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ABSTRACT

Attempts to analyze the effect of weather shocks on livestock production have been carried out using integrated
assessment models (IAMs) or the cross-sectional (Ricardian) method. However, these methodologies are fraught
with obvious shortcomings, such as omitted variable bias, amongst others. This paper, therefore, re-examines
the relationship between weather changes and global livestock production using an established econometric
strategy that takes care of the pitfalls inherent in the conventional approaches. Using country-level data and
a variety of specifications, we find that a 1 °C increase in temperature will lead to a 9.7% reduction in
global beef production on average. These adverse effects are amplified in hot, poor, and agriculture-dependent
countries. Besides, we find that a marginal increase in annual precipitation would lead to a 2.1% increase in
beef production in tropical countries but a 1.9% decrease in temperate ones. Also, our forecasts show that
climate change will reduce animal output by a further 20% in the mid-century and an additional 40% by
the end of the century assuming no adaptation other than the degree of adaptation observed in the historical

period.

1. Introduction

The rate of increase in the earth’s average surface temperature in
the last 30 to 40 years has far outstripped that of any other period
for the last 20,000 years (IPCC, 2022). Many climatologists forecast a
further rise in global temperature in the near future (IPCC, 2022; Allen
et al., 2014). Similarly, rainfall patterns have become more erratic and
unpredictable (Lobell and Asseng, 2017; Lobell et al., 2013; Roudier
et al.,, 2011). These weather fluctuations and the associated extreme
events have been evidenced in previous studies as major influencers of
agricultural production (Emediegwu et al., 2022; Aragoén et al., 2021),
economic growth (Kalkuhl and Wenz, 2020; Smith and Ubilava, 2017;
Dell et al., 2012), mortality (Emediegwu, 2021; Barreca, 2012; De-
schénes and Greenstone, 2011), and conflict (Harari and Ferrara, 2018;
Hsiang et al., 2013, 2011). The agricultural sector bears the largest
economic impact of changing climate because of the size, significance,
and sensitivity of the sector, especially in rural communities situated
in low latitudes (Mendelsohn, 2008).

Agriculture is of global importance as it employs more than 70%
of the world population, with more concentration on the rural poor

in developing regions (International Labour Office, 2017). The sector
also accounts for 4 percent of global gross domestic product (GDP) and
more than 25% of GDP in some developing countries (WDI, 2017).
In addition, OECD/FAO (2016) documents that livestock production
currently accounts for some 40 percent of the gross value of agricultural
production. This share is more than 50 percent in some industrial
countries and about 33 percent in most developing countries. Further,
livestock is often kept as a form of wealth and food “buffer” stock in the
event of crop failures, thus forming an important part of consumption
smoothing behavior.

Besides the fact that more than half of the world’s land surface is
used for grazing livestock or growing crops for animal feeds (FAOSTAT,
2018), the importance of livestock production can also be viewed
within the context of global animal consumption. FAOSTAT (2018)
documents the annual, global meat consumption between 1988 and
2018 to be around 350 million tonnes, with the expectation that
consumption could reach up to 570 million tonnes by 2050. The
expected remarkable increase in meat demand has been associated
with population and income growth, as well as lifestyle and dietary
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habits changes (FAO, 2018). More importantly, to meet global meat
consumption by 2050 would require a doubling of meat production
from the 2008 level (FAOSTAT, 2018).! Consequently, given the impor-
tance of livestock production in the global economy and the reality of a
changing climate, detailed attention needs to be paid to the relationship
between the duo.

Climate change in Africa particularly has drawn significant interest
from researchers and policymakers due to the peculiar fragility of
its economy, making adverse effects of climate change even more
severe. Global warming affects several agro-related outcomes such as
the increasing incidence and severity of droughts, floods, and other
extreme weather events. This paper sheds more light on the effects of
weather shocks on livestock.

