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How does big data influence smart manufacturing in the presence of preventive 
maintenance? A multi-analytical investigation  

 

Abstract 

Purpose: Smart manufacturing (SM) capitalizes on big data analytics (BDA) advancements 

by enhancing current capabilities such as defect identification and enabling supporting 

capabilities such as preventive maintenance (PM). The previous literature lacks to investigate 

the comprehensive associations between SM, BDA, and PM. Therefore, this study aims to 

investigate the relationship among SM, BDA, and PM. 

Design/methodology/approach: The present research implements a multi-analytical PLS-

SEM-ANN approach to investigate the relationships among BDA, PM, and SM. 

Findings: This investigation indicates that BDA is an effective digital technology that 

positively affects the operations of SM and PM. Furthermore, the results suggest that PM has 

a positive influence on SM and that it also positively mediates the relationship between BDA 

and SM where PM cannot be treated as an auxiliary practice, and plays an important role in 

SM as a primary operation. Furthermore, implementing the BDA enhances the performance of 

SM and PM. 

Originality: The role of PM in the context of BDA and SM has been ignored in past research, 

and this study offers novelty by examining this relationship. 

Keywords: PLS-SEM; Big data analytics; Smart manufacturing; Artificial neural network; 

Preventive maintenance. 

Quick value overview 

Interesting because: Manufacturing firms are increasingly embracing big data analytics 

(BDA) to improve operations. This study investigates the impact of the BDA on smart 

manufacturing (SM) and presents the findings in a manner that highlights how the tool 

influences preventive maintenance (PM). This is an area whose vigor has not been explored by 

the scholarly literature. 

Theoretical value: The research provides valuable insights into the operation of manufacturing 

plants by indicating that BDA is a digital tool that has a positive impact on the operations of 

SM and PM. The research establishes that PM is indeed a significant operation, rather than an 
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auxiliary operation, for the SM. Furthermore, the research establishes that PM is indeed a 

mediator in the BDA and SM relationship between the two operational activities. 

Practical value: The study is of significant importance to the manufacturing industry 

practitioners. Both the effectiveness of PM and the relevance of BDA should not, therefore, be 

overlooked. If they are integrated and used judiciously, better operational efficiency, and 

maintenance practices that will result in better performance of the manufacturing firms will 

accrue. This study provides valuable information and is, therefore, beneficial to the firms on 

how they can enhance the utilization of these two important aspects in SM. 

1. Introduction 

During the fourth industrial revolution (Industry 4.0), manufacturing companies utilize new 

digital technologies that provide the opportunity to create intelligent goods and production 

(Demeter et al., 2024). Along this line, smart manufacturing (SM) builds the essential part of 

Industry 4.0 (Arcidiacono and Schupp, 2024), which has a broader scenario to be applied 

(Vance et al., 2023). SM is a data-driven ecosystem that promotes the flow and sharing of real-

time information via ubiquitous networks to form industrial intelligence for all entities involved 

in production (O'Donovan et al., 2015a). SM goes beyond the digital transformation itself and 

carries digital technologies such as Internet of Things (IoT), Big Data analytics (BDA), Virtual 

Reality (VR) and Augmented reality (AR) (Krishnan, 2024). The complete manufacturing 

efficiency gained through these integrated systems entails real-time information exchange, 

visualization of the results of operations, and interconnection of machinery with other devices 

(Krishnan, 2024). It also enables the automation of operations, preventive maintenance (PM), 

and utilization optimization; moreover, it contributes to data-driven decision-making (Kusiak, 

2019). This way, manufacturers who embraced digitalization were able to manage recent 

uncertainties substantially better than those who had not (Dutta et al., 2022).  

Additionally, it is widely documented in the research on information systems that contextual 

variables play an important role in building BDA competence. Concerning BDA in SM, among 

the potential future trends in improving sustainability in a manufacturing firm and adding new 

value is the use of BDA across the whole manufacturing lifespan (Opresnik and Taisch, 2015). 

BDA can provide cost-effective storage and processing of all important supply chain 

information including where supplies originate, how much inventory exists at any time as well 

as product sales patterns (Krishnan, 2024). The results of this data allow unprecedented supply 

chain visibility, connectivity, and traceability to build capabilities that will design cheaper 
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management practices at scale. Increased transparency adds a lot of value to the supply chain 

operation in several other dimensions, such as optimal planning,  managing transportation more 

effectively, and maintaining portfolio management (Oluyisola et al., 2020). For instance, Liu 

et al. (2019) have identified an optimal routing model for laundry sorting from different supply 

sources using dynamic route planning by integrating traffic big data inputs.  

BDA attempts to quickly reach proper judgments in a digital organization so that the system 

can react to changes and uncertainty. In addition to this, Wan et al. (2017) highlighted the role 

of equipment maintenance in SM and asserted the importance of preventive maintenance (PM) 

in SM to find the problems earlier. Data collection and BDA have made active PM for SM 

possible (Wan et al., 2017). With BDA, manufacturers can monitor their production streams in 

real time and detect bottlenecks helping with identifying areas of inefficiency that need fixing1. 

For example, they can follow the performance of equipment and identify issues before they 

happen using data from sensors attached to machinery. This can alert to PM causing the 

assembly line never to come out without issue1. Furthermore, this continuous and instantly 

available data leads to improved productivity by enabling more precise as well as predictive 

maintenance of production systems and processes (Feng et al. 2017).  

