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Abstract: Alkaloids found in multiple species, known as ‘driver species’, are more likely to be in-
cluded in early-stage drug development due to their high biodiversity compared to rare alkaloids.
Many synthetic approaches have been employed to hybridize the natural alkaloids in drug develop-
ment. Click chemistry is a highly efficient and versatile reaction targeting specific areas, making it a
valuable tool for creating complex natural products and diverse molecular structures. It has been
used to create hybrid alkaloids that address their limitations and serve as potential drugs that mimic
natural products. In this review, we highlight the recent advancements made in modifying alkaloids
using click chemistry and their potential medicinal applications. We discuss the significance, current
trends, and prospects of click chemistry in natural product-based medicine. Furthermore, we have
employed computational methods to evaluate the ADMET properties and drug-like qualities of
hybrid molecules.

Keywords: heterocycles; 1,2,3-triazole; alkaloids; biological properties; molecular hybridization; click
chemistry; ADMET properties

1. Introduction
1.1. Natural Products as a Source of Bioactive Compounds

Natural products (NPs) are a valuable source of therapeutic substances due to their
intricate and varied structures [1–3]. NPs have been instrumental in drug discovery,
especially in treating cancer and infectious diseases [4–6]. Their diverse stereo centers, sp3
carbon, and labile functionalities have been instrumental. NPs have also been effective
in treating other medical conditions such as cardiovascular diseases (such as statins) and
multiple sclerosis (such as fingolimod) [7–9]. Their larger molecular mass, higher number
of sp3 carbon and oxygen atoms, and lower number of nitrogen and halogen atoms
contribute to their unique molecular scaffolds, offering a wealth of structural diversity for
drug development [10,11]. Over 60% of the drugs on the market are derived from NPs,
highlighting their importance in the pharmaceutical industry [12]. However, the complex
nature of NPs often requires complicated synthetic strategies and time-consuming multistep
syntheses, resulting in limited yields and derivatives. Therefore, simple, modular, selective,
and reliable chemistry is necessary for the late-stage functionalization and diversification of
natural products. Alkaloids are an essential class of compounds found in natural products.

Alkaloids are small organic molecules that contain nitrogen, usually in a ring, and are
present in plants (about 20% of plant species) [13–15]. They have a noticeable impact on the
physiology of both humans and animals. Common examples of alkaloids used as drugs
include atropine, berberine, cocaine, codeine, capsaicin, ephedrine, morphine, nicotine,
quinine, papaverine, reserpine, strychnine, vinblastine, vincristine, etc., and are known
for their diverse biological properties [16–19]. Modifying the chemical structure of known
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alkaloids is an essential component of drug discovery, as it enables researchers to study the
relationship between structure and activity and uncover new biological responses [20].

Drug discovery in modern times involves molecular hybridization, which is used
for rationally designing drugs [21–23]. This method combines different pharmacophoric
moieties of bioactive substances covalently, creating new hybrid compounds that can be
more effective than their parent pharmacophores. Hybridizing various organic molecular
motifs with different pharmacological activities can create compounds with modified
selectivity profiles, different modes of action, reduced side effects, the ability to overcome
multidrug resistance, and an improved safety profile [24–31]. This approach helps with
the design of multifunctional drug candidates and can overcome the limitations associated
with current drugs by providing various advantages (see Figure 1).
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1.2. Click Chemistry: Principles and Applications

In 2001, Sharpless and his team introduced the concept of click chemistry, which is
now widely used in the scientific community. Click chemistry is a simple and efficient way
to join two molecular building blocks under mild and adaptable conditions, resulting in
high yields while requiring minimal purification. This method is user-friendly and can
be compared to fastening two seatbelt ends together. The versatility of click chemistry
has made it an indispensable tool in various fields such as analytical chemistry, materials
science, chemical biology, and drug development [32–34].

Click chemistry involves merging small molecular units to form new molecular at-
tributes. Nevertheless, individuals in the scientific and engineering fields, who need to
possess the proper skills and equipment to execute such connecting operations with con-
sistency, can face difficulties in this domain. Fortunately, the chemical strategies available
today, among them click chemistry, simplify the process of molecular connectivity with
innovative methods continuously emerging [35].