There have been attempts to quantify the damage estimate of cli-
mate change on livestock production using integrated assessment mod-
els. This approach uses biophysical livestock simulation models in
conjunction with economic models to estimate animals’ responsiveness
to climate change (see, St-Pierre et al., 2003; Rotter and Van de Geijn,
1999; Klinedinst et al., 1993; Johnston, 1958, for empirical examples).
The attractiveness of this modeling approach is that it takes advantage
of the large amount of information available from the animal sciences
regarding the likely effects of weather fluctuations on livestock (Antle
and Stockle, 2017). However, a major weakness pointed out by Chi-
monyo et al. (2015) is that most biophysical simulation models are
tailored towards mono cultural practices, making them impracticable
for multi-livestock analyses. Other deficiencies associated with process-
based models are the limited number of animal models available and
the problem of external validity, given that models need to be carefully
calibrated to reflect local conditions (Mendelsohn and Dinar, 2009).

An alternative approach to improve on the shortcomings of the IAMs
is the cross-sectional (or Ricardian) approach introduced in Mendel-
sohn et al. (1994),> and applied in several studies (Feng et al., 2021;
Taruvinga et al., 2013; Kabubo-Mariara, 2009; Seo and Mendelsohn,
2008).? This approach, which introduces the revealed preference tech-
nique in estimating the impact of climate change on agriculture, ex-
ploits cross-sectional variation across spatial units (households, coun-
ties, countries, etc.) to evaluate the effect of long-run climate on average
livestock values. Despite the attractiveness of the Ricardian model
because of its ability to capture long-run farmer’s adaption, it severely
suffers from the problem of omitted variables bias.* The omission of
relevant variables (e.g., closeness to river source) that are correlated
with both climatic factors and the dependent variable (e.g., farmland
value) can bias climate impact estimates. Dell et al. (2014) also submit
that even in the absence of omitted variable bias, it is unlikely to obtain
a true estimate of how climate change will impact agricultural activities
in the long run (e.g., next 50 or 100 years) because the historical
equilibrium the cross-section represents may depend on mechanisms
that act differently. These limitations are addressed in fixed effect panel
data models.

Unlike the Ricardian model, panel data analysis uses group fixed
effect (FE) to account for omitted variables that correlate with cli-
matic and response variables (Blanc and Schlenker, 2017). Panel data
models exploit the exogeneity of cross-time variations in weather to

2 This approach was originally applied to crop production but has been
applied extensively to analyze climate change impacts on livestock production.

3 The method follows Ricardo’s observation that the present value of future
net productivity is reflected by land rents (Ricardo, 1822, 1817). This, as
argued by Mendelsohn and Massetti (2017), suggests that land productivity,
rent, and net revenue are equivalent regardless of the type or number of crops
or livestock grown in the farm, and what technology is applied since farmland
value is the present value of the stream of future rents.

4 Other shortcomings include the assumption of constant prices and non-
measurement of adjustment costs from one equilibrium to another, as well
as the inability to disaggregate the results into crop- or livestock-specific
impacts (Carter et al., 2018; Darwin, 1999; Cline, 1996).
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identify the causal effects of weather variables, such as temperature
and precipitation, on several economic outcomes, including agricultural
output. This established econometric approach has been popularly
used in the climate econometrics literature to estimate the impact of
weather fluctuations on several economic outcomes.® Despite these
interesting works, rigorous empirical work on the impact of weather
shocks on global livestock production is lacking. Such work would help
understand the effect of changing weather at a global rather than a
local level, as exemplified in previous studies that employed integrated
assessment models or cross-sectional analysis.

This paper achieves this objective using a panel of national livestock
production and local weather fluctuations from 187 countries. Empir-
ically, we address some specific shortcomings in previous literature
with respect to methodology, data, temporal and spatial scale. The
methodology accounts for omitted variable bias; the spatial and tem-
poral dimension of our dataset allows for substantial variation through
which we can identify the effects of short-term weather shocks on
livestock production.

Our results show a robust negative effect of temperature changes
on global livestock production and a positive impact of rainfall fluctu-
ations. We offer further evidence that the effect of temperature is more
concentrated in hot, poor, and agricultural-dependent countries. Also,
we find that climate change will reduce animal output by a further 20%
in the mid-century and an additional 40% by the end of the century.
Also, while the benefits of rainfall in the tropical regions moderate
temperature-caused adverse effects, these adverse affects are further
aggravated by rainfall in the temperate regions.

