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Himalayan valley-floor widths controlled  
by tectonically driven exhumation

Fiona J. Clubb    1 , Simon M. Mudd    2, Taylor F. Schildgen    3,4, 
Peter A. van der Beek    4, Rahul Devrani    5 & Hugh D. Sinclair    2

Himalayan rivers transport around a gigaton of sediment annually to ocean 
basins. Mountain valleys are an important component of this routing 
system: storage in these valleys acts to buffer climatic and tectonic signals 
recorded by downstream sedimentary systems. Despite a critical need to 
understand the spatial distribution, volume and longevity of these valley 
fills, controls on valley location and geometry are unknown, and estimates of 
sediment volumes are based on assumptions of valley-widening processes. 
Here we extract over 1.5 million valley-floor width measurements across the 
Himalaya to determine the dominant controls on valley-floor morphology 
and to assess sediment-storage processes. Using random forest regression, 
we show that channel steepness, a proxy for rock uplift, is a first-order 
control on valley-floor width. On the basis of a dataset of 1,148 exhumation 
rates, we find that valley-floor width decreases as exhumation rate increases. 
Our results suggest that valley-floor width is controlled by long-term 
tectonically driven exhumation rather than by water discharge or bedrock 
erodibility and that valley widening predominantly results from sediment 
deposition along low-gradient valley floors rather than lateral bedrock 
erosion.

Valleys in mountain systems act as transient sinks for sediments that 
journey from sources on mountain hillslopes to their final resting 
place in forelands or ocean basins. This storage can buffer, shred or 
destroy propagating sedimentary signals1–3. Therefore, understand-
ing the spatial distribution, volumes and longevity of valley sediment 
fills is essential to reconstruct landscape evolution from sedimentary 
archives. However, controls on the spatial distribution of valley fills 
across the Himalaya are currently unknown. Past efforts to map the 
volumes and residence times of valley fills at scale4 rely on the assump-
tion that topography underneath the valley surface is similar to that of 
the exposed side slopes and therefore that little lateral erosion of the 
valley walls has taken place.

To explore valley widening, we consider a conceptual model where 
channels may either abrade or deposit sediment based on the ratio of 
sediment supply (Qs) to transport capacity (Qc) (Fig. 1). In channels with 

low Qs/Qc, little sediment will be deposited on the valley floor, resulting 
in bedrock incision, whereas channels with high Qs/Qc will deposit thick 
valley fills with subsequent valley widening5–9.

We can consider low Qs/Qc channels to behave similarly to the 
detachment-limited model for vertical incision, commonly used in 
mountain landscapes (for example, ref. 10). In this case, valley-floor 
width changes occur through lateral erosion of the valley walls and 
the balance between vertical incision and lateral erosion. Wall erosion 
is likely to occur when the channel is frequently in contact with the 
walls6,11, such as in narrow valleys. Valley-floor width Wv in this case has 
been suggested to scale with bank-full water discharge Qw, modulated 
by an erodibility coefficient K reflecting the impact of lithology (for 
example, refs. 12–16):

Wv = KQc
w. (1)
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incision17. Alternatively, increased frequency of landsliding in regions 
of high uplift (for example, ref. 19) could block channels, inducing 
upstream alluviation and widening.

The lithology of bedrock walls, K, is likely to be a more important 
control on Wv

12,16 in the low Qs/Qc end member. In a valley that changes 
width primarily due to sediment erosion or deposition, variations in K 
are unlikely to play a dominant role, as width is not set by lateral bedrock 
erosion. In the high Qs/Qc end member, K may influence sediment deliv-
ery to the channel and thus Wv by changing the size and resistance of 
sediment from hillslope failures or upstream sediment transport20. How-
ever, the complex interplay of upstream and lateral sediment supply and 
downstream sediment transport means that it would be challenging to 
link variations in sediment erodibility to Wv at each point along the chan-
nel. Faulting may also increase rock fracturing and therefore erodibility 
(for example, ref. 21): we might therefore expect that valleys in fractured 
zones (such as near seismogenic faults) would be wider where lateral 
erosion is important, but not in the high Qs/Qc model.

Equation (1) suggests that water discharge is an important control 
on Wv: however, in our conceptual model, the ratio of sediment flux to 

In landscapes transiently adjusting to changes in rock-uplift rate, 
this relationship has been shown to break down (for example, refs. 17,18).  
An alternative formulation postulates that valley width is also depend-
ent on valley slope (S)11,17 (Supplementary equations (1)–(5)).

Despite its common application, this low Qs/Qc case is contradicted 
by field observations, which show that mountain valleys are often 
infilled with sediment (Fig. 1). In valleys with a high Qs/Qc, widening 
through wall erosion will only occur if lateral erosion rates greatly 
exceed vertical incision, such that the channel regularly moves across 
the valley floor, impinging upon sidewalls6,11. However, Wv can also 
change purely through sediment deposition and/or erosion, without 
lateral wall erosion. If we imagine a roughly V-shaped valley infilled 
with sediment (Fig. 1), then increasing sediment fill would widen the 
valley, whereas incision into the fill would narrow it.