The earlier research reveals an important void in the scholarly work covering BDA influencing 

SM (Ren et al., 2019). Although each of these domains has been extensively studied 

individually, the integration of BDA with SM practices continues to be under-researched. This 

gap is especially important in the framework of Industry 4.0, which has changed how 

manufacturing firms used to be done because digital technologies are evolving quickly 

(Arcidiacono and Schupp, 2024). Also, empirical studies specifically exploring the interaction 

and mutual reinforcement between these two domains are surprisingly absent. In addition, 

previous research has identified the influence of contextual variables on BDA competence. 

However, there is a lack of evidence regarding the precise interactions between these 

contextual variables (BDA and SM), which hinders our comprehension of the real-world 

consequences for manufacturing companies. Furthermore, the increasing complexity of 

industrial practices makes BDA more complicated as it includes challenges such as data 

collection, process monitoring, and anomaly detection (Windmann et al., 2015). As a result, 

the demand trends are changing faster than ever, and so is the data volume. This evidence 

shows that there is a gap in frameworks that successfully move cutting-edge technologies from 

 
1 https://metrology.news/growing-role-of-big-data-usage-in-smart-manufacturing/ (Accessed on 24th October 2024). 

https://metrology.news/growing-role-of-big-data-usage-in-smart-manufacturing/
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ideas to operational realities that are productive, and sustainable. An important window of 

opportunity for additional research exists because of the haziness around the incorporation of 

cutting-edge technology into SM systems, such as BDA and PM. Therefore, with this research 

gap, we have formulated the following research question which is unanswered in the previous 

literature: 

RQ: How do the associations of BDA and PM in SM systems affect manufacturing 

performance, sustainability, and resiliency? 

Hence, to address the above research question, within the context of Industry 4.0 settings — 

where BDA and PM are important components determining optimization in SM systems, this 

study explores the under-investigated BDA, PM, and SM associations from a task-technology-

fit (TTF) theory point-of-view. TTF is described as “the degree to which a technology assists 

an individual in performing his or her portfolio of tasks” (Goodhue and Thompson, 1995). The 

TTF theory is founded on the notion that technology will improve performance if there is a fit 

between the task's requirements and the technology's capabilities, which forms the basis of 

users' reactions and adoption of new technology (Cagliano et al., 2019). Grounded in TTF 

theory, the purpose of this study is to investigate how BDA, PM, and SM interact. The 

examination of prior research is followed by the formulation of the conceptual model and the 

study's hypotheses in the subsequent sections. The analysis of the data and the results are then 

reported. The results and an assessment of the management and practical significance of the 

findings are covered in this work's concluding sections. 

 

2. Literature review, hypothesis proposition, and conceptual model development 

2.1 Task Technology Fit (TTF) Theory 

TTF is defined as “the matching of the capabilities of the technology to the demands of the 

task” (Dishaw and Strong, 1999). The TTF focuses on the task requirements and technological 

capabilities used to complete it, as well as on the individual characteristics of an employee who 

does the work (Goodhue et al., 2000). This theory explains how and to what extent technology 

assists an individual with performing a task. The concept also explains the functioning of 

humans, tasks, and technology in the process of performing (Goodhue et al., 2000). The 

concept of information technology appropriateness is wide and stable one to understand the 

components of organizational technology fit which are keys for determining success within 
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organizations (Khazanchi, 2005 ). TTF model model views information system value creation 

as a function of the support they provide for various activities, and users' evaluations of these 

systems are thus indicators of such values (Goodhue 1998). 

The core element of TTF is the notion that to increase a person's adoption of technology, there 

must be a suitable arrangement between an information system's capabilities and job 

descriptions (Hidayat et al., 2021). Existing research has used the TTF theory to demonstrate 

intriguing connections between users' perceptions of the TTF and users' responses to the 

technology. Lin and Huang (2008) identified the critical variables influencing the use of 

knowledge management systems using the TTF hypothesis. According to the research of Lin 

and Huang (2008), perceived task-technology fit is significantly and favorably connected with 

knowledge management system self-efficacy. Therefore, using the task-technology fit 

hypothesis, they discovered that since the capabilities of MTS technology match usage 

requirements, customers may utilize their mobile devices to buy tourism-related goods. Rodger 

and George (2010) showed that end-user perceptions can be assessed and that a conceptual 

evaluation of the system can be adequately documented using the TTF model and a smart data 

strategy called the “Voice Activated Medical Tracking Application (VAMTA)”. Cagliano et 

al. (2019) used TTF theory to present data on the effects of SM on job structure at the macro 

and micro levels. 

2.2. BDA and SM 

BDA plays an important role in the successful adoption and implementation of SM by 

analyzing multiple machine parameters in real time (Bag et al., 2021). Furthermore, BDA 

enables the detection of potential out-of-control situations before any non-conforming part is 

produced, thereby reducing the generation of scrap in SM (Calis Duman and Akdemir, 2021). 