Notwithstanding the intuition from our results, it is important to
note the following caveats. Our methodology does not account for
adaptation. In the face of climate change, it is impossible to rule out
the possibility of farmers taking adaptive measures (such as migrating
animals to cool areas) to alleviate the adverse effects of climate change.
Accounting for adaptation or mitigation measures would attenuate the
damage estimate from our model.° However, we must state that we
do not find evidence of adaptation when we apply our country-level
data to other empirical strategies that account for long-run adaptation.
Yet, given the scale of our observational units, the results should
be interpreted cautiously since adaptation often occurs at a smaller
spatial unit, such as farm or household level, rather than national
level. The second caveat to note is that we do not account for inter-
seasonal changes in weather, which could also amplify the adverse
effect of climate change. Given these two important caveats, our results
should be seen as “middle-of-the-road” estimates. Notwithstanding the
caveats, our work is very informative and complements the growing
literature that seeks to understand how climate change affects livestock
production.

The remainder of the paper is adumbrated as follows. The next
Section provides several channels through which climate change can
impact livestock production. We describe the data and methodology in
Section 3, while the various results are discussed in Section 4. Section 5
deals with climatic projections and predicted impacts. The paper ends
with some concluding remarks in Section 6.

5 Some previous climate-related studies that employed the panel data
analysis include Kalkuhl and Wenz (2020) and Dell et al. (2012) (economic
growth); Harari and Ferrara (2018) and Hsiang et al. (2013) (conflict);
Emediegwu et al. (2022) and Deschenes and Greenstone (2007) (agriculture);
Animashaun et al. (2022) (welfare); Emediegwu (2021), Barreca (2012) and
Deschénes and Greenstone (2011) (mortality).

6 Auffhammer and Schlenker (2014) attenuate this claim by suggesting that
the introduction of nonlinear weather measures introduces cross-sectional vari-
ation in climate, hence the estimated parameters, at least, partially captures
long-run adaptation. However, the extent to which the adaptation effect is
captured is still a subject for debate as it depends on the size of the cross-
sectional variation vis-a-vis location-specific weather variation (see, Carter
et al., 2018 for more intuition).
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2. Climate change and livestock production: potential channels
and mechanisms

In their sixth assessment report, the Intergovernmental Panel on Cli-
mate Change (IPCC) predicted that global surface temperatures would
increase by 0.3 °C to 4.8 °C by the end of the century (IPCC, 2022).
Using NASA data, Hansen et al. (2010) show that earth’s average global
temperature has grown by over 1 °C since 1880, and two-thirds of
this warming occurred since 1975, at a rate of roughly 0.15-0.20 °C
every decade. These changes in climatic patterns could affect livestock
in several ways, directly or indirectly.

Climate change affects livestock directly by altering their reproduc-
tion processes, feed conversion ratio,” and health via the emergence
of new diseases (and the increase in the spread of existing ones).
For example, Barati et al. (2008) show that heat stress can influence
animals’ oocyte growth, as well as their pregnancy rate and embryo de-
velopment. Besides, as temperature increases, the activity of pathogens
and parasites increase, vector-borne diseases spread faster and host
resistance is diminished (Thornton et al., 2015).

On the other hand, the indirect effects include climate impacts on
the availability of water, the access to and quality of feed, as well as
the likelihood of morbidity when disease does occur (Rojas-Downing
et al., 2017) and Walthall et al. (2012). Rojas-Downing et al. (2017) and
Nardone et al. (2010), for example, detail how climate change could
affect livestock health directly by increasing potential morbidity and
death and indirectly by the increasing disease factors.

Agricultural activity is the largest consumer of water resources with
around 70% of use (Thornton et al., 2015), and the demand for more
diverse water sources for agricultural purposes is increasing due to
the combination of droughts, water bodies depletion, and increasing
human population. More so, livestock needs water because of its vital
role in ensuring that animals survive and thrive, as well as other
biological processes like fertility and milk production. For example,
cows can stay up to seven days without drinking water in cool climates:
however, they would require water every six hours to survive under
high temperatures (Nardone et al., 2010). As temperature rises, the lack
of sufficient water could cause more migration in search of water by
nomadic cattle herders, leading to an increase in communal clashes and
violence in developing countries (Doring, 2020; Freeman, 2017). These
migratory activities and conflicts increase animals’ feed conversion
ratio, thereby reducing their production efficiency.