These end members of Qs/Qc represent contrasting mechanisms 
of valley-floor width changes, which are controlled by different factors 
(Fig. 1). In both cases, rock uplift is likely to be an important control on Wv,  
because highuplift rates elevate channel slopes, decreasing Qs/Qc 
through increased flow velocity, resulting in narrowing and bedrock 
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water discharge, Qs/Qw, rather than Qw alone, is likely to influence Wv. 
Field studies22,23 and physical experiments7 have demonstrated that a 
decrease in Qs/Qw leads to incision and valley narrowing, whereas an 
increase in Qs/Qw leads to sediment deposition and widening. Over 
orogenic scales, we therefore hypothesize that the correlation between 
Wv and Qw would be complicated by spatial variations in sediment flux. 
Sediment-storage volume estimates across the Himalaya4 implicitly use 
the high Qs/Qc end member because they assume that little erosion of 
the valley walls occurs to modify the valley-floor topography.

In this contribution, we investigate dominant controls on Wv across 
the Himalaya and test these end-member models of valley widening and 
sediment storage. We generate a dataset of valley-floor widths across 
the Himalaya and investigate the relative importance of hypothesized 
controls on Wv through random forest regression. We also explore 
links between Wv, channel steepness (ksn) and exhumation rate using 
a compilation of thermochronometric cooling ages24.

We use an automated method25,26 to extract Wv from every major 
river basin in the Himalaya, resulting in 1,644,215 width measurements. 
We grid Wv into 10 km pixels to better reveal spatial trends: Fig. 2 shows 
the distribution of Wv across the orogen. We quantify each controlling 
factor that may affect Wv outlined in Fig. 1 (Methods).

Controls on valley-floor width
Figure 3a shows a bimodal distribution of Wv with elevation, where val-
leys are widest at elevations <1,000 m and >4,000 m. We would expect 
the southern, low-elevation region to have wider valleys as discharge 
increases towards the foreland. Although we remove areas affected 
by glaciation (Methods), widening at high elevations also results from 
past glaciations. We tested for this by removing valleys affected by Last 
Glacial Maximum glaciation, but this did not alter the results (Sup-
plementary Figs. 1 and 2). High elevations also correlate with lower ksn 
(Extended Data Fig. 1) and erodible lithologies of the Tethyan Himalayan 
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Sequence (THS), suggesting that increased Wv at high elevations may 
be explained by other co-varying factors.

Figure 3b also shows that there is variation in median Wv among 
the main tectono-stratigraphic units. This is possibly due to lithologi-
cal control on Wv, as the narrowest valleys are found in the high-grade 
gneisses and granites of the Greater Himalayan Sequence (GHS). 
The widest valleys are found in the sedimentary units of the Siwaliks 
in the Sub-Himalayan Zone (SHZ). However, these variations with 
tectono-stratigraphy co-correlate with elevation as discussed above, 
making it difficult to separate these two factors. Figure 3e shows there 
is little variation in Wv with distance from the major tectonic structures 
(MFT, MBT, MCT or STD), suggesting that increased erodibility through 
fracturing21 is not enhancing wall erosion.

Rock-uplift rates across the Himalaya since the middle Miocene 
have been controlled primarily by the geometry of the Main Himalayan 
Thrust (MHT)27, a northward-dipping décollement, which is the basal 
detachment for the MFT, MBT and MCT. The MHT is thought to be 
relatively flat under much of the Lesser Himalayan Sequence (LHS), 
steeper to the north over a mid-crustal ramp (for example, ref. 28) 
beneath the GHS, then flat again beneath the THS (Fig. 4). The ramp 
is associated with faster rock-uplift rates and steeper topography29, 
with a ‘physiographic transition’ (PT) marking the change from the 
southern (shallower) flat to the ramp. In central Nepal, we find a dis-
tinct area of wide valley floors within the LHS, with the transition to 
narrow valleys north of the PT coinciding with increased exhuma-
tion rate (Fig. 4). Considering that the PT cuts across the LHS in this 
region, the flat-ramp-flat structure of the MHT appears to influence 
Wv in central Nepal more strongly than the transitions across tectono- 
stratigraphic units.

Existing valley-widening models predict a monotonic relationship 
between Qw and Wv (equation (1)). Our results do not show this relation-
ship (Fig. 3c). Although the widest valleys are found in regions with the 
highest Qw, the narrowest valleys (99 ± 280 m) tend to coincide with 
intermediate Qw of 0.2–1.0 m3 yr−1. At the lowest Qw of 0.01–0.05 m3 yr−1, 
median Wv increases to 139 ± 169 m. This lack of correlation suggests 
that in contrast to the commonly applied model of width evolution 
through lateral bedrock erosion, Qw is not the dominant control on Wv 
across the actively uplifting Himalayan orogen.

There is, however, a negative correlation between Wv and ksn (Fig. 3d).  
We tested this relationship across different tectono-stratigraphies and 
found it is consistent between lithologies (Extended Data Fig. 2). To 
account for the competing influence of Qw and S, we also calculated a 
discharge-weighted channel steepness, ksn−q 

30. We found this did not 
alter the relationship between ksn and Wv (Supplementary Fig. 3). ksn 
is a widely accepted proxy for rock-uplift rate (for example, ref. 31), 
suggesting that Wv responds to spatial variations in rock-uplift rate. 
We also find no relationship between Wv and mean annual rainfall 
(Extended Data Fig. 3).