A “click reaction” is simply a reaction forming new carbon–heteroatom bonds in high
yields and selectivity. The term “click” was later coined to indicate the ease of execution,
and is synonymous with buckling (clicking) a seatbelt. The most widely used click reaction
in medicinal chemistry and biochemistry is the formation of a 1,2,3-triazole moiety by
combination of an azide and alkyne. Specific examples that form the 1,2,3-triazole func-
tionality include copper-catalyzed azide–alkyne cycloaddition (CuAAC), strain-promoted
azide–alkyne cycloaddition (SPAAC), photoinduced click reactions (light-triggered), and
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bioorthogonal click chemistry reactions [36–42]. These reactions are defined as 1,3-dipolar
cycloadditions between an alkyne and azide functional group, resulting in a 1,4-disubstituted
1,2,3-triazole as a linker between the two coupled units (Figure 2).
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In contrast to the classic thermal (Huisgen) 1,3-dipolar reactions, click chemistry
products are generated with high regioselectivity, eliminating the possibility of regioiso-
mers [43,44]. These reactions occur quickly and are thermodynamically driven, as the
formation of triazoles is highly exothermic. Click chemistry is also flexible and can toler-
ate various functional groups, making it easy to synthesize complex molecules. This is
helpful in various industries, such as enhancing natural products, polymers, biomolecules,
and macrocyclic structures by attaching molecular tags precisely and efficiently [45]. The
1,2,3-triazole scaffold has proven to play a crucial role in the biological properties of various
bioactive molecules, showcased in Figure 3, with several FDA-approved drugs containing
this scaffold.
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2. Application of Click Chemistry with Natural Product Hybridization

The integration of click chemistry with natural product modification has opened
new avenues for exploring the therapeutic potential of natural products. By attaching
molecular tags, functional groups, or probes to natural products through click chemistry,
researchers can enhance their properties, improve their stability, facilitate their character-
ization, and enhance selectivity. The tagged natural products can be utilized in various
applications, including drug discovery, target identification, chemical biology, proteomics,
and imaging [46–48].

Molecular Hybridization of Alkaloids Using Click Chemistry

Alkaloids are a diverse group of nitrogen-containing secondary metabolites in plants,
animals, marine, and microbes [49–52]. These compounds are typically formed from amino
acids and can have a variety of chemical structures. Many alkaloids have been isolated from
plants, and have been used to create valuable drugs in modern medicine [53–55]. Alkaloids
have been shown to have therapeutic properties such as anesthetics, cardioprotective
agents, and anti-inflammatory agents. Some well-known alkaloids commonly used in
clinical settings include morphine, strychnine, quinine, ephedrine, and nicotine. Recently,
there has been a renewed interest in bioactive natural products due to the potential for
drug discovery and the development of traditional medicines. Various organic chemistry
strategies have extensively explored the click chemistry approach to develop potential
drug candidates.

