a345

longer delay in HbO activation between the Model and the Imitator. As346

noted earlier, Figure 2 shows that the reaction time is longer for the foot347

than for the hand. This longer delay made it easier for causality methods to348

detect who leads (the cause) and who follows (the effect).349

In almost all brain regions of interest, Spectr-MIR has higher accuracy350

and lower FPR than all other methods, followed by the Vanilla-PC method.351

The MC-VAR and Trace methods suffer from high FPR. The low FPR of the352

proposed causal intensity measure, based on the subtraction of the Spectr-353

MIR spectral causality fXM→XI
(ω) from fXI→XM

(ω), allowed the removal of354

spurious causal effects that could be attributed to measurement artifact or355

physiological processes.356
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(a) PMC

(b) M1

(c) PMC/M1

Figure 3: The average and 50% confidence interval of the spectral causality of the normal-
ized HbO time series from Model to Imitator (green plots) and from Imitator to Model
(orange plots). The average is calculated for each type of event of all dyads for regions: (a)
Premotor cortex (PMC), (b) Primary motor cortex (M1), and (c) PMC/M1. The statis-
tical significance is shown in the dotted black line, which is the average spectral causality
of the frequency domain surrogate data. Only spectral causality values higher than this
line are considered statistically significant.
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(b) M1
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(c) PMC/M1

Figure 4: Results of the time domain cause-effect analysis of the normalized HbO time
series using the Spectr-MIR method in comparison with four baseline methods: Vanilla-
PC [11], 2GVecCI [10], Trace [9], and MC-VAR [12]. The left column shows the Accuracy
(higher is better) for the three different regions: (a) premotor cortex (PMC), (b) primary
motor cortex (M1), and (c) PMC/M1. The right column shows the false positive rate
(FPR) for the same methods and regions (lower is better).

3.3. Discussion357

Both spectral and time domains causal analysis showed that causality358

can be accurately derived from fNIRs hyperscanning of motor tasks. Our359

causality measure achieved 69 − 88% Accuracy in detecting the causal in-360

fluence from Model to Imitator. Moreover, the proposed causality measure361

significantly reduced the false positive rate compared to time domain base-362

line causality methods (Figure 4). This reduction indicates that the proposed363
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measure enabled the removal of spurious causal effects that might result from364

task repetition, measurement, or physiological processes. The feasibility of365

detecting causality in fNIRS was not only significantly above chance but366

also significantly higher than the Accuracy of four other tested time domain367

methods. The average spectral cause-effect plots in Figure 3 showed a higher368

causality from the Model to Imitator than Imitator to Model for hand- and369

foot-tapping for all regions of interest. Our paradigm was not ambiguous in370

who leads and who follows in the interaction and was consistent with 10 very371

well-defined onset blocks of a standardized motor test typically evoking large372

responses. The motor imitation task deemed us a good testing paradigm, as373

it allows for valid control of causality - as only the Model saw the instruction,374

the Imitator’s movement was dependent on the Model. The extracted HbO375

time series supported the validity of the task: The motor tasks led to an376

evident signal rise in the expected brain areas. We see evident activation of377

the averaged HbO time series during the motor tasks compared to baseline378

(Figure 2). The signal maximum occurred with a delay of about 10 seconds,379

in line with the temporal evolvement of the hemodynamic response function380

[21], and was faster for the hand than the foot. In the natural setting of381

fNIRS paradigms, such as cooperation tasks, data onset is less defined, and382

hence, we expect a worse signal-to-noise ratio for the detection of causal rela-383

tions. The feasibility of our method for various natural settings needs further384

investigation.385

4. Conclusion386

This study aimed to test whether the direction of influence in dyadic in-387

teraction can be derived from fNIRs hyperscanning. To this end, we amended388

the frequency domain mutual information rate decomposition frameworks of389

Geweke [13] and Faes et al., [8] to fNIRS data of the motor imitation task.390

We then defined a measure for the direction and intensity of neural influence391

in frequency and time domains and compared the performance of this mea-392

sure with four state-of-the-art time domain causal analysis methods. Our393

study showed that detecting the direction and intensity of neural influence394

is feasible based on fNIRs data. The usability of the proposed approach in a395

natural or uncontrolled setting might face new challenges that need further396

investigation. The varying magnitude and temporal delay in HbO activation397

in response to different tasks make it more challenging for the causal discov-398

ery methods to detect the correct cause-effect patterns in a natural setting399
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where several motor or non-motor tasks might occur simultaneously. We400

argue that using multimodal imaging or different sources of information is401

vital for causal discovery in fNIRS hyperscanning. Including emotional influ-402

ence analysis using facial expressions in dyadic interaction [22], body-part-403

tracking, or verbal signal analysis as additional synchronization measures404

might support the validation of hyperscanning measurements-based causal405

discovery results.406
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Appendix A: fNIRS data visual quality check using Wavelet trans-504

form505

(a) Good quality data

(b) Bad quality data

Figure 5: fNIRS data visual quality check using Wavelet transform plots before any filter-
ing: (a) a good quality data with a clear separation between the heart rate at the period
of ≈ 1sec and the lower frequencies (higher periods) and (b) a bad quality data where
high wavelet values occur at all frequencies and all time samples.
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Appendix B: True Positive Rate and F-score Plots506
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(c) PMC/M1

Figure 6: The true positive rate (TPR) (left) and F1-score (right) of the time domain cause-
effect analysis results for the normalized HbO time series using the Spectr-MIR method in
comparison with four baseline methods: Vanilla-PC [11], 2GVecCI [10], Trace [9], and MC-
VAR [12] for the three different regions: (a) Primary Motor Cortex (PMC), (b) Motor
Cortex (M1), and (c) PMC/M1. MC-VAR shows high TPR and high FPR(Figure 4),
indicating that this method detects causal links everywhere.
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