To further test tectonic control of Wv, we use a compilation of 
1,148 thermochronometric ages24 (Fig. 5), from which we estimate 
exhumation rates (E) using a simple 1D thermal model (Methods). 
Figure 5b,c shows a correlation between Wv, E and ksn. The lowest E 
of 0.1–0.2 mm yr−1 corresponds to the widest valleys and lowest ksn. 
Intermediate E between 0.3 and 0.9 mm yr−1 show less variation in 
both Wv and ksn, whereas E ≥ 2 mm yr−1 correspond to narrow valley 
floors and steep channels. Variations in E in the Himalaya have been 
argued to be strongly tectonically controlled27,32,33. The correlation 
between Wv and E, along with the changes in Wv across the flat-ramp-flat 
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reduction (dark grey). Normalization is performed by dividing each variable 
importance by the most important variable (ksn in both cases).

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-023-01238-8

geometry of the MHT (Fig. 4), indicate that Wv is probably controlled  
by tectonics.

Thermochronologic cooling ages are representative of exhuma-
tion over long timescales (105 to 107 years)34. Patterns of exhumation 
across the Himalaya are likely to change through time with tectonic or 
climatic variations (for example, refs. 35–37), potentially disconnect-
ing long-term exhumation measurements and valley-forming pro-
cesses. We focus here on thermochronometry rather than cosmogenic 
radionuclide-derived (CRN) erosion rates because the spatial coverage 
of thermochronometric data is far greater than CRN and because the 
relationship between Wv and A makes it challenging to determine a 
representative Wv to compare with catchment-averaged erosion rates. 
Examining Wv and E separately by thermochronometer (Extended 
Data Fig. 4) shows that the relationship between Wv and E is strongest 
in chronometers with lower closure temperatures, representing more 
recent exhumation rates. Nevertheless, the correlations between Wv, 
ksn and E across the dataset (Fig. 5) indicate a tectonic control on Wv and 
ksn despite potential temporal variations.

Importance of valley-floor width controls
Figure 3a–e demonstrates that many factors may control Wv across 
the Himalayan orogen; we therefore take a data-driven approach to 
determine which has the strongest influence using random forest 
(RF) regression. To explore key controls on Wv, we focus on the fol-
lowing variables based on our conceptual model (Fig. 1): (1) elevation, z;  
(2) ksn; (3) Qw; (4) K; and (5) distance from the nearest fault, df (MFT, 
MBT, MCT or STD). We calculate K using CRN-derived erosion rates 
and ksn (Methods).

RF-regression estimates of variable importance (Methods) indi-
cate that ksn is the most important predictor across all regression mod-
els (Fig. 3f), with K consistently the least important. z, Qw and df have 
relatively similar importance, although z tends to be more important 
among these three. There are distinct spatial trends in ksn with z, with 

highest ksn found at intermediate z and lower ksn at both low and high z 
(Extended Data Fig. 1). This co-variation may explain the high relative 
importance of z in the RF model.

Implications for valley-widening processes
Our results indicate moderate importance of Qw and low importance of K 
on Wv, contrasting with common valley-widening models (equation (1)).  
We propose that observed Wv are likely set by sediment accumulation, 
corresponding to the higher Qs/Qc end member in Fig. 1. This suggests 
little modification of topography under these fills, supporting a key 
assumption of Himalayan sediment volume estimates4. For a given 
Qs and Qw, the likelihood of a channel to incise or aggrade is set by S, 
dependent on uplift. The relationship between E, ksn and Wv indicates 
that high rock-uplift rates in rapidly exhuming regions, reflected by 
high values of ksn, are likely to increase Qc, mobilizing sediment that 
acts as tools for bedrock incision during peak Qw, with subsequent 
valley-floor narrowing. Therefore, rivers in high-uplift regions are likely 
to typify the low Qs/Qc end member, whereas slowly uplifting regions 
exemplify the higher Qs/Qc scenario. Nevertheless, the low importance 
of K suggests that sediment is important across the full range of E and 
that even under the highest rock-uplift rates, rivers are likely to contain 
substantial alluvial cover, with bedrock incision only during extreme 
transport events.

Damming behind landslides or uplifting structures increases Wv 
upstream. Considering that landslides occur more frequently in rapid 
exhumation regions19, a landslide-dam control on Wv at the orogen scale 
would generate wider valley floors in faster exhuming regions (Fig. 1), or 
at least highly variable widths. In contrast, if damming behind uplifting 
structures (for example, refs. 38,39) controlled Wv, wider valleys may 
be randomly distributed. We find that ksn is a first-order control on Wv 
and that ksn increases and Wv decreases with E. This implies that the dis-
tribution of valley fills is driven by tectonically controlled exhumation, 
rather than landsliding or structural damming. An exception is that at 
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intermediate E of 0.3–0.9 mm yr−1, increased E does not lead to con-
comitant changes in ksn or Wv. If at these intermediate exhumation rates, 
channels are insufficiently steep to regularly flush aggraded sediment, 
the impact of landslide and structural damming could be enhanced.