BDA enables the efficient storage and management of critical supply chain information e.g. 

inventory levels, demand patterns, and supplier sources, which allows the usage of cost-

effective management practices as data will add visibility, connectivity, and traceability across 

the supply chain (Krishnan, 2024). In addition, the usage of BDA in SM can help in vendor 

collaboration, and better procurement processes aid transport with lower transit time and 

reduced cost while helping optimization of planning (Oluyisola et al., 2020). BDA may also 

benefit SM by generating knowledge, optimizing KPIs, forecasting, and providing feedback on 

the design of products and processes (Nagorny et al., 2017). Ren et al. (2019) reported that the 

BDA is considered to be one of the most vital technologies among a wide range of essential 
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SM technologies because of its capacity to focus on large, varied datasets to uncover hidden 

information and patterns as well as other beneficial data. Although the previous research 

indicates the positive impact of BDA on SM. Still, the prior studies failed to investigate the 

relationship empirically. Therefore, this research contributes in this direction and offers novelty 

by investigating the relationship empirically, leading to the proposition of the following 

hypothesis: 

H1: BDA has a positive influence on SM. 

2.3. BDA and PM 

Preventive maintenance “seeks to prevent equipment failures by using a predetermined 

schedule of planned maintenance actions based on time passed or meter triggers” (Su and 

Huang, 2018). Maktoubian and Ansari (2019) researched the problem of sustaining medical 

devices and revealed that BDA, self-integrity monitoring, and PM could be the best strategies 

for predicting equipment failure early on before it negatively affects the delivery of any 

healthcare services. With big data, PM can optimize maintenance planning while minimizing 

consequential costs associated with faulty equipment (Munirathinam and Ramadoss, 2014). 

Concerning the development of smart factories and digital production, Wan et al. (2017) 

focused on active preventive maintenance using industrial big data. By combining Hadoop with 

Storm, a rather all-encompassing maintenance solution is proposed that takes into account both 

offline and online conditions. Mahmood and Munir (2020) used the IoT and big data to 

construct a predictive and preventive maintenance framework for the telecom business. It was 

found that this framework was supportive of PM in the telecom sector. Similarly, Tao et al. 

(2018) emphasized the effective application of BDA to support SM and PM. For instance, by 

creating prediction models, an examination of previous data can be utilized to predict the 

incidence of faults (Kusiak and Verma, 2012). In contrast to the studies mentioned above, this 

study extends the application of BDA-enabled preventive maintenance to the broader context 

of SM. While previous research has focused on early fault detection and operational efficiency, 

this study focuses on optimizing industrial equipment performance and increasing productivity 

across manufacturing processes. The transition from healthcare and telecom to industrial 

settings highlights BDA's versatility and potential to drive sustainability and efficiency across 

diverse sectors. Therefore, the following hypothesis is proposed: 

H2: BDA has a positive influence on PM. 
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2.4. PM and SM 

In SM, ensuring continuous production requires equipment maintenance, which can have an 

impact on both production efficiency and equipment deployment (Wan et al., 2017). Given the 

close relationship between the goals of PM and SM, this topic is relevant. PM is an essential 

tool for SM. Given the potential for large cost savings, it is crucial to create SM policies and 

systems by integrating manufacturing elements, especially those that decrease losses, process 

upset, and downtime, such as PM programs (Lao et al., 2014). Chien and Chen (2020) 

established a data-driven framework for strategic maintenance in SM and provided an approach 

for the early detection of faulty equipment, increasing the maintenance cycle and reducing 

costs. Their study was focused on the healthcare sector to propose a framework for health 

monitoring and maintenance for SM and they found the practical implication of the proposed 

approach in early recognition of faulty tool status. Our study also follows this approach in the 

manufacturing sector to identify the early defects and prolong cycles to enhance productivity. 

Chen et al. (2020) presented an equipment electrocardiogram system oriented on fine-grained 

data collected throughout the manufacturing equipment's operational length to reveal the 

equipment's performance decline in SM. Their study revealed that this mechanism would 

improve the efficiency of production lines. Wan et al. (2017) suggested for an active PM in 

SM a manufacturing big data solution by providing a system architecture that is used for active 

PM. Lao et al. (2014) also proposed a predictive control model that effectively integrates 

scheduled PM in SM to increase dynamic economic performance. Likewise, O’Donovan et al. 

(2015a) asserted that the propensity for maximizing machine uptime and availability, which 

are policies that adopt a preventive and predictive approach to maintenance, are suitable for 

SM. Moreover, some studies have validated the mediating role of PM (Ahmad et al., 2019). In 

contrast to the above studies, this study focuses on the requirements of the current 

manufacturing setup in the context of providing solutions through BDA and PM in the smart 

manufacturing sector.  Moreover, providing evidence for the mediating role of PM in 

improving SM through the application of BDA. Therefore, the following hypotheses are 

formulated: 

H3: PM has a positive influence on SM. 

H4: PM positively mediates the relationship between BDA and SM. 

As per the discussion above and the hypotheses, a conceptual model has been developed, as 

shown in Figure 1.
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Figure 1: Conceptual model 
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3. Method 

3.1. Collecting the data and sampling 

We selected the organization listed in the “Centre for Monitoring Indian Economy (CMIE)” 

Pvt. Ltd. directory through process IQ software. We circulated the questionnaire and received 

a total of 287 responses. However, after removing invalid responses and discarding incomplete 

data, the analysis was conducted using only 276 of the questionnaires that were considered 

legitimate. This equates to a response rate of 39.83%. The survey questionnaire was also 

reviewed for content and face validity with 15 industry professionals in BDA and maintenance 

management before the data were distributed. In response to the comments and suggestions 

provided, the questionnaire was updated to include some changes, such as eliminating jargon 

and trendy remarks. We subsequently tested the questionnaire through its paces by pilot-testing 

it on a representative sample of 25 participants. The construct reliability and validity were 

tested to determine whether the items represented the constructs. After completing the 

questionnaire, each responder discussed his or her thoughts on the survey with the authors and 

noted any ambiguities that may have been present. The final draft of the questionnaire was 

crafted after additional changes and adjustments were made. Finally, the questionnaire was 

distributed to Indian manufacturing firms. Furthermore, this sample size is larger than the bare 

minimum recommended by the 50-fold rule for analyzing artificial neural networks, which 

specifies that the sample size must be at least 50 times the size of the parameter that may be 

adjusted in the network (Alwosheel et al., 2018). Since the neural network has only three 

parameters, the smallest sample size is 150. Thus, 276 participants provided an adequate 

sample size for ANN evaluation. 