When precipitation departs from predictable patterns, agricultural
activities, especially in developing countries where most crop produc-
tion is rain-fed, also suffer. Besides, the composition of pastures will
also be affected due to plant competition for water in drought seasons
and leaching of soil nutrients during flooding (Thornton et al., 2015).
In addition to the ability of the crops to grow, the quality of the forage
could also be affected by changes in environmental conditions. For
example, flooding could change the root structure, thereby reducing
total yield and nutrient quality (Polley et al., 2013; Baruch and Mérida,
1995). Consequently, these alterations in the quantity and quality
of animal feed by meteorological factors influence the growth and
development of livestock.

To sum up this section, there are several channels through which
weather shocks can influence livestock production: however, our in-
tention is not to quantitatively determine the individual contributions
of each channel, rather we are employing a reduced-form framework to
analyze the general pass-through effect of annual weather fluctuations
on global livestock production.

7 Feed conversion ratio (FCR) is one of the methods for measuring livestock
production efficiency. It is defined as the weight of feed intake divided by the
animal’s weight gain. Higher FCR values correspond to lower production effi-
ciency. Typically, beef has higher FCR (6.0-10.0) than most livestock including
pigs (2.7-5.0), chicken (1.8-2.0) and farmed fish and shrimp (1.0-2.4) (Fry
et al., 2018).

Ecological Economics 204 (2023) 107662

3. Data and empirical strategy
3.1. Data sources and description

Animal Data: We draw country-level cattle average production
(tonnes) from the FAOSTAT database.® We use cattle, generically to
include the production of both beef and buffalo meat. The Food and
Agriculture Organization (FAO) obtained these figures from various
sources: governments through national publications and FAO question-
naires (both paper and electronic); unofficial sources; national and
international agencies or organizations. Here, we focus on cattle for two
main reasons. Beef is one of the most consumed forms of animal protein
in most parts of the world, coming behind pork and poultry (FAO,
2018).° Two, aside from meat, cattle are reared for their various by-
products such as dairy products, manure, hides for making leather,
riding or drafting for pulling carts, and other farm implements. These
value-added products raise the economic importance of cattle. Our
sample covers 157 countries with at least 25 years of cattle production
data, while we consider other sub-samples for robustness analysis.

Weather Data: Our historical weather dataset is obtained from the
University of Delaware Terrestrial Air Temperature and Precipitation:
1900-2017 Gridded Monthly Time Series. V4.01. This dataset provides
global gridded high resolution station (land) time series data for mean
air temperature and total precipitation at 0.5° resolution (approx. 56
km x 56 km across the equator).' We aggregate the weather data
to country-year level by overlaying a world polygon with country
boundaries on the average temperature and total precipitation for each
grid cell and then taking a weighted average across all grid cells per
country. We use cattle population-weighted weather average to account
for heterogeneity in cattle population within and across countries. Our
cattle population weights are from 2010 population count at 5 min
of arc (~1 km at the equator) resolution extracted from FAO Gridded
Livestock of the World (GLW v3) database (Gilbert et al., 2018). We
also present results using several weighting measures and an alternative
weather dataset in Tables Al and A2 in the supplementary section,
respectively.

Climate Change Prediction Data: We rely on the Australian Com-
munity Climate and Earth System Simulator (ACCESS-ESM1.5) of the
Commonwealth Scientific and Industrial Research Organization
(CSIRO) for our climate change projection data.'' This general circu-
lation model (GCM), which belongs to the sixth phase of the Coupled
Model Intercomparison Project (CMIP6), is made up of atmospheric and
land components compiled as a single executable, coupled to ocean
and sea-ice executables.'> We use the “middle-of-the-road” scenario
(SSP3-7.0) of the model to construct country-year panel for average
temperature and total precipitation from 1970 to 2100.'° In the spirit
of Deschenes and Greenstone (2007), we use our projected data to ex-
amine medium-term (average over 2041-2060) and long-run (average
over 2081-2100) impacts of climate on cattle production.

8 The cattle data is accessible via http://www.fao.org/faostat/en/#data/
QL.

9 It is recognized that this may vary between country and within age-group
and depends on cultural preferences and religious beliefs.