Although our results point to Wv being set by the depth of sediment 
fill rather than wall erosion, valleys must experience lateral erosion dur-
ing their evolutionary history. The Qs/Qc ratio may vary during climate 
oscillations5,6, leading to alternating periods of bedrock incision and 
widening through wall erosion and periods of sediment deposition 
and filling. However, valleys that are currently alluviated must also 
facilitate bedrock erosion to adjust to long-term uplift rates. The fre-
quency of incision should be limited to the most extreme events that 
can remobilize valley fills40–43. Recent work shows that valleys regularly 
affected by glacial lake outburst floods (GLOFs) are generally narrower 
and contain less sediment, facilitating bedrock erosion, while valleys 
with less frequent GLOFs showed sediment trapping and lower incision 
rates44. Along the Bhote Koshi River, GLOFs were observed to mobilize 
the largest boulders41, indicating that they can effectively flush valleys 
and cause bedrock erosion.

Our findings raise questions about the residence times of valley-fill 
deposits compared to extreme event frequencies. The adjustment of 
Wv to E averaged over 105–107-year timescales indicates either that val-
ley fills persist over geological timescales or that Wv adjusts relatively 
rapidly to the local exhumation rate. Residence times of Himalayan 

fills have been proposed to exceed 105 years for the largest valleys4. 
Recurrence intervals of extreme events are likely shorter, with the 
Bhote Koshi River affected by GLOFs with a return interval of ≈ 30 
years45, although it is unlikely that every GLOF will strip all sediment 
from the valley floor. Dating of far-travelled boulders in the Trishuli 
and Sunkoshi rivers indicated a recurrence interval of ≈ 5 thousand 
years for the most extreme GLOFs46. Our results suggest that valley 
re-filling to adjust to local exhumation occurs on shorter timescales 
than valley-fill removal.

The link between E and Wv also has important implications for 
sediment routing systems and the transmission of sedimentary sig-
nals to basins. If slower exhumation rates lead to wider valleys, then 
sedimentary signals of external forcing in slowly exhuming areas are 
likely to spend more time in storage compared to rapidly exhuming 
areas, resulting in either buffering or shredding of the signal before 
it reaches its depositional sink (for example, refs. 2,3). Future work is 
needed to further explore (1) the timescales of Himalayan valley-fill 
preservation; (2) the impact of exhumation rate on the propagation of 
allogenic signals and (3) the sub-surface geometry of valley deposits to 
allow further investigation into valley-widening mechanisms.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Fig. 5 | The relationship between valley-floor width, channel steepness and 
exhumation rate. a, Map of exhumation rate derived from thermochronometry 
data across the Himalaya: the colours represent the exhumation rate in mm yr−1, 
symbols represent the thermochronometric system. AHe: apatite (U-Th)/He; 
AFT: apatite fission track; ZHe: zircon (U-Th)/He; ZFT: zircon fission track; ArAr: 
40Ar/39Ar. b, Box plots showing relationship between valley-floor width and 

exhumation rate: the numbers above each box show the number of samples in 
the corresponding bin (n = 1,148). c, Box plots showing the relationship between 
normalized channel steepness (ksn) and exhumation rate (n = 1,148). The solid 
black line shows the median of each distribution; the box represents the inter-
quartile range; and the whiskers represent 1.5 times the inter-quartile range. 
Minima and maxima have been omitted to ensure readability.
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Methods
Extraction of topographic metrics
First, we isolated our analysis to the extent of the orogen49,50, includ-
ing the tectono-stratigraphic units of the SHZ, the LHS, the Greater 
Himalayan sequence (GHS) and the THS and excluding both the western 
and eastern syntaxial regions. We then split the DEM into major river 
catchments using catchment outlines from the Hindu Kush Himalayan 
region47 and limited our analysis to those draining to the southern edge 
of the orogen. We then analysed valley-floor width for every major river 
basin, using a method for reproducibly extracting valley-floor width 
from digital elevation models (DEMs)26. This method first identifies 
floodplains using a threshold of slope and elevation above the nearest 
channel25. These thresholds can either be set manually by the user or 
defined automatically; to ensure consistency across the orogen, we 
manually set a slope threshold of 0.15 and an elevation threshold of 
100 m. The method then identifies the main flow direction of the chan-
nel and calculates valley-floor width orthogonal to this. The minimum 
possible width measurement is 60 m, which is set by the resolution of 
the DEM (2 DEM pixels).

Following extraction of width measurements for every channel, 
we removed any measurements that intersected each other (that is, at 
tributary junctions) as these measurements are unlikely to represent 
the true valley-floor width. We removed measurements from modern 
glaciers across the Himalayas using the glacier outline shapefiles from 
the Randolph Glacier Inventory51: we removed any measurements 
within the boundaries of each shapefile. Alongside modern glaciation, 
valleys that have been affected by glaciation through the Quaternary 
may have a topographic signature of glaciation rather than fluvial pro-
cesses. We therefore performed a sensitivity analysis of our results to 
estimated glacial extents during the Last Glacial Maximum by estimat-
ing the minimum elevation of the LGM equilibrium line altitudes for 
glaciers across the orogen, using a regional compilation52. We found 
that removing the signature of Quaternary glaciations did not affect 
the results (Supplementary Figs. 1 and 2). After filtering, we gridded 
the valley-floor width data using a grid cell size of 10 km, taking the 
mean valley-floor width within each grid cell. We tested the sensitivity 
of the random forest regression to grid cell size (Supplementary Fig. 4)  
and found that the results were insensitive to gridding at cell sizes 
from 1 to 10 km.