Skiera et al. used cinchona azides and homologated azides to create new 1,2,3-triazole
hybrids in combination with antibiotic polyether ionophores, specifically salinomycin
and monensin N-propargylamides 1 and 2. Despite their complex structure, the standard
CuAAC protocol was highly efficient in producing the desired products. In vitro testing
against three cancer cell lines (LoVo, LoVo/DX, and HepG2) revealed that two compounds
had significant antiproliferative activity, with IC50 values below 3.00 µM. Furthermore,
these compounds were more selective towards normal cells than commonly used anticancer
drugs [56].
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Huang and colleagues successfully created a group of 7-triazole-substituted camp-
tothecin 3 through the CuAAC reaction. The process started with 7-ethynylcamptothecin,
which combined 7-chlorocamptothecin with Sonogashira coupling. The alkyne was then
combined with different azides using the standard CuAAC protocol, resulting in the cor-
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responding triazoles with high yields. After removing the camptothecin ester, the final
products 3 were tested for cytotoxicity against several cell lines, including A549, HCT-116,
HT-29, LoVo, and MDA-MB-231. Three products with R = n-Bu, Bn, and −(CH2)4COOMe
showed excellent in vitro activity. Moreover, all of the products 3 maintained their in-
hibitory ability against Topoisomerase I [57].
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Kuznetsova and Schmalz envisioned making colchicine less toxic and improving
its distribution in the body by employing lipophilic groups to the molecule. They used
a two-step process that involved reacting colchicine and allocolchicine with propargyl
alcohol and then esterifying them with palmitic or oleic acids to create lipophilic triazoles.
During testing, they found that only the colchicine derivatives 4 were effective, while the
allocolchicine derivatives 5 were less effective. One palmitic ester showed a significant
increase in antimitotic activity, but had a lower affinity to the colchicine binding site in
tubulin. They then tested these esters by encapsulating them in liposomes made with
egg phosphatidylcholine, yeast phosphatidylinositol, and palmitic or oleic esters. The
liposomal formulation of the ester with the oleoyl chain was more effective in inhibiting
cell proliferation than the unencapsulated ester. Screening these liposomes against four
human tumor cell lines confirmed the retained cytotoxicity of colchicine derivatives [58,59].
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A group of researchers, led by Fedorov, created a set of two-agent combinations
called dyads, consisting of colchicine and tubulizine, which are both antimitotic agents.
The purpose of this was to enhance their individual anticancer abilities. The process
involved using the CuAAC reaction of azide colchicine congeners with acetylene-decorated
tubulizine, resulting in products 6 with high yields. All dyads portrayed significant
cytotoxic activity against the HBL100 human mammary cell line, with IC50 values varying
from 0.60 to 2.93 µM. Although all triazoles showed greater activity than tubulizine, none
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were more effective than deacetylcolchicine. Furthermore, some compounds in this series
acted as sub-stoichiometric inhibitors of microtubule assembly [60].
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Shi and co-workers utilized berberine as a scaffold to synthesize a novel class of triazole-
containing derivatives through click chemistry. The primary objective of this research was to
develop potent multivalent inhibitors targeting acetyl- and butyrylcholine esterases (AChE
and BChE), as well as to explore their potential as β-amyloid aggregation inhibitors, which
play a crucial role in the neurodegenerative cascade of Alzheimer’s disease. The synthetic
pathway involved converting berberine azides into partially demethylated berberrubine.
Subsequently, N-propargyl-substituted tertiary amines were obtained by reacting secondary
amines with propargyl bromide. The CuAAC reaction successfully yielded the desired
berberine triazoles. Screening of the synthesized compound library led to the identification
of several highly active compounds. Compound X (R = 4-diisopropylamine) demonstrated
remarkable inhibitory activity against AChE, with an impressive IC50 value of 0.044 µM,
displaying selectivity towards AChE. Additionally, when the triazole ring bore a dibutylamine
substituent, the conjugate exhibited good inhibitory activity against AChE, with an IC50 value
of 0.20 µM, and displayed the highest potency in inhibiting β-amyloid aggregation [61].
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Jin and Yan extended the previous study, focusing on preparing a library of berberine
triazoles with reverse connectivity of the triazole group to evaluate their cytotoxicity.
O-propargylation of berberrubine was achieved directly, yielding O-propargylberberine,
which was subsequently subjected to a CuAAC reaction with substituted benzyl azides
to produce the corresponding triazoles. All synthesized products were evaluated against
three human cancer cell lines (MCF-7, SW-1990, and SMMC-7721) and the HUVEC line
(normal human umbilical vein endothelial cell) to assess their potential as anticancer agents.
Remarkably, most of the derivatives displayed significantly higher anticancer activities