10 See Willmott and Matsuura (2019) for a complete description of the
dataset.

11 This data is hereafter referred to as ACCESS.

12 In lieu of presenting detailed description of the simulation processes of
these global climate models (GCMs), readers are referred to Eyring et al.
(2016), whereas the dataset can be retrieved from the CMIP6 website https:
//pcmdi.llnl.gov/?cmip6.

13 SSP3-7.0 is a new shared socioeconomic pathway added to CMIP6 that lies
between the worst case (SSP5-8.5) and more optimistic (SSP4-6.0) scenarios.
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3.2. Summary statistics

We report the summary statistics of our variables at country-level
in Table 1. Most of the countries in our sample have data from 1961
to 2017, with few beginning in later years; hence our panel is un-
balanced.'* Panel A describes the historical dataset, whereas Panels B
and C summarize the climate change projection data in the mid-future
and by the end of the century, respectively. Over the period under
consideration, the average global temperature is about 20 °C. Europe
and Central Asia (ECA) is the coldest region (-7.43 °C), while Sub-
Saharan Africa (SSA) has the highest average temperature (30.09 °C)
and the least variation in temperature. At the same time, East Asia and
Pacific (EAP) has more varied temperature range, followed by North
America. In terms of rainfall, South Asia experienced more rainfall and
more variation in rainfall than other regions over the sample period,
while Middle East and North Africa (MENA) has the lowest rainfall. In
terms of beef production, every region exceeded the world’s average
production, except MENA and SSA, regions with the least rainfall and
the highest temperature, respectively. In terms of spatial distribution
of average measures, regions in the south pole are hotter on average
than their counterparts in the north pole, while there is variation in the
distribution of rainfall across regions and countries (see supplementary
section, Figure Al). Cattle production appears to be significantly less
in Africa (SSA and part of MENA) than in other parts of the world.

Panel B shows the summary of the ACESSS SSP3.70 predicted
changes in climate in the mid-future (2041-2060) across regions of
the world. The model predicts a 2.2 °C rise in global temperature
with North America and MENA as the leading regions to experience
more warming. The Panel also shows that while other regions will
benefit from a positive change in rainfall, Latin America and Caribbean
(LAC) will experience a fall in total rainfall. Panel C summarizes the
predicted state of climate by the end of the century (2061-2100).
Based on this model, more global warming is predicted, doubling the
mid-future change. North America and ECA are predicted to have the
highest temperature rise. In addition, LAC and EAP will experience
reduction in total rainfall by the end of the century. Figures A2 and
A3 in the supplementary section show the spatial variation of the
predicted climate change in the mid-future and by the end of the
century, respectively.

3.3. Econometric strategy

In this sub-section, we construct a panel data model at country/year
level to analyze the impact of weather changes on production. Our
model takes the reduced form:

Yoo =@ty 0+ Tcrﬂ() + Pcrﬂl + €y (1)

where y,, is log of beef production (in tonnes) in country c and year t, a,
are country fixed effects to control for country-specific time-invariant
factors of beef production, y, are region-specific trends which accounts
for time-changing determinants of mortality that are common within a
region, and ¢, are idiosyncratic errors. We control for possible spatial
and serial correlation in the standard error terms ¢;, using the approach
described in Hsiang (2010) with an arbitrary distance of 1000 km and
time lag of 3 years. In keeping with the conventional checks, we report
results with varied cutoffs and alternative standard error corrections in
the Tables A3 and A4 in the supplementary section, respectively.

Our main covariates, T, and P, are matrices of annual average
temperature (in °C) and yearly total precipitation (in mm/year), re-
spectively, in country ¢ and year t. These weather variables of interest

14 Those countries with data beginning later than 1961 are mostly due to
the timing of their independence. For example, many countries like North
Macedonia, Ukraine, etc., became independent after the collapse of the Soviet
Union in 1991, hence their data starts from 1992.
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also include their squared terms to capture non-linearities (Dell et al.,
2014). We do not include other controls for the following reasons. First,
important physical factors such as elevation are fixed over time and
cannot be distinguished from country-specific effects. Hsiang (2016)
and Dell et al. (2014) further argue that the addition of more controls
will not necessarily move the climate change impact estimate closer to
its true value if the controls (such as GDP and institutional measures)
are outcomes of climate. Rather, such additions will induce an “over-
controlling problem”. Consequently, the standard practice in climate
change applied studies using panel data is to exclude other time-
varying controls (e.g., Emediegwu et al., 2022; Hsiang and Meng, 2015;
Dell et al., 2012; Deschénes and Greenstone, 2011). Furthermore, we
understand that some measurement errors may occur either in the
quantity of beef production reported by countries or in the imputation
by FAO for non-reporting countries. However, we believe that these
errors are exogenous to our explanatory variables, hence such errors
might only result in imprecise rather than biased estimates.