We calculated the mean elevation of each 10 km valley-floor grid 
cell using the Copernicus 30 m DEM and determined the underlying 
tectono-stratigraphic unit using a geologic database50. We calculated 
normalized channel steepness (ksn (m0.9)) across each river basin using 
a segmentation approach53 as implemented in LSDTopoTools54. ksn 
is often used as a proxy for rock-uplift or erosion rates and has been 
shown to correlate with local relief and catchment-averaged erosion 
rate across the Himalaya (for example, refs. 55–59). We used a reference 
concavity value, θ = 0.45, which has previously been estimated for the 
Himalayan region (for example, ref. 60). We gridded the ksn data using 
the same approach as for valley-floor width (Fig. 2b).

To estimate water discharge, Qw, we use a simple proxy based on 
weighting upstream drainage area (A) by mean annual rainfall (P)30:

Qw = PA, (2)

We estimated P from 1981 to 2019 across the Himalaya using the Cli-
mate Hazards Group InfraRed Precipitation with Station (CHIRPS) 
dataset, which combines 0.05° resolution satellite imagery with 
ground-station data61. The advantage of using the CHIRPS dataset is 
that it has a near-global rainfall time series for more than 30 years, 
giving longer-term estimates of P that should be less sensitive to 
short-term temporal variations. We calculated P from this dataset using 
Google Earth Engine, then resampled P to a spatial resolution of 30 m 
to correspond to that of the topographic data. We test discharge rather 
than drainage area as the Himalaya have a strong orographic rainfall 

gradient resulting in an order-of-magnitude variation in P across strike 
and an ≈ sixfold increase in rainfall from west to east62,63. To test the 
ability of this simple model to reflect real variations in Qw, we compared 
the model predictions to measured Qw from gauging stations across 
major rivers in Nepal64,65. We found good agreement between modelled 
and measured Qw across a range of discharges (Supplementary Fig. 5).

To investigate the potential impact of fracturing on bedrock erod-
ibility, we also calculated the Euclidean distance of each grid cell from 
the nearest major tectono-stratigraphic boundary (either the Main 
Frontal Thrust (MFT), Main Boundary Thrust (MBT), Main Central 
Thurst (MCT) or South Tibetan Detachment (STD))50.

Compilation of thermochronology data and calculation of 
exhumation rates
We updated an existing compilation of thermochronometric data 
from the Himalaya66 to include more recent publications up to July 
2022, including all data falling within the basins outlined in Fig. 2a. We 
include results from five thermochronometric systems in our analysis: 
apatite and zircon (U-Th)/He (AHe, ZHe) and fission track (AFT, ZFT) 
and white mica 40Ar/39Ar (MAr). We removed any cooling ages ≥50 Ma, 
as these ages are pre-Himalayan49 and are therefore unrepresentative 
of valley-forming processes, and samples from the SHZ, as these are 
generally incompletely reset since deposition67. In some cases, multiple 
thermochronometric cooling ages were available for a single location: 
we filtered the dataset to keep only the youngest age for these sam-
ples, as these are more likely to be representative of the erosion rate 
shaping the modern topography. We also filtered the dataset based 
on uncertainty by removing any samples where the 1σ uncertainty 
in predicted exhumation rate was greater than the exhumation rate 
itself (Supplementary Fig. 6), and we removed any samples within the 
boundaries of modern glaciers51. The complete dataset and associated 
references can be found in ref. 24.

We use a 1D thermal model that assumes vertical exhumation 
and thermal steady state to estimate exhumation rates from the 
thermochronology data. The model (refer to ref. 24 for details) takes 
into account the advective perturbation of the geotherm by rapid 
exhumation68 and the control of cooling rate on closure temperature 
of each thermochronometric system69. We use the sample elevation 
to estimate the surface temperature using a linear atmospheric lapse 
rate (5 °C km−1) and a constant sea-level temperature (25 °C) and to 
estimate the vertical difference between the sample elevation and 
the average elevation smoothed within a radius that depends on the 
estimated closure depth of each thermochronometric system70. The 
latter is used to correct the estimated exhumation rate for relative 
sample elevation. For other model parameters, we assume the follow-
ing: an initial linear geotherm of 25 °C km−1, a thermal diffusivity of 
30 km2 Myr−1 and a model thickness of 30 km. We then mapped each 
exhumation rate sample to the corresponding valley-floor width cell 
in the gridded 10 km dataset and binned valley-floor width and ksn 
by exhumation rate.

Erodibility index
We calculated an erodibility index, K, for each of the main tectono- 
stratigraphic units across the Himalayan orogen using a compilation 
of catchment-averaged erosion rate data from cosmogenic radionu-
clides71, similar to the approach of ref. 72. The commonly used stream 
power incision model predicts a nonlinear relationship between chan-
nel slope and erosion rates:

E = KAmSn, (3)

which we can rearrange to find an expression for channel slope, S:

S = E
K

1/n
A−θ, (4)
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where θ = m / n. We can simplify this equation to:

S = ksnA−θ, (5)

ksn = E/K1/n. (6)

We estimate ksn as described above and then assume that the 
CRN-derived erosion rates are representative of erosion across the 
entire basin, such that for each point on the network, we know ksn 
and set E as the catchment-averaged erosion rate. We can then rear-
range equation (6) to solve for erodibility at each point on the channel  
network, Ki:

Ki =
E

ksni
n . (7)

Many studies have suggested through both numerical modelling 
and field studies that n is likely to be > 1 (for example, refs. 72–74), with 
n ≈ 2 thought to be reasonable in most cases75. We therefore set n = 2 
in equation (7): a similar approach was also taken by ref. 76. As we set 
m / n = 0.45 in our ksn calculation, this results in m = 0.9. We then sepa-
rate the calculated erodibilities based on tectono-stratigraphic unit 
and calculate the median K for each. The median values of K for each 
unit can be found in Supplementary Table 1.