against MCF-7 cells than the parent berberine. Compound 8, featuring a 4-tert-butyl
substituent in the phenyl ring, exhibited the highest potency against the SW-1990 and
SMMC-7721 cell lines, with IC50 values of 8.5 and 11.9 µM, respectively [62].
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Pingaew et al. synthesized a novel 1,2,3,4-tetrahydroisoquinoline derivative contain-
ing a 1,2,3-triazole moiety using a modified Pictet–Spengler reaction and the CuAAC
method to introduce the triazole ring. The antiproliferative activity of the products was
evaluated against four cancer cell lines (HuCCA-1, HepG2, A549, and MOLT-3), and some
compounds (9) displayed significant cytotoxicity. Notably, compounds with R = o-aryl
methyl ester demonstrated exceptional potency against HuCCA-1 (IC50 = 0.63 µM) and
A549 (IC50 = 0.57 µM) cell lines. Additionally, triazole X (R = p-Toluenyl) exhibited remark-
able activity against HepG2 cells (IC50 = 0.56 µM), and surpassed the activity of drugs such
as etoposide or doxorubicin without harming normal cells [63].
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which are responsible for 75% of human body infections. They turned to the flustramine
family of alkaloids to combat this issue, known for their broad antimicrobial activity. The re-
searchers used them as a scaffold for synthesizing an 18-member library of pyrroloindoline
1,2,3-triazole amides through CuAAC synthesis. The team created the library by reacting
various azides with a synthetic alkyne-functionalized pyrroloindoline mimic of flustramine,
then deprotecting the pyrrolidine nitrogen atom. The library was then screened against
Gram-positive and Gram-negative bacterial strains, including A. baumannii, E. coli, and
MRSA (methicillin-resistant Staphylococcus aureus), to determine its ability to modulate
biofilm formation. The screening resulted in the identification of several nontoxic com-
pounds with low micromolar IC50 values. Compound 10 showed high activity against
MRSA with p-alkylphenyl groups (C5–C7). It effectively inhibited biofilm formation
in methicillin-sensitive strain Staphylococcus aureus with IC50 values ranging from 6.6 to
32.0 µM [64].
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Ochrolifuanine E, a bis-indole alkaloid found in the Thai herbal medicine plant Dy-
era costulata, emerged as a potential inhibitor of β-secretase (BACE1) through a virtual
screening procedure conducted by Vajragupta’s group. BACE1 plays a critical role in
producing amyloid peptides from the amyloid precursor protein, making it a promising
target for Alzheimer’s disease drug development. Docking studies of the parent alkaloid
revealed that tryptoline (2,3,4,9-tetrahydro-1H-pyrido [3,4-b]indole) served as the key phar-
macophore responsible for the enzyme binding. This insight led to the design of a library
of 1,2,3-triazolyl tryptoline derivatives from which 22 most promising candidates, selected
based on docking analysis, were synthesized using the CuAAC reaction. Screening of these
derivatives for inhibitory activity against BACE1 resulted in the identification of a potent
inhibitor, compound 11 (IC50 = 1.49 µM), exhibiting 100 times greater selectivity to BACE1
over Catepsin D [65].
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Shinde and colleagues presented a new approach to creating 1,2,3-triazole-substituted
piperidines. They achieved this by adding an azido group to the fourth position of the
piperidine ring, using a simple transformation of N-Boc-protected piperidinone. The result-
ing azide was then combined with either ethyl propiolate or propargyl alcohol, using CuI
as a catalyst to produce the desired products. These products were then further modified
to create derivatives 12 and 13, exhibiting exceptional antifungal properties [66,67].
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Da Silva utilized 6-mercaptopurine, a synthetic drug that is similar to naturally occur-
ring purine alkaloids, to create a new series of mono- and bis-1,2,3-triazolyl derivatives.
He first conducted N- and S-propargylation of 6-mercaptopurine to produce mono- or
dipropargyl derivatives. These were then subjected to the CuAAC reaction with azidoacetic
acid and methyl 3-β-azidocholanoate. From a range of products, compounds 14 and 15
demonstrated exceptional antimalarial activity in vitro, with a higher rate of parasite multi-
plication inhibition compared to the common antimalarial drug, chloroquine [68].
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In a recent study, Nair and colleagues explored the potential of purine as a building
block for developing novel neuroprotective agents. Their approach involved integrating
a 1,2,3-triazole ring and fluoroaromatic groups into the purine scaffold. To begin, the
researchers modified commercially available 2,6-dichloropurine by introducing an alkyne
group through a two-step process. They then utilized the CuAAC reaction within situ-
generated benzyl azides to construct a series of compounds, including Compound 16. These
compounds were evaluated for their ability to safeguard neurons using fluorescence elec-
tron microscopy. Interestingly, one of the derivatives containing an o-fluorophenylmethyl
group exhibited neuroprotective properties on par with flavopiridol and roscovitine, two
well-known cyclin-dependent kinase (CDK) inhibitors. This compound effectively miti-
gated amyloid β (Aβ)-induced neurotoxicity [69].