It is important to note that where reverse casualty is anticipated,
then a single-equation model may not suffice to capture the impacts of
weather variations on beef production. However, we have reasons to
believe that our model does not suffer from such econometric issues.
First, the weak exogeneity of weather variations in relation to several
economic outcomes has been firmly established in economics literature
at least in the short run (see, Emediegwu, 2021; Harari and Ferrara,
2018; Blanc and Schlenker, 2017). While it is conceivable to expect
outcomes like manufacturing, agricultural production, etc to affect
climate change in the long run, they do not impact weather variations
in the short run as captured in a standard panel data model (Blanc and
Reilly, 2017). Lastly, we conducted a panel Granger causality Wald
test on Eq. (1), and the results show that while we cannot reject the
null hypothesis that weather variation does not Granger-cause beef
production, the reverse is not the case.'®

In subsequent analysis, we estimate Eq. (1) for several countries’
characteristics separately. While we do not claim strict causality in
this study as it is difficult to do so with any observational study,
this paper is careful to address certain empirical issues. First, we use
country-specific fixed effects to account for time-invariant prevailing
conditions in a country that may affect beef production. For example,
hotter countries generally experience lower harvest, which indirectly
affects cattle production via availability and pricing of grain Walthall
et al. (2012). Second, there is possibility of temporal trends in both
environmental factors and animal production in any region, with the
latter coming from certain dynamics of growth that are unrelated to
the weather agents. To mitigate the effect of such trends, we include
region-specific trends which account for time-changing determinants of
beef production that are common within a region.

The controls put in place in the model allow us to estimate the effect
of a quasi-random weather variation on animal production. We further
expose the models to sensitivity checks to ascertain the robustness of
our results.

4. Empirical results and discussion
4.1. Main results

The main results are presented in Table 2. The Table, in addition
to showing aggregate results, also displays the heterogeneous impact
of weather variation on animal production based on (i) whether a
country is hot or cold for most part of the year (ii) income classifi-
cation (iii) agricultural role. All estimates are reported with standard

15 As suggested by one of the reviewers, we re-test for Granger causality
using growth rates of beef production to control for possible serial correlation
and found similar results.
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Table 1
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Summary statistics of dataset across regions, and predicted changes in error-corrected ACCESS SSP3.70.