A similar approach to calculating K can be taken, which also 
accounts for the impact of climate, by back-calculating K from the 
relationship between erosion rates and a channel steepness calculated 
by weighting drainage area by precipitation, ksn−q

77. We calculated ksn−q 
and found that the relationship between Wv and ksn−q was similar to that 
of ksn (Supplementary Fig. 3). Furthermore, we found no relationship 
between P and Wv, suggested that weighting K by P is unlikely to change 
the relationship between K and Wv. Other approaches to estimating 
erodibility have derived an erodibility index that incorporates (1) a 
rock strength index (LL), related to its composition and (2) an age index 
based on the stratigraphic age of the unit78,79. We also tested this method 
of determining erodibility and found that it did not alter the relative 
importance in the random forest analysis (Supplementary Fig. 7).

Random forest regression
Random forest (RF) regression is a form of supervised machine learn-
ing, which uses an ensemble of decision trees to predict a target vari-
able (here Wv) from a high-dimensional dataset (for example, ref. 80). 
It allows the calculation of variable importance (VI) for each variable 
used to predict the target variable. It requires no assumptions about 
the structure of the underlying data and therefore is useful in cases 
where the relationship between the target variable and the predictors 
is unknown a priori81. We performed RF regression on the 10 km grid-
ded dataset to isolate the key signals of valley widening and reduce 
dataset noise. Supplementary Fig. 8 shows the spatial distribution 
of additional metrics used in the RF regression across the Himalayan 
orogen (elevation, water discharge, distance from nearest fault and 
tectono-stratigraphy). Before running the regression model, we split 
the gridded dataset into 80% training and 20% testing to allow for 
validation.

The number of decision trees (NT) used to build the regression 
model has shown to be important when using RF regression, particu-
larly when investigating VI80. We therefore performed a sensitivity 
analysis on the regression varying the number of decision trees from 
10 to 2,000 (Supplementary Fig. 9). This analysis showed that the root 
mean square error of the regression model became relatively insensi-
tive when the number of decision trees is greater than 1,000, with root 
mean square error 167 m. We therefore ran all RF-regression runs with 
1,000 decision trees to ensure greatest computational efficiency.

VI in random forest regression can be determined through two 
approaches: average impurity reduction and permutation reduction 

(for example, refs. 82,83). Average impurity reduction80 states that the 
importance (Imp) of any variable Xj in predicting the target variable, 
Y, can be calculated by summing the weighted impurity decreases p(t)
Δi(st, t), where t represents each node where Xj is used, and φm is tree m 
in the forest containing all trees m = 1, . . . , M:

Imp(Xj) =
1
M

M
∑
m=1

∑
t∈φm

δjt ,j[p(t)Δi(st, t)], (8)

where:

δjt ,j = {
1 if jt = j

0 otherwise,
(9)

p(t) is the proportion of samples reaching t, and jt is the variable used 
to split node t83. This approach gives the most importance to the vari-
able that most decreases the mean impurity across all trees in the 
forest. However, the impurity reduction approach has been shown 
to be biased towards predictors that have a large number of values84. 
Therefore, an alternative approach to estimating variable importance 
called permutation reduction has been suggested80, which estimates 
the change in the mean standard error of the regression model when 
permuting a variable. The reader is referred to ref. 80 and ref. 83 for a 
full derivation and discussion of permutation reduction VI. We per-
formed a sensitivity analysis of the variable importances derived for 
the valley-floor width regression model to choice of VI metric across 
a range of different decision trees (Supplementary Fig. 10). We find 
that the VIs are insensitive to the number of decision trees used in the 
regression model and that the order of VI is identical with our chosen 
model run of 1,000 trees.

Data availability
The thermochronometric dataset used in this paper is available through 
the Zenodo data repository (https://doi.org/10.5281/zenodo.7053115). 
The valley-floor width dataset is available through Durham University 
Collections (https://doi.org/10.15128/r2z890rt27d). Source data are 
provided with this paper.

Code availability
The code for topographic analysis, including valley-floor width extrac-
tion, is available as part of the open-source LSDTopoTools software 
package54. The code to estimate exhumation rates from thermochro-
nology data is available through the Zenodo data repository (https://
doi.org/10.5281/zenodo.7053218).

References
49. Yin, A. & Harrison, T. M. Geologic evolution of the 

Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28, 
211–280 (2003).

50. Parsons, A. J., Hosseini, K., Palin, R. M. & Sigloch, K. Geological, 
geophysical and plate kinematic constraints for models of the 
India–Asia collision and the post-Triassic central Tethys oceans. 
Earth Sci. Rev. 208, 103084 (2020).

51. Randolph Glacier Inventory—a dataset of global glacier 
outlines: Central, SW, and SE Asia. RGI Consortium https://doi.
org/10.7265/4m1f-gd79 (2017).