3.2. Measures 

The items for measurement were modified somewhat in terms of their language to make them 

more appropriate for the setting of the research, which was based on previously existing scales 

that had been constructed (see Appendix 1). We utilized 5-point Likert scales since they are 

too lengthy and might confuse the respondents. This approach allowed us to reduce the 

respondents' annoyance and increase the number of people who responded to the survey (Pai 

and Huang, 2011). The details of the respondents are given in Table 1. 
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Table 1: Respondents’ summary 

  Attributes Numbers Percent 
Age (years) 
  
  

25 to 30 32 11.6 
31 to 45 153 55.4 
 46 and above 91 33 

Association with 
the organization 
(in years) 

1 to 2 21 7.6 
3 to 10 137 49.6 
Above 10 118 42.8 

Employee 
designation 
  
  

Engineer, Management trainee, Executives 
Assistant Manager, etc. 

146 52.9 

The shop floor manager, Total Productive 
Maintenance (TPM) experts, Data analytics, etc. 

77 27.9 

General Manager, Vice President, Director, etc. 53 19.2 
Firm type 
(product wise) 
  
  
  
  

Industrial machinery 97 35.1 
Agricultural products 36 13 
Process control equipment 49 17.7 
Medical equipment 31 11.2 
Alloy & stainless steel 63 23 

 

4. Analysis and findings 

4.1. Common method bias (CMB) 

To begin addressing the issue of nonresponse bias, we first evaluated the characteristics of the 

individuals who participated in the survey. This approach allowed us to validate the 

representativeness of the sample parts drawn from a diverse range of sample units, such as the 

types of companies. The data derived from surveys reveal the potential for CMB because 

findings may emerge from a wide variety of causes, one of which is the implicit social 

desirability associated with responding to questions in a certain manner (Chatterjee et al., 

2022). It has an impact on the indicators that are used to demonstrate a specific degree of 

variance (Podsakoff et al., 2003). The survey's pretest questions were reorganized, and their 

wording was modified to make them more comprehensible to the respondents. In addition, 

throughout the survey phase, the potential respondents were assured that their identity, as well 

as the confidentiality of their responses, would be rigorously maintained. These procedures 

were followed to eliminate or at least reduce the possibility of bias in the results. Nonetheless, 

a statistical study was carried out to determine the extent of CMB. The single-factor test 

developed by Harman was carried out (Hossain et al., 2020). The first component was shown 

to have a value of 44.91%, which is lower than the maximum suggested threshold value of 50% 

(Podsakoff et al., 2003). 
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4.2. Statistical analysis 

PLS-SEM was used to predict a multilevel and reflective construct. This was done to 

circumvent the constraints that covariance-based structural equation modeling (CB-SEM) has 

in empirical research of this kind (Akter et al., 2017). The use of PLS-SEM is effective at 

preventing favorably biased model fit indices for large, sophisticated models as a consequence 

of the model's lax modeling assumptions (Akter et al., 2017). Moreover, we used PLS-SEM 

because it is descriptive and predicts the most important outcome variables while requiring 

smaller sample sizes, i.e., n = 276 in our instance, for complicated associations (Henseler et al., 

2014). 

Along with PLS-SEM, the research supplements the analysis by using Artificial Neural 

Network (ANN) to enhance the depth and robustness of the analysis. There are several 

advantages of supplementing ANN with PLS-SEM, such as improving the quality of the PLS-

SEM results. ANN can be used to impute the missing data in the dataset, as to obtain reliable 

results, proper handling of missing data is very crucial. ANNs can capture complicated, non-

linear interactions between variables that PLS-SEM may struggle to accurately predict. This 

can be especially useful when the relationships aren't perfectly linear. ANN can capture linear 

and nonlinear correlations between variables, yielding more accurate findings. This feature 

influences each variable in the model, overcoming the limitations of multiple regression, SEM, 

and logistic analysis (Albahri et al., 2022). SEM and ANN studies were coupled to overcome 

the limitations of SEM in capturing linear, testing hypothesis, and nonlinear interactions among 

components (Raut et al., 2018).  ANN shows higher accuracy and can potentially provide better 

predictive accuracy than PLS-SEM. In addition, when the dataset is large and complex, then 

ANN provides better precision than PLS-SEM. Which can further help in improving the 

predictive validity. Alnoor et al. (2022) in their book chapter “Artificial Neural Networks and 

Structural Equation Modeling” mentioned that various statistical techniques have arisen to 

augment the SEM approach by capturing nonlinear and non-compensated relationships 

between variables. The Artificial Neural Network (ANN) technique is essential for confirming 

SEM results and understanding nonlinear interactions between components (Alnoor et al., 

2022).  