Average Total precipitation Log animal
temperature (°C) (mm) production (tonnes)
Mean Min Max SD Mean Min Max SD Mean Min Max SD
Panel A: Historical data (1961-2017)
World 19.97 -7.43 30.09 8.03 9.14 0.06 44.32 6.18 10.80 2.83 16.32 2.19
Regions
East Asia & Pacific 19.04 —-2.96 28.66 8.64 13.40 1.31 37.36 6.75 11.12 6.18 15.66 2.12
(EAP)
Europe & Central 8.27 -7.43 16.97 3.89 6.20 0.71 17.30 2.26 11.79 7.49 15.10 1.58
Asia (ECA)
Latin America & 22.36 6.37 27.43 4.48 13.29 3.22 38.89 4.96 10.81 2.83 16.09 2.56
Caribbean (LAC)
Middle East & North 20.73 10.40 28.36 4.82 2.53 0.06 8.58 1.72 9.82 4.56 13.65 1.95
Africa (MENA)
North America (NA) 3.45 -7.27 13.38 8.52 4.66 2.34 7.72 1.78 15.01 13.39 16.32 1.19
South Asia (SA) 21.74 9.71 27.39 4.68 14.41 1.67 44.32 10.50 11.64 7.68 14.77 1.84
Sub-Saharan Africa 24.37 10.72 30.09 3.56 8.99 0.80 34.68 4.88 9.97 3.04 13.90 1.88
(SsA)
Panel B: Predicted medium-term error-corrected climate change (2041-2060)
World 2.21 0.11 3.20 0.42 0.06 -1.01 1.20 0.26
(3.71) (—26.40) (76.10) (12.18)
Regions
East Asia & Pacific 1.99 1.34 2.79 0.42 —-0.01 —-0.44 0.59 0.29
(EAP) (-0.98) (-15.96) (6.93) (6.29)
Europe & Central 2.35 0.11 2.98 0.47 0.71 —-0.09 0.23 0.08
Asia (ECA) (3.31) (-4.14) (20.26) (4.62)
Latin America & 2.09 1.32 3.20 0.40 -0.17 -1.01 0.27 0.28
Caribbean (LAC) (-5.27) (—26.40) (4.25) (6.95)
Middle East & North 2.47 2.13 2.93 0.23 0.03 -0.16 0.17 0.08
Africa (MENA) (12.78) (-11.45) (76.10) (22.37)
North America (NA) 3.00 2.82 3.18 0.25 0.14 0.12 0.15 0.02
(6.17) (5.87) (6.46) (0.41)
South Asia (SA) 1.70 1.02 2.31 0.39 0.18 -0.57 0.70 0.42
(6.67) (-8.04) (14.79) (7.80)
Sub-Saharan Africa 2.14 1.63 2.84 0.29 0.21 -0.27 1.11 0.28
(SSA) (7.53) (-13.41) (73.19) (13.26)
Panel C: Predicted long-term error-corrected climate change (2061-2100)
World 4.44 2.68 6.70 0.77 0.02 -2.26 3.11 0.67
(3.88) (-48.10) (154.79) (26.06)
Regions
East Asia & Pacific 3.97 2.68 5.59 0.87 —-0.06 -1.09 0.75 0.45
(EAP) (-1.23) (13.17) (10.84)
(-20.11)
Europe & Central 4.98 3.35 6.40 0.57 0.04 -0.35 0.48 0.19
Asia (ECA) (2.56) (-19.23) (25.96) (9.54)
Latin America & 4.17 2.83 5.78 0.75 -0.76 -2.26 0.53 0.71
Caribbean (LAC) (-20.99) (-48.11) (8.46) (17.34)
Middle East & North 4.85 4.22 5.50 0.34 0.07 -0.21 0.37 0.16
Africa (MENA) (27.50) (-18.54) (154.79) (46.10)
North America (NA) 6.00 5.30 6.70 0.98 0.27 0.23 0.32 0.06
(12.55) (12.26) (12.84) (0.41)
South Asia (SA) 3.68 2.94 4.74 0.59 1.00 0.23 2.31 0.74
(25.02) (14.09) (33.26) (6.67)
Sub-Saharan Africa 4.12 3.07 5.28 0.53 0.33 —-0.56 3.10 0.73
(SSA) (9.83) (-44.81) (117.81) (25.40)

Note: SD denotes standard deviation. The weather and climate entries are cattle population adjusted. Figures in bracket are percentage changes from historical

figures.

errors adjusted for spatial (1000 km) and serial (3-years) correlation.
On aggregate, Table 2 shows that temperature has a negative and
statistically significant relationship with beef production. Specifically,
a 1 °C increase in temperature will lead to a 9.7% reduction in beef
production. However, an in-depth look at a more disaggregated level
reveals that the impact of temperature is higher in tropical regions than
in temperate regions, implying that the overall negative estimate is
driven by weather happenings in certain regions of the world. While
a 1 °C increase in temperature will result in about a 20% fall in cattle
production in tropical countries, there is no significant effect of such a
rise in temperate regions. We show in the supplementary section (Table

A5) that using a live animal indicator (cattle stock) as outcome variable
produces similar qualitative results.'®

On the other hand, the adverse effect of a marginal rise in tempera-
ture is evidenced in both rich and poor countries; however, the impact
is stronger in the latter. We find that a 1 °C increase in temperature
will reduce animal production by 27% in poor countries and 4% in
rich ones. Further, our results reveal that the severity of the impact of

16 Cattle stocks indicate the number of cattle and buffalo present in the
country at the time of enumeration. It includes animals raised either for draft
purposes or for meat.
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Table 2
Main panel results.