52. Owen, L. A. & Benn, D. I. Equilibrium-line altitudes of the Last 
Glacial Maximum for the Himalaya and Tibet: an assessment and 
evaluation of results. Quat. Int. 138-139, 55–78 (2005).

53. Mudd, S. M. et al. A statistical framework to quantify spatial 
variation in channel gradients using the integral method of 
channel profile analysis. J. Geophys. Res. Earth Surface 119, 
138–152 (2014).

54. Mudd, S. et al. LSDTopoTools2 v0.5 https://doi.org/10.5281/
ZENODO.5788576 (2021).

http://www.nature.com/naturegeoscience
https://doi.org/10.5281/zenodo.7053115
https://doi.org/10.15128/r2z890rt27d
https://doi.org/10.5281/zenodo.7053218
https://doi.org/10.5281/zenodo.7053218
https://doi.org/10.7265/4m1f-gd79
https://doi.org/10.7265/4m1f-gd79
https://doi.org/10.5281/ZENODO.5788576
https://doi.org/10.5281/ZENODO.5788576


Nature Geoscience

Article https://doi.org/10.1038/s41561-023-01238-8

55. Wobus, C. W., Whipple, K. X. & Hodges, K. V. Neotectonics of the 
central Nepalese Himalaya: constraints from geomorphology, 
detrital 40Ar/39Ar thermochronology, and thermal modeling. 
Tectonics 25, TC4011 (2006).

56. Kirby, E. & Whipple, K. X. Expression of active tectonics in 
erosional landscapes. J. Struct. Geol. 44, 54–75 (2012).

57. Yang, R., Herman, F., Fellin, M. G. & Maden, C. Exhumation and 
topographic evolution of the Namche Barwa Syntaxis, eastern 
Himalaya. Tectonophysics 722, 43–52 (2018).

58. Ojha, L., Ferrier, K. L. & Ojha, T. Millennial-scale denudation  
rates in the Himalaya of far Western Nepal. Earth Surf. Dyn. 7, 
969–987 (2019).

59. Wahyudi, D. R., Sinclair, H. D. & Mudd, S. M. Progressive evolution 
of thrust fold topography in the frontal Himalaya. Geomorphology 
384, 107717 (2021).

60. Gailleton, B. et al. Isolating lithologic versus tectonic signals 
of river profiles to test orogenic models for the Eastern and 
Southeastern Carpathians. J. Geophys. Res. Earth Surf. 126, 
e2020JF005970 (2021).

61. Funk, C. et al. The climate hazards infrared precipitation with 
stations—a new environmental record for monitoring extremes. 
Sci. Data 2, 150066 (2015).

62. Bookhagen, B. & Burbank, D. W. Topography, relief, and 
TRMM-derived rainfall variations along the Himalaya. Geophys. 
Res. Lett. 33, L08405 (2006).

63. Bookhagen, B. & Burbank, D. W. Toward a complete Himalayan 
hydrological budget: spatiotemporal distribution of snowmelt 
and rainfall and their impact on river discharge. J. Geophys. Res. 
Earth Surf. 115, 3019 (2010).

64. Andermann, C. et al. Connecting source and transport: 
suspended sediments in the Nepal Himalayas. Earth Planet. Sci. 
Lett. 351-352, 158–170 (2012).

65. Andermann, C. et al. Impact of transient groundwater storage on 
the discharge of Himalayan rivers. Nat. Geoscience 5,  
127–132 (2012).

66. Thiede, R. C. & Ehlers, T. A. Large spatial and temporal variations 
in Himalayan denudation. Earth Planet. Sci. Lett. 371-372,  
278–293 (2013).

67. van der Beek, P. et al. Late Miocene—recent exhumation of the 
central Himalaya and recycling in the foreland basin assessed 
by apatite fission-track thermochronology of Siwalik sediments, 
Nepal. Basin Res. 18, 413–434 (2006).

68. Mancktelow, N. S. & Grasemann, B. Time-dependent effects 
of heat advection and topography on cooling histories during 
erosion. Tectonophysics 270, 167–195 (1997).

69. Dodson, M. H. Closure temperature in cooling geochronological 
and petrological systems. Contribu. Mineral. Petrol. 1973 40:3 40, 
259–274 (1973).

70. Willett, S. D. & Brandon, M. T. Some analytical methods for 
converting thermochronometric age to erosion rate. Geochem. 
Geophys. Geosyst. 14, 209–222 (2013).

71. Codilean, A. T. et al. OCTOPUS: an open cosmogenic isotope 
and luminescence database. Earth Syst. Sci. Data 10, 2123–2139 
(2018).

72. Harel, M. A., Mudd, S. M. & Attal, M. Global analysis of the stream 
power law parameters based on worldwide 10Be denudation rates. 
Geomorphology 268, 184–196 (2016).

73. Clubb, F. J., Mudd, S. M., Attal, M., Milodowski, D. T. & Grieve, S. W.  
The relationship between drainage density, erosion rate, and 
hilltop curvature: implications for sediment transport processes. 
J. Geophys. Res. Earth Surf. 121, 1724–1745 (2016).

74. Perne, M., Covington, M. D., Thaler, E. A. & Myre, J. M. Steady 
state, erosional continuity, and the topography of landscapes 
developed in layered rocks. Earth Surf. Dyn. 5, 85–100 (2017).

75. Lague, D. The stream power river incision model: evidence, theory 
and beyond. Earth Surf. Process. Landforms 39, 38–61 (2014).