4.2.1. Measurement model assessment 

Since we employed a reflective model, we adhered to the four phases suggested by the relevant 

research (Hair et al., 2019). The scores of the most important reliability measures are shown in 
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Table 2. First, we determined the reliability of the items by calculating their respective loadings 

and then comparing those values. Loadings larger than 0.708 are the suggested cut-off, which 

indicates that the construct explains at least 50% of the variation in the item and, as a result, 

assures the reliability of the item. The cut-off value is determined by the correlation between 

the indicator and the construct (Hair et al., 2019). In this respect, all loadings surpassed the cut-

off value (Table 2). Composite reliability (CR) and rho_A were used to measure internal 

reliability. In Table 2, all of the rho_A, Cronbach’s alpha (CA), and CR scores for the first-

order constructs were greater than the threshold of 0.70 (Hair et al., 2019), which demonstrates 

that there is a high degree of internal reliability. This indicated that the measurement model 

constructs had a satisfactory level of convergent validity (CV). CV was shown for each of the 

constructs when the “average variance extracted” (AVE) was erect to be at or above the 

suggested threshold value of 0.50 (Hair et al., 2019). 

Table 2: Measures of reliability and validity 

SRMR = 0.046 
Construct Item code Loadings CA (rho_A) CR (AVE) 
 
Big Data 
Analytics 
(BDA) 

BDA 1 0.878 0.917 0.918 0.938 0.751 
BDA 2 0.846     
BDA 3 0.881     
BDA 4 0.857     
BDA 5 0.869     

Preventive 
Maintenance 
(PM) 

PM 1 0.880 0.904 0.907 0.933 0.777 
PM 2 0.866   
PM 3 0.880 R2 = 0.206 Q2 = 0.197 
PM 4 0.899     

 
Smart 
Manufacturing 
(SM) 

SM 1 0.794 0.890 0.891 0.919 0.694 
SM 2 0.832     
SM 3 0.839     
SM 4 0.845 R2 = 0.356 Q2 = 0.291 
SM 5 0.853     

 Heterotrait-
monotrait 

ratio 
(HTMT)  

    

PM → BDA 0.496      
SM → BDA 0.608      
SM → PM 0.503      

 

Finally, we checked that each concept was distinguishable from the rest of the models by 

measuring their discriminant validity, as shown in Table 2. Since the Fornell–Larcker criteria 

have been subjected to some critiques (Queiroz et al., 2022), an examination of discriminant 
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validity based on heterotrait–monotrait (HTMT) was carried out. The HTMT provides a 

summary of the average correlation that exists between items that measure the same construct 

and the average correlation that exists between all items that measure that construct (Henseler 

et al., 2015). The threshold for HTMT is set at levels lower than 0.85. In this respect, all of the 

values given in Table 2 are in agreement with scholarly suggestions (Henseler et al., 2015), 

confirming that the constructs are separate from one another. 

4.2.2 Structural Model Assessment 

By examining the model results, one may determine whether the structural model can predict 

several anticipated constructs. The inquiry used a method called nonparametric bootstrapping 

using 5000 subsets of samples to assess the accuracy of the estimate. A standardized root mean 

square (SRMR) score, which must be smaller than 0.08 to indicate that a model is suitable for 

its purpose, was used in the validation process (Cho et al., 2020) for a sample size greater than 

100 (276). The SRMR score for the present research is 0.046 (see Table 2), which indicates the 

good fitness of the model. Stone-Geisser's Q2 test allowed us to evaluate the predictive 

significance of our model (Mitrega et al., 2017). This test is computed through blindfolding, 

which involves a predetermined number of resamples. It is necessary to prove the predictive 

capability of the model with values higher than zero (Hair et al., 2019). The Q2 values for the 

present study (see Table 2) are 0.197 and 0.291, which surpassed the threshold value and 

indicate the significant predictive capability of the model (Hair et al., 2017). The R2 value is 

also presented in Table 2 to indicate the robustness of the model. The threshold R2 value for a 

good model is 0.1 (Hair et al., 2016). In addition, the f2 effect size was computed for each 

independent variable to evaluate the importance of the independent factors in predicting the 

dependent variable. These impacts are considered small to medium in size according to the 

criteria of Hair et al. (2017). To demonstrate the statistical significance of the pathways and 

the validity of the hypothesis, the values of the various standard coefficients, such as β, must 

be more than zero, and the p-value should be lower than 0.05. All of the assumptions presented 

in this research were confirmed to be correct by the findings shown in Table 3. 

Table 3: Hypothesis testing 

Path β T-Statistics p Value Hypotheses Result 
Direct effect 
BDA→SM 0.551 9.198 0.000 H1 Accepted 
BDA→PM 0.453 7.452 0.000 H2 Accepted 
PM→SM 0.257 4.261 0.000 H3 Accepted 
Indirect or mediating effect 
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BDA→PM→SM 0.117 3.309 0.001 H4 Accepted 
 

A "bias-corrected and accelerated (BCa)" bootstrap approach with 5000 subsamples was used 

to assess the assumptions included within the structural model. The outcomes from Table 3 

suggest that all the hypotheses (H1-H4) are supported by the present study. 