Ecological Economics 204 (2023) 107662

Aggregate Hotness Income Agriculture-dependent
Tropical Temperate Rich Poor Yes No
Temperature —-0.097 —-0.199 —-0.016 —0.039 -0.271 -0.141 —-0.044
[0.014]*** [0.044]*** [0.014] [0.014]*** [0.035]*** [0.037]*** [0.013]***
Temperature squared 0.002 0.004 —0.001 —0.001 0.006 0.004 —-0.001
[0.000]*** [0.001]*** [0.001]** [0.000] [0.001]*** [0.001]*** [0.000]***
Precipitation 0.007 0.021 -0.019 -0.011 0.021 0.025 -0.010
[0.007] [0.010]** [0.009]** [0.013] [0.006]*** [0.007]*** [0.012]
Precipitation squared —0.000 —0.000 0.000 —-0.000 —-0.000 —0.001 —0.000
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]** [0.000]
Observations 8,109 4,610 3,499 4,395 3,714 4,375 3,734
Countries 157 82 75 88 69 83 74

Notes: Each coefficient is estimated from a separate (1) with country FE and region-specific trends. Standard errors are in brackets, adjusted for both
spatial (1,000km) and serial (3-years) correlation. A country is defined as tropical if its median temperature is above the global median; otherwise, it is

temperate. A country is rich if it is higher income or upper-middle income by World Bank classification, else it is poor. A country is agriculture-dependent
if it has above median share of GDP in agriculture in 2000. Temperature is in degrees Celsius and precipitation is in mm units per year. Sample period

is 1961-2017 for all specifications.
ignificant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.

temperature on cattle production also depends on whether a country
is agriculture-dependent or not. We find that the more agriculture-
dependent a country is, the greater the impact of temperature changes.
On average, the adverse effect of a 1 °C increase in temperature is
four times larger in agricultural economies than in non-agricultural
ones. Our results imply that beef production is most seriously at risk of
global warming in hot, poor, and agriculture-dependent countries. This
dichotomy in the burden of impact is important in explaining possible
channels (e.g., how agriculture-intensive a country is) through which
weather changes affect beef production. We explore such potential
channels in a later subsection.

Going back to Table 2, we explain the effect of precipitation changes
on beef production. On aggregate, precipitation has a positive but
insignificant effect on beef production: however, there are significant
differences in results when heterogeneity is considered. For example,
while a marginal rise in precipitation is beneficial to beef production
in tropical countries, it is harmful in temperate economies. Specifically,
where a 1 mm increase in annual precipitation would lead to a 2.1%
increase in beef production in tropical countries, a similar increase in
precipitation is associated with a 1.9% decline in beef production in
temperate regions. Along national income lines, we find that rainfall
changes have no significant effect on beef output rich countries but
positively affect beef production in poor countries. This result could
follow from the fact that most poor countries are situated in the
tropics. This heterogeneous effect is also duplicated when considering
whether a country is agriculture-dependent or not. We find that an
extra mm of annual precipitation would generate a 3% improvement in
beef production in agriculture-dependent countries, with no significant
effect in a non-agricultural country. Overall, we find that the impacts
of temperature changes are more severe in certain regions — hot, poor,
and agriculture-dependent countries, as shown in Figure A4 in the
supplementary section. However, the positive effect of precipitation
changes in these regions means that more rainfall will attenuate the
negative impact of temperature rise on beef production. Although,
the extent to which this would reduce the temperature impact is an
empirical question.

The quadratic term of temperature is significant across all spec-
ifications, unlike precipitation, which indicates a potential nonlinear
(convex by nature) relationship between temperature and beef produc-
tion. Such nonlinearity means there is a minimally beneficial level from
which the effects start rising, significantly or insignificantly, in both
directions.

4.2. Robustness results

In this subsection, we ascertain our results’ (in)sensitivity through
a series of robustness tests. Our robustness tests involve re-modeling

Eq. (1) with different functional forms and panel samples.'” The re-
sults displayed in Table 3 entail aggregate estimates and estimates for
heterogeneous parts that show significant impacts.

Lagged Weather Outcomes: We test whether our estimates are
sensitive to the addition of weather lags. It is possible for variability
in economic outcome, like livestock production, to be coming from
past weather occurrences. Live