Molecules 2023, 28, x FOR PEER REVIEW 9 of 19 
 

 

 
Da Silva utilized 6-mercaptopurine, a synthetic drug that is similar to naturally occurring 

purine alkaloids, to create a new series of mono- and bis-1,2,3-triazolyl derivatives. He first 
conducted N- and S-propargylation of 6-mercaptopurine to produce mono- or dipropargyl 
derivatives. These were then subjected to the CuAAC reaction with azidoacetic acid and me-
thyl 3-β-azidocholanoate. From a range of products, compounds 14 and 15 demonstrated ex-
ceptional antimalarial activity in vitro, with a higher rate of parasite multiplication inhibition 
compared to the common antimalarial drug, chloroquine [68]. 

 
In a recent study, Nair and colleagues explored the potential of purine as a building block 

for developing novel neuroprotective agents. Their approach involved integrating a 1,2,3-tri-
azole ring and fluoroaromatic groups into the purine scaffold. To begin, the researchers mod-
ified commercially available 2,6-dichloropurine by introducing an alkyne group through a 
two-step process. They then utilized the CuAAC reaction within situ-generated benzyl azides 
to construct a series of compounds, including Compound 16. These compounds were evalu-
ated for their ability to safeguard neurons using fluorescence electron microscopy. Interest-
ingly, one of the derivatives containing an o-fluorophenylmethyl group exhibited neuropro-
tective properties on par with flavopiridol and roscovitine, two well-known cyclin-dependent 
kinase (CDK) inhibitors. This compound effectively mitigated amyloid β (Aβ)-induced neu-
rotoxicity [69]. 

 
The Wang group developed glycoconjugates of phenanthroindolizidine alkaloids that 

target tobacco mosaic virus (TMV). The team utilized three different methods to conjugate (S)-
6-O-desmethylantofine and 14-hydroxytylophorine with sugars. One of the methods involved 
creating a 1,2,3-triazole linker to attach O-propargylated alkaloids with three different mono-
sugar units. The resulting glycoconjugates, 17 and 18, demonstrated improved water solubil-
ity. However, their activity was only moderate compared to glycoconjugates linked by simple 
glycosidic bonds, which showed highly active results. These findings highlight the 

The Wang group developed glycoconjugates of phenanthroindolizidine alkaloids that
target tobacco mosaic virus (TMV). The team utilized three different methods to conjugate
(S)-6-O-desmethylantofine and 14-hydroxytylophorine with sugars. One of the methods
involved creating a 1,2,3-triazole linker to attach O-propargylated alkaloids with three dif-
ferent monosugar units. The resulting glycoconjugates, 17 and 18, demonstrated improved
water solubility. However, their activity was only moderate compared to glycoconjugates
linked by simple glycosidic bonds, which showed highly active results. These findings high-
light the significance of the glycosidic bond in creating potent activity in glycoconjugates
that target TMV [70].
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Carroll and their team have effectively created a range of cocaine-like compounds
called 2β-alkynyl and 2β-(1,2,3-triazolyl)-3β-(aryl)tropanes. They tested the compounds’
ability to bind to dopamine, serotonin, and norepinephrine membrane transporters us-
ing radioligand binding assays. Surprisingly, all of the substances produced from the
alkyne intermediate through the CuAAC reaction, including two triazoles designated as
19, demonstrated a strong affinity for the dopamine transporter (DAT) in nanomolar or
sub-nanomolar concentrations [71].
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Researchers Thuy et al. have investigated the properties of Murrayafoline A, a car-
bazole alkaloid found in the roots of different Murraya species. This substance has a
wide range of biological activities, including the ability to kill fungi and induce apoptosis.
To explore its potential further, the researchers synthesized a series of derivatives called
X by combining the azido derivative of Murrayafoline A with various alkynes using a
CuAAC reaction. They then evaluated the biological effects of these derivatives, focusing
on their anti-inflammatory properties. The results showed that two of the triazoles 20
(R = −CH2NH2 and −CH2OH) were particularly effective at inhibiting the production of
cytokines IL-12 p40, IL-6, and TNF-α, outperforming the unmodified Murrayafoline A [72].
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Matrine, a quinolizidine alkaloid derived from the root of Sophora flavescens Ait (also