4.2.3 Artificial neural network analysis 

Considering that PLS-SEM is limited in its ability to detect linear and compensatory effects 

(Lim et al. 2021), this research adopts artificial neural network (ANN) analysis to supplement 

PLS-SEM analysis, as ANNs can acquire nonlinear associations in this research and hence are 

beneficial for decision-making (Wan et al., 2021). The BDA and the PM each had their own 

separate ANN models. The root mean squared error (RMSE) is calculated for each of the 10 

neural networks to evaluate how well models 1 and 2 predict future outcomes (Wang et al., 

2022). The next step that we performed, which was analogous to what Liébana-Cabanillas et 

al. (2017) performed, was to use the relevant features that the PLS-SEM path analysis revealed 

as the feed neurons for the ANN models. A nonnormal data dispersion and the presence of 

nonlinear correlations between the independent variables and the dependent variables are two 

of the grounds for using the ANN. The presence of nonlinear interactions between the 

independent and dependent variables, as well as the fact that the data dispersion is not normally 

distributed, are two of the main arguments in favor of using ANNs (Leong et al., 2020). 

According to Taneja and Arora (2019), the “feed-forward-backward-propagation” (FFBP) 

technique may be used to train the system to predict the study's outcomes by feeding in data in 

one path and sending the estimated errors in the other. The input and hidden layers were 

constructed using multilayer perceptrons with sigmoid activation parameters (Sharma and 

Sharma, 2019). We used 90% of the samples during training and 10% during testing, as 

suggested by Leong et al. (2018). The prediction efficacy of both ANN models is compared in 

Table 4. All the ANN models demonstrate a good level of prediction accuracy with the 

given RMSE values (Lee et al., 2020). 

Table 4: RMSE scores for the BDA and PM 
 
 Model 1 Model 2 

Inputs: BDA & PM Input: BDA 
Output: SM Output: PM 

Trained sample Tested sample Trained sample Tested sample 
ANN RMSE Percen

tage 
RMSE Percenta

ge 
RMSE Percen

tage 
RMSE Perce

ntage 
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1 0.858 89.1 0.840 10.9 1.056 90.2 0.875 9.8 
2 0.890 91.3 0.763 8.7 1.054 87.3 0.873 12.7 
3 0.891 90.6 0.722 9.4 1.052 89.5 1.049 10.5 
4 0.893 88.8 0.874 11.2 1.060 85.5 1.045 14.5 
5 0.855 87.3 0.586 12.7 1.052 91.3 0.833 8.7 
6 0.927 89.5 0.562 10.5 1.036 88.4 0.942 11.6 
7 0.873 88 0.878 12 1.039 88 1.080 12 
8 0.916 90.9 0.762 9.1 1.049 92.8 1.377 7.2 
9 0.930 89.9 0.861 10.1 1.094 87.7 0.912 12.3 
10 0.871 90.2 0.643 9.8 1.043 88.8 1.068 11.2 

 
The independent variables are also ranked in terms of their normalized relative relevance to the 

dependent variables in Table 5 (Lim et al., 2021). In ANN Model 1, the BDA is the best driver 

of SM (with a 100% normalized relative value), while the PM is the second-best driver of SM 

(with a 54.12% normalized relative value). Despite ANN Model 2 consisting of a single 

neuron, the sensitivity analysis revealed a normalized significance of 100%. The PLS-SEM 

and ANN results were assessed using the patch coefficient and the normalized relative 

significance (Ng et al., 2022). As shown in Table 6, the findings for ANN models 1 and 2 are 

consistent. 

Table 5: Sensitivity analysis 
 
 Model 1 Model 2 

Output: SM Output: PM 
ANN BDA PM BDA 

1 0.688 0.312 1.000 
2 0.724 0.276 1.000 
3 0.665 0.335 1.000 
4 0.568 0.432 1.000 
5 0.731 0.269 1.000 
6 0.705 0.295 1.000 
7 0.662 0.338 1.000 
8 0.505 0.495 1.000 
9 0.660 0.34 1.000 
10 0.658 0.342 1.000 

Average relative 
importance 

0.656 0.343 1.000 

Normalized relative 
importance (%) 

100 54.12 100 

  

Table 6: PLS-SEM and ANN comparative analysis 
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relative 
importance (%) 

independent 
variables 

independent 
variables 

Model 1: SM as an output 
BDA→SM 9.198 100 1 1 Consistent 
PM→SM 7.452 54.12 2 2 Consistent 
Model 2: PM as an output 
BDA→PM 4.261 100 1 1 Consistent 

 

5. Discussion and implications 

The research aims to investigate the impact of BDA on SM and PM, and PM on SM, and 

overall improvements in task performance; thus, using TTF theory to bring clarity into these 

interactions. The TTF theory also suggests that the benefits of technology are optimized when 

there is a synergistic alignment between technological characteristics/capabilities and specific 

applied tasks. This is where BDA helps SM and PM to a great extent because of its fit with 

data-centric modern manufacturing processes. The findings of the research indicate that BDA 

is a strong predictor of SM and PM. This conclusion lends credence to the previous research 

on the possible advantages of BDA for SM (H1) (Krishnan, 2024; Bag et al., 2021; Majeed et 

al., 2021; He and Wang, 2018) and PM (H2) (Wan et al., 2017; Crespo Márquez et al., 2020). 

Furthermore, the results also suggest that the implementation of PM helps in the adoption of 

SM (H3). These findings could be associated with the findings of Koon (2021) and O'Donovan 

et al. (2015a). 

In reality, manufacturing operations evolve continuously over time, and they are subject to a 

wide variety of unpredictable disruptions, including those linked to resources and personnel 

(Ouelhadj and Petrovic, 2009). The scheduling system should be able to detect disruptions and 

adjust accordingly. Static and dynamic scheduling are the two most commonly used methods. 