76. Zondervan, J. R., Stokes, M., Boulton, S. J., Telfer, M. W. & Mather, 
A. E. Rock strength and structural controls on fluvial erodibility: 
implications for drainage divide mobility in a collisional mountain 
belt. Earth Planet. Sci. Lett. 538, 116221 (2020).

77. Leonard, J. S., Whipple, K. X. & Heimsath, A. M. Isolating climatic, 
tectonic, and lithologic controls on mountain landscape 
evolution. Sci. Adv. 9, eadd8915 (2023).

78. Campforts, B. et al. Parameterization of river incision models 
requires accounting for environmental heterogeneity: insights 
from the tropical Andes. Earth Surf. Dyn. 8, 447–470 (2020).

79. Wapenhans, I. et al. Scale-dependent contributors to river profile 
geometry. J. Geophys. Res. Earth Surf. 126, e2020JF005879 (2021).

80. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
81. Grömping, U. Variable importance assessment in regression: linear 

regression versus random forest. Am. Stat. 63, 308–319 (2009).
82. Louppe, G., Wehenkel, L., Sutera, A. & Geurts, P. Understanding 

variable importances in forests of randomized trees. Adv. Neural 
Inf. Process. Syst. 26, 431–439 (2013).

83. Louppe, G. Understanding random forests: from theory to practice. 
Doctoral thesis, Université de Liège (2014).

84. White, A. P. & Liu, W. Z. Technical note: bias in information- 
based measures in decision tree induction. Mach. Learn.15, 
321–329 (1994).

Acknowledgements
We thank S. Tofelde, A. Densmore, R. Hodge, M. Allen and E. Dingle 
for useful discussions. LSDTopoTools software development was 
supported by a Durham Research Development Fund grant and 
Natural Environment Research Council (NERC) grants NE/P012922/1 
(F.J.C.) and NE/S009000/1 (S.M.M.). For the purpose of open access, 
the authors have applied a Creative Commons Attribution (CC BY) 
licence to any author accepted paper version arising.

Author contributions
F.J.C., S.M.M., H.D.S. and R.D. developed the study. F.J.C. and S.M.M. 
developed the topographic analysis code. F.J.C. performed the 
topographic analyses, the random forest regression and created the 
figures. T.F.S. and P.A.v.d.B. compiled the thermochronometry data 
and performed the exhumation rate calculations. F.J.C. wrote the 
paper with contributions from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41561-023-01238-8.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41561-023-01238-8.

Correspondence and requests for materials should be addressed to 
Fiona J. Clubb.

Peer review information Nature Geoscience thanks Adam Forte and 
the other, anonymous, reviewer(s) for their contribution to the peer 
review of this work. Primary Handling Editors: Louise Hawkins and Tom 
Richardson, in collaboration with the Nature Geoscience team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-023-01238-8
https://doi.org/10.1038/s41561-023-01238-8
https://doi.org/10.1038/s41561-023-01238-8
https://doi.org/10.1038/s41561-023-01238-8
http://www.nature.com/reprints


Nature Geoscience

Article https://doi.org/10.1038/s41561-023-01238-8

Extended Data Fig. 1 | Boxplots showing the distribution of channel 
steepness with elevation. Boxplots showing the relationship between k_sn and 
elevation across the Himalayan orogen (n=7,414). The solid black line shows the 

median of each distribution; the box represents the inter-quartile range; and the 
whiskers represent 1.5 times the inter-quartile range. Minima and maxima have 
been omitted to ensure readability.
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Extended Data Fig. 2 | The relationship between valley-floor width and 
channel steepness, separated by tectono-stratigraphic unit. The relationship 
between valley-floor width and k_sn separated by each stratigraphic unit, 
coloured by elevation. LHS = Lesser Himalayan Sequence, GHS = Greater 
Himalayan Sequence, THS = Tethyan Himalayan Sequence, SHZ = Sub-Himalayan 

Zone. The dashed grey line shows a linear least-squares regression through the 
data in log-log space: the equation of the regression line, R2^ and p value  
(two-sided) are noted. LHS: R2^ = 0.37, p = 4.86 x 10-^145; GHS: R2^ = 0.25, p = 8.76 
x 10-^146; THS: R2^ = 0.44, p = 1.63 x 10-^157; SHZ: R2^ = 0.35, p = 6.58x10-^57.
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Extended Data Fig. 3 | Boxplots showing the distribution of valley-floor width 
with mean annual precipitation. Boxplots of valley-floor width against mean 
annual precipitation P from 1989-2019 extracted from the CHIRPS dataset64 

(n=7,414). The solid black line shows the median of each distribution; the box 
represents the inter-quartile range; and the whiskers represent 1.5 times the inter-
quartile range. Minima and maxima have been omitted to ensure readability.
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Extended Data Fig. 4 | Boxplots showing the relationship between valley-
floor width and thermochronometric-derived exhumation rate, separated 
by chronometric system. The number of samples in each plot is indicated  
(AHe, n=79; AFT, n=608; ZHe, n=141; ZFT, n=79; ArAr, n=234). The solid black 

line shows the median of each distribution; the box represents the inter-quartile 
range; and the whiskers represent 1.5 times the inter-quartile range. Minima and 
maxima have been omitted to ensure readability.
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