known as Kushen), is a traditional Chinese herb used for centuries for the treatment of
liver disease. Zhao et al. focused on synthesizing matrine–triazole–chalcone hybrids and
reported their notable growth inhibitory effects on a range of cancer cells. Compound
21 (IC50 = 5.01–7.31 µM) exhibited broad-spectrum anticancer activities against various
cancer cell lines (A549, Bel-7402, Hela, and MCF-7). Notably, Compound 21 displayed
superior potency compared to the combination of matrine and chalcone (IC50 > 50 µM) as
well as 5-fluorouracil (IC50 = 8.93–40.38 µM). Structure–activity relationship (SAR) studies
suggested that the α, β-unsaturated ketone moiety and the triazole played crucial roles in
determining the enhanced inhibitory activity. Further investigations revealed compound
21 could induce apoptosis in A549 cells and effectively suppress tumor growth in an A549-
xenografted nude mouse model (at 10 mg/kg) without causing apparent cytotoxicity [73].
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potent inhibitory activity than rucaparib (IC50 = 4.91–13.51 µM) and harringtonine (IC50:
10.55–11.71 µM) in A549, HCT-116, and MCF-7 cancer cells. Mechanistic investigations re-
vealed that 22 arrested the cell cycle at the S phase, inhibited PAR biosynthesis, and induced
apoptosis in A549 cells. Additionally, the same research group reported erythrina–triazole
23 (IC50 = 0.23–1.13 µM) to exhibit superior inhibitory activity compared to rucaparib
(IC50 = 2.58–13.82 µM) across a panel of cancer cell lines (A549, OVCAR-3, HepG2, A375,
and SW-620). Mechanistic studies indicated Compound 23 inhibited PAR biosynthesis and
induced apoptosis in A549 cells [74,75].
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Theophylline, a naturally occurring purine base, serves as a bronchodilator drug
for the treatment of respiratory diseases such as chronic pulmonary obstructive disease
and asthma. Ruddarraju et al. sought to explore its antibacterial properties in vitro
by linking theophylline and nucleosides by incorporating a triazole ring using conven-
tional Huisgen conditions. The triazole-tethered theophylline–nucleoside hybrid 25 ex-
hibited significant growth inhibition against A549, HT-29, MCF-7, and A375 cancer cells
(IC50 = 1.89–4.89 µM). On the other hand, hybrid 26 displayed potent antibacterial activi-
ties against both Gram-positive strains (Staphylococcus aureus, Bacillus cereus) and Gram-
negative strains (Escherichia coli and Pseudomonas aeruginosa) with impressive MIC values
(MIC = 0.03125–0.125 µg/mL), comparable to or even more potent than the clinical drug
ciprofloxacin (MIC = 0.0156–0.0625 µg/mL) [77,78].
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Quinine, a natural cinchona alkaloid, is a crucial element in antimalarial drugs and is
widely accessible. Boratyński et al. recently created a range of quinine derivatives by intro-
ducing azide at C9, C2’, and C6’. This resulted in a focused library of triazole-containing
chinchona alkaloids (27–30). In vitro studies revealed that most of these derivatives pos-
sessed moderate antiproliferative activity. Among them, 27 (IC50 = 0.53 µM) displayed
the most potential in MC-4-11 cells, while 28 (IC50 = 1.2 µM) was most effective in HT-29
cells [79].
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New molecules can have unexpected properties when small molecules are combined
with ferrocene, a unit known for its adjustable redox characteristics. Pešić et al. discovered
that 31 with IC50 value 2.34–2.13 µM, a ferrocene–quinine conjugate, inhibited the growth
of both drug-sensitive NCI-H460 cancer cells and multi-drug resistant (MDR) NCI-H460/R
cancer cells. Mechanistic studies showed that 31 increased ROS production and induced
mitochondrial damage in MDR cancer cells, highlighting the importance of the ferrocene
compound [80]. Meanwhile, Sahu et al. reported that 32, a C19 quinine–triazole derivative,
had potent antimalarial with IC50 = 0.25 µM against P. falciparum and antileishmanial
activities (L. donavani, IC50 = 1.78 µM) with no apparent adverse effects. Structural toxi-
cological activity relationship studies suggested that including the triazole compound in
quinine decreased toxicity [80]. Additionally, Panda et al. found that 33 exhibited more
potent in vitro antimalarial activity with an IC50 value of 27 nM than quinine (IC50 = 58 nM)
against P. falciparum strain 3D7, likely due to the addition of a hydrophobic alkyl chain at
C9 that improved the scaffold’s penetration ability [81].
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could inhibit the growth of SW-1990 (IC50 = 22.2 µM) and SMMC-7721 (IC50 = 14.9 µM) can-
cer cells [82]. Meanwhile, Nath et al. reported that berberine–triazole 35 (IC50 = 0.142 µM)
could exert antimalarial activity against the P. falciparum (3D7) strain without causing any
apparent harm to human PC-3 cells (IC50 > 200 µg/mL) [83].
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In 1966, Camptotheca acuminata yielded 20(S)-Camptothecin, a powerful inhibitor of
DNA topoisomerase I. Xu and colleagues later synthesized a range of C10 homocamptothecin–
triazole derivatives by introducing an alkyne at C10 of homocamptothecin and conducting
reactions with various azides under CuAAC. Among them, derivative 36 (IC50 = 30 nM) was
found to be more effective at inhibiting A549 cancer cells in a Topo I-dependent manner than
20(S)-camptothecin (IC50 = 170 nM). According to mechanistic studies, 35 can halt the cell
cycle at G2 and S phases [84].
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3. Drug-like Properties