However, these methods have limitations and cannot address unexpected situations. Production 

scheduling is currently available for making use of emerging technologies such as big data in 

the SM era (Al-Gumaei et al., 2018). For the system to adapt to the dynamic nature of the 

manufacturing sector, it is essential to integrate big data-oriented optimization into the 

scheduling process. SM uses BDA to enhance current analytical capabilities and develop new 

capabilities, such as predictive analytics, in tandem with a manufacturing trend toward 

increased data “volume, velocity, and variety” (Moyne et al., 2016). In addition, BDA in the 

SM makes it possible for machines or equipment to adapt their behavior following various 

circumstances and needs by drawing on their previous observations and their learning capacity 

(Zhong et al., 2017). 
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More concretely, Sim (2019) demonstrates this convergence by implementing a Smart 

Equipment Engineering System (SEES), which aligns failure reasons to machinery while the 

equipment is running and restores real-time stability state besides it reduces downtime 

following predictive monitoring with machine observable states as early planning in place of 

dealing a time when will preventively fail. In a capital-intensive operation, such as 

manufacturing where machinery costs account for a substantial proportion of total production 

expenses (Toth and Mokuya 2002) taking this approach to maximize usage time is important. 

Other manufacturing areas have had positive experiences such as production, distribution and 

maintenance, diagnostics, and energy management (O'Donovan et al., 2015b); illustrating the 

wide array of uses for BDA in SM. The PM role becomes even more essential in SM as it 

maximizes the equipment utilization rate, thus since total ownership cost can tend to be ~ 60–

75% of an asset lifecycle expense (Dhillon, 2006). Equipment utilization and efficiency 

affecting supply chains: A demand-driven, customer-centric supply chain, which is an SM 

characteristic (O'Donovan et al., 2015a) relies heavily on equipment uptime. Effective SM 

requires critical uptime and availability, which is the promise of BDA — providing real-time 

data-driven insights that allow for smarter timing in maintenance events as well as predicting 

incoming equipment failures. 

In addition, the eco-friendly orientation of SM with focused PM driven by BDA reduces energy 

consumption and ensures equipment utilization efficiency. SM initiatives, by identifying and 

correcting inefficiencies, accomplish more with less energy output thus also having lower 

environmental impact (O'Donovan et al., 2015a). Routine maintenance not only sustains energy 

efficiency but also ensures maximum performance and a machine operating at its full capacity 

adds direct value to higher productivity. PM practices performed with BDA result in more 

reliable equipment and reduced failure rates which further comes to produce lower operational 

costs as well as longer asset life (O'Donovan et al., 2015a). As a result, the U.S. Department of 

Energy reports that PM can prevent up to an 18% reduction in energy use (Koon, 2021), further 

emphasizing how important a part PM plays in cost and energy savings. In this way, the 

discussion indicates how the interaction between BDA, PM, and SM can be seen in the industry 

settings, and offers the possible reason for accepting all the hypotheses. 

5.1 Theoretical implications 

The usefulness of the TTF has been questioned because of its lack of theoretical underpinning, 

as indicated previously. This paper contributes to the advancement of TTF theory. According 
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to the research findings, BDA may increase the "volume, velocity, and variety" of data, which 

in turn leads to an increased rate of SM acceptance and implementation (Moyne et al., 2016). 

The incorporation of BDA, which is characterized by the use of analyzing real-time data, 

necessarily provides a means of gauging the efficacy of BDA as a technology in an SM system 

(Krishnan, 2024). This is accomplished by evaluating the connection between the technology 

and the tasks (improving the performance of the SM system) that the technology intends to 

endorse. In addition, BDA technology helps enhance the performance of PMs by providing 

real-time machine monitoring and preventing machine failure by precisely analyzing real-time 

data (Crespo Márquez et al., 2020). This helps keep the machines running smoothly. This work 

contributes to the growing body of research on the use of BDA and its implications for SM and 

PM. While the use of BDA in different industries has been extensively studied, specific 

applications in SM are still relatively unexplored. Current studies frequently focus on broad 

overviews of BDA or specific areas like finance or healthcare but may not go extensively into 

the manufacturing sector.  

This study conducts a specialized analysis of how BDA can be specifically implemented in the 

SM context, providing industry-specific insights. This adds to the current literature by 

broadening its scope to address industry-specific difficulties and opportunities in SM. In 

addition, the PM concentration has been observed to be an important indicator of SM 

facilitation. PM is also an effective method for increasing machine life, decreasing energy 

consumption, and enhancing SM adoption and practice. In this regard, this study advances the 

theoretical knowledge of PM by demonstrating how BDA, when combined with smart 

manufacturing systems, provides more accurate, real-time, and proactive maintenance 

procedures. This goes beyond traditional approaches and presents a data-driven paradigm for 

PM, bridging a significant gap in the literature where the role of BDA in PM is currently 

unclear. The present research can help organizations comprehend the influence of BDA and 

PM in SM adoption and proceed toward the effective execution of the strategy. Nevertheless, 

the importance of sustainability in manufacturing is growing, and the precise role of BDA in 

achieving sustainable manufacturing outcomes (such as energy efficiency and waste reduction) 

remains unexplored. This study closes the gap by investigating how BDA in smart 

manufacturing contributes to sustainability goals. It broadens the theoretical discourse by 

demonstrating that the integration of BDA not only improves operational efficiency but also 

increases sustainability, which aligns with growing concerns about eco-efficiency in 

manufacturing. 
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5.2 Managerial implications 

Looking into the managerial implications of the present research, the first relationship 

establishes an association between BDA and SM. Several checkpoints and monitors are set up 

in the SM setting throughout the production process, from the arrival of raw materials to the 

shop floor to the shipment and packing of finished goods (Ren et al., 2019). A substantial 

quantity of data about the manufacturing process is generated and compiled inside the SM. To 

boost the efficiency of production and management of entire manufacturing operations for 

complicated goods, manufacturers can examine this information by incorporating BDA. This 

approach can help them optimize process parameters, reduce process flaws, improve item 

quality and efficiency, etc. (Majeed et al., 2021). BDA enables real-time monitoring and 

prediction capabilities, assisting manufacturers in optimizing equipment usage, reducing 

downtime, and minimizing waste, all of which lead to more sustainable production methods. 

These kinds of managerial implications might substantially contribute to reducing energy 

usage, wasting materials, and having a carbon footprint and an overall negative influence on 

the environment. For instance, to accomplish a high level of integration between production 

and logistics on shop floors, Guo et al. (2021) developed a cyber-physical system (CPS)-based 

self-adaptive collaborative control (SCC) mode for smart production-logistics systems. In 

addition, a demonstration of notion simulation premised on a factory situation was created to 

illustrate the suggested approach. The outcomes demonstrate that the proposed SCC method 

surpasses the traditional method without SCC in terms of lowering the waiting period, 

makespan, and energy usage, all while preserving an appropriate level of computational time. 

This reduction in resource use and energy usage not only lowers operational costs but also 

minimizes manufacturing processes' environmental impact. 

The second association (BDA to PM) suggests that real-time data should make supervising 

manufacturing easier, allowing manufacturers to stay current on production irregularities and 

develop the most effective operational control strategies possible. This would allow 

manufacturers to produce goods of the highest quality (Bai et al., 2017). Big data allows for 

the storage and analysis of data for continuous PM, which enables fault identification and the 

improvement of operating processes (Hinojosa-Palafox et al., 2021). For instance, reliance on 

BDA by senior facilities manager Matthew Graham and his PM department to detect emerging 

motor bearing wear of a start unit is demonstrated where data analysis enables the team to 

replace those sets of bearings for $3,000 with minimal disruption to the building's tenants 

(Aliento, 2017). In this way, implementing BDA improved PM performance and prevented 
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costs of up to $20,000 for a new motor and severe discomfort because the motor was 

responsible for almost 25% of the ventilation (Aliento, 2017).  

Furthermore, the last association (PM and SM) suggests that a system's digital health may be 

monitored and communicated to an operator, who can then assess the situation and take 

appropriate action based on the information gleaned (Assad et al., 2021). For instance, Maw 

(2022) suggested that implementing PM with digitalization can improve transparency through 

improved decisions, simplicity through easy access, efficiency through enhancing equipment 

performance, and optimization through deploying the right tool at the right place. Therefore, 

in this way, the BDA not only facilitates the direct adaptation of SM but also improves the 

effectiveness of SM by boosting PM performance. 

Nevertheless, the integration of SM technology opens up new job prospects, particularly in 

highly skilled areas such as data analysis and machine learning. While traditional 

manufacturing employment may evolve, there is an increasing demand for a workforce 

competent in digital technology, prompting the creation of new educational and training 

programs. On an economic basis, these developments increase productivity and 

competitiveness, allowing businesses to innovate and scale more effectively, supporting overall 

economic growth. Thus, the integration of BDA with SM promotes a more sustainable, 

growing, and dynamic industrial landscape, with positive implications throughout society. 

6. Conclusion 

This research examined the use of BDA to improve SM and PM concentrations. It has been 

shown that BDA has a positive influence on PM and SM and that PM also has a positive effect 

on SM. Furthermore, it has been shown that PM has a mediating effect on BDA and SM. 

Therefore, using BDA is beneficial for the effective implementation and practice of SM. 

Additionally, this study contributes to improving the results of PM implementation. Finally, 

PM extends the life of equipment while also lowering the energy used and the expenses 

associated with it. This makes it possible for SM to be carried out more easily. The 

incorporation of BDA into PM data improves SM performance by carrying out actual-time data 

analysis and, as a result, optimum forecasting. However, there are still certain limitations. This 

research used BDA in selected SMs located within a certain area. Although there is 

considerable support for the concept in the research literature, universal applicability may be 

difficult to achieve because of this, as in prior sections. The findings of the model's testing 

presented in this research are likewise quite favorable. On the other hand, this presents a 
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possibility for future research to consider a more diverse pool of participants. In addition, the 

model did not consider other factors that might impact the adoption of new technologies, such 

as cultural norms, firm policy, or management and workforce mindsets. When trying to 

understand why BDA is being used in modern industrial settings, we believe that future 

research should consider the aspects mentioned earlier. The increasing application of newly 

developed technologies necessitates ongoing ideation and validation of the latest research effort 

for this topic to be relevant. In addition, prospective research may also take into consideration 

the possibility of including the moderating impacts of PM results in the study. In the future, 

researchers may look at the possibility of combining components of policy and governance to 

assist organizations in making decisions about the implementation of appropriate BDA 

algorithms and applications. Despite these drawbacks, BDA-enabled platforms are very 

powerful and provide organizations with the opportunity to make better use of their data, 

improve existing operations, and invent new enterprises. 
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