Alkaloids, like vinblastine, were originally discovered in plants and have been ap-
proved for cancer treatment. However, their effectiveness is limited by poor solubility,
low bioavailability, drug resistance, and possible liver toxicity [85–87]. This has hindered
further experimentation beyond lab testing. Therefore, it is crucial to thoroughly under-
stand the drug-like properties of alkaloids when developing potential drug candidates and
using them as scaffolds. Preclinical drug development involves ADMET studies, which
stands for Absorption, Distribution, Metabolism, Excretion, and Toxicity studies. These
studies evaluate a drug candidate’s pharmacokinetic and pharmacodynamic properties.
ADMET studies provide essential information about a drug’s efficacy, safety, and pharma-
cokinetic properties, which helps make informed decisions regarding dosage, formulation,
and potential risks associated with the drug candidate. Integrating ADMET studies into
natural product drug development provides researchers with valuable insights into these
compounds’ pharmacokinetic and pharmacodynamic properties, which helps demonstrate
their drug-like properties [88–94].

A molecule’s drugability can be estimated using Lipinski’s rule of five (RO5), deter-
mining if a biologically active chemical is bioavailable [95,96]. The rule states that certain
molecular qualities, such as having no more than five hydrogen bond donors, a maximum
of ten hydrogen bond acceptors, a mass of less than 500 Da, and a partition coefficient (logP)
value of less than five, are linked to pharmacokinetic drug features such as absorption,
distribution, metabolism, and excretion. If one or more of these conditions are violated, the
molecule is predicted to be incapable of being taken orally. The number of rotatable bonds
and polar surface areas are also significant factors in assessing oral bioavailability [97]. For
example, the maximum number of rotatable bonds should be ten, and a molecule’s polar
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surface area should be no larger than 140 Å for orally active medicines carried by the tran-
scellular route [98,99]. The hERG IC50 value is another critical characteristic determining a
drug’s effectiveness in blocking potassium hERG channels. An ideal value for hERG pIC50
is less than five for consideration as a safer drug candidate [100–103]. The computational
tools STARDROP and SwissADME were used to determine the ADMET and drug-like
properties [104,105], compiled in Table 1, and can aid the development of effective and
safer drug candidates.

Table 1. ADMET and drug-like properties of potential molecularly hybridized alkaloids (bold red
numbers indicates violation of recommended key drug-like properties).

Compd. logP MW HBD HBA TPSA Rotatable Bonds hERG pIC50 BBB HIA

8 6.11 549.6 0 8 71.5 7 6.47 - +

11 4.21 409.5 2 6 67.8 4 6.26 - +

14 5.25 653.9 3 11 151.9 10 5.82 - -

15 0.36 430.4 2 14 179.6 9 3.62 - -

20a 3.00 350.4 1 6 65.1 6 5.99 - +

20b 2.72 349.4 1 6 70.9 6 5.80 - +

21 5.01 586.1 0 8 80.6 7 6.74 - +

22 3.69 404.5 0 5 51.0 3 6.77 - +

23 3.54 390.5 0 5 51.0 3 6.64 - +

24 5.05 548.8 0 8 77.5 12 6.58 - +

25 −0.77 660.6 3 20 236 12 3.11 - +

26 −2.17 604.5 4 20 246.9 11 2.76 - +

27 3.70 467.6 1 7 76.3 6 6.59 - +

28 3.28 483.6 2 8 96.5 6 6.59 - +

29 4.27 436.5 1 5 54.2 5 6.74 - +

30 4.50 502.6 0 7 68.9 6 7.47 - +

32 0.20 462.5 2 9 119.4 8 5.07 - -

33 5.18 509.6 0 7 65.3 9 7.41 - +

34 6.26 539.6 0 7 62.28 6 6.60 - -

35 5.51 639.1 1 10 108.4 7 7.09 - +

36 2.51 513.5 1 10 121.4 5 5.01 - +

In this article, we have compiled data on the common drug-like properties of potential
molecularly hybridized alkaloids using click chemistry. Most of these compounds meet
the required parameters; however, some (highlighted in red) have potential biological
properties but do not meet the recommended values of fundamental drug-like properties.

4. Clinical Trials

The pharmacological benefits of alkaloids have garnered increasing attention of late.
Extensive clinical studies have explored their efficacy in addressing various conditions,
including inflammation, skin conditions, constipation, Alzheimer’s disease, gastrointestinal
issues, respiratory problems, liver problems, diabetes, cancer, neurotoxicity, schizophrenia,
and kidney disease [106]. Over 135 clinical studies have been conducted on alkaloids, and
several more compounds based on alkaloids have entered clinical trials.
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5. Conclusions and Future Perspectives

Accessing a varied assortment of efficient molecules is paramount in developing new
pharmaceuticals with specific biological functions. Click chemistry has proven useful in
facilitating drug discovery and enabling access to many bio-diverse molecules. Alkaloids,
owing to their diverse biological activities, intricate structures, and natural abundance,
present themselves as promising prospects for contemporary drug discovery. Modifying
alkaloids is necessary to optimize their drawbacks and create natural product-like drug
screening libraries. Therefore, synthetic toolboxes enabling efficient access to molecular
hybridization and unique natural product functions are highly desirable. Click chemistry
is one of the most effective approaches for synthesizing diverse natural product derivatives.
Adding 1,2,3-triazole via click chemistry and molecular hybridization can enhance bio-
logical activity and improve kinetics and drug-like properties. Many of these derivatives
have shown new functions and could serve as an inexhaustible source for discoveries in
drug development. However, several issues and new research directions still need to be
addressed to fully harness the power of click chemistry in natural product-based drug
discovery. According to computational ADMET studies, most hybridized alkaloids are
toxic, with hERG pIC50 values exceeding the acceptable limit. Our review article will
provide valuable guidance to researchers on alkaloid-based drug development.
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