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The Subgame-Perfect Core1 

 

1. Introduction 

We propose a cooperative solution concept for general extensive games that can improve upon 

subgame-perfect Nash equilibrium. This new concept, which we label the subgame-perfect core, 

is a refinement of the core of the extensive game in the same sense as the set of subgame-perfect 

Nash equilibria is a refinement of the set of Nash equilibria. From its definition and properties, 

our concept is a cooperative analog of the non-cooperative subgame-perfect Nash equilibrium.  

Moreover, the subgame-perfect core has “perfection” properties; each subgame-perfect core 

payoff vector can be obtained as a subgame-perfect Nash equilibrium payoff vector of a 

modified extensive game that differs from the original game only in terms of the distribution of 

players’ payoffs at a terminal node. In this paper, we restrict ourselves to extensive games of 

perfect information with transferable utility. Consequently, each decision node determines a 

subgame, and terminal payoffs can be added and distributed among the players in the game. 

     Arguably, the most well-known approach to defining the core of a non-cooperative game is 

Aumann (1961), which addresses strategic games. That paper proposes two ways to define a 

characteristic function, both of which attribute a worth or payoff to each coalition.2 With a 

characteristic function in place, the core of the strategic game is the core of the characteristic 

function game. In contrast, we address extensive form games. Defining a core concept for an 

extensive form game creates new challenges. 

     Given an extensive game, we assume that coalitions may form in any subgame. A coalition, 

however, can consist only of active players, that is, those players who still have decisions to 

make in that subgame. Additionally, coalition members can agree only upon actions still to be 

taken in the subgame. Thus, at any subgame, the past is finished and previous actions taken by 

players cannot be changed. Moreover, when a coalition forms in a subgame, a new game is 

                                                           
1 The authors are indebted to the Douglas Grey Fund for Research in Economics at Vanderbilt University for 

financial support. We are thankful to Philippe Jehiel and Francoise Forge for their helpful comments. We have also 

benefited from seminar presentations at Monash and University of Paris, Dauphine.   
2 The so-called � and � approaches. 
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created in which members of the coalition act as a single player. Since utility is transferable, the 

total payoff to the members of any coalition can be divided among the members of the coalition. 

Note that the largest payoff to a coalition can be achieved by the grand coalition, consisting of 

the total player set. Roughly speaking, the subgame-perfect core is the set of payoff vectors that 

can be achieved by a distribution to the players of the grand coalition’s payoff with the property 

that neither a singleton player nor a coalition of players can profitably deviate at any decision 

node in the game. 

     We stress that two notions are fundamental to our concept of the subgame-perfect core. First, 

we assume that a coalition becomes a single player, precisely as in the derivation of a 

characteristic function from a strategic game in Aumann (1961). Given a game in extensive form 

with player set �, when a coalition � forms, a new game, to be called the induced game, is 

created with player set {� ∈ �\�, �}. However, since we treat extensive form games, the payoffs 

that � may be able to achieve can vary along a path of the game tree. Another fundamental idea 

is that, at any decision node of the extensive game, only those players who still have decisions to 

make can form coalitions and only they can coordinate their decisions from that point onwards.3 

While in this paper we treat mainly games of perfect information, these two ideas are formalized 

below and can be applied to games of both perfect and imperfect information.  

     Like the core of a characteristic function game, the subgame-perfect core of an extensive 

game may be empty. The emptiness of the subgame-perfect core, however, carries an important 

message about the game. In this case, a subgame-perfect Nash equilibrium remains the predicted 

outcome, despite the fact that cooperation is allowed.  

    

Further discussion 

     In the treatment of cooperation within coalitions in a non-cooperative game a question arises: 

What is the response of the players in the complementary set given a deviation by a coalition? 

Because we can think of a coalition as simply a player in a game derived from the original game, 

                                                           
3 Since the player set of the original game does not include any player who has no decisions to make in the game, we 

treat a subgame analogously by excluding players who no longer have decisions to make in the subgame. Not doing 

so would be inconsistent with the very notion of subgame perfection.  
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it is appealing to take the players in the complement as singletons, especially since that, as will 

be shown, leads to a core concept that in addition to its other properties nicely relates to both 

subgame-perfect strong and coalition-proof Nash equilibria, in which the players in the 

complement are also taken to be singletons.4 Yet our approach goes beyond that. As we will 

demonstrate and explain below, our approach can be applied even if the players in the 

complement are not assumed to be singletons. 

     Another question that arises is whether binding agreements can be made. We assume that 

binding agreements can be made over distribution of the total payoff at each terminal node of the 

game. Thus these agreements resemble contingent contracts; the agreement that comes into 

effect depends on the terminal node reached. We characterize such contingent contracts and 

show that for a contract to be credible the distribution of total payoff at terminal nodes with 

highest total payoff for the grand coalition must be a subgame-perfect core payoff vector. 

     The subgame-perfect core takes into account interactions of coalitions in a fashion analogous 

to how Nash and subgame-perfect Nash equilibria (SPNE) take into account interactions of 

players. More specifically, a payoff vector belongs to the subgame-perfect core if (a) there is a 

history that leads to a terminal node for which the payoff vector is feasible and, (b) at any 

decision node in the history, no active coalition can improve upon its part of the payoff vector by 

deviating, where the payoff that a (deviating) coalition can obtain is assumed to be equal to its 

highest SPNE payoff in the induced game with origin at the decision node. 

       

Relationships to other solution concepts        

     We show that an extensive game, like a strategic game, has a characteristic function form. 

This result is significant because it implies that concepts and ideas from the vast literature on 

games in characteristic form can now be extended and applied to games in extensive form. One 

immediate implication is that a non-empty subgame-perfect core exists if and only if the 

characteristic function game derived from the extensive game is balanced (Bondareva, 1963 and 

                                                           
4 Chander (2007) shows that forming singletons is a subgame-perfect Nash equilibrium strategy of the players in the 

complement in an infinitely repeated game of coalition formation, which implies that the players in the complement 

may indeed have incentives to form singletons.  
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Shapely, 1967). Furthermore, as we will show, the fact that the characteristic function is derived 

from an extensive game generates additional subtleties and applications.   

     We also show that the subgame-perfect core is a refinement of the cores of a family of 

subgames and introduce an alternative equivalent concept as well as a weaker version of the 

subgame-perfect core. The weaker subgame-perfect core (WSPC) is generally larger. As will be 

shown, the WSPC is a complementary, rather than an alternative, concept.      

     We demonstrate applicability of the subgame-perfect core to three classes of games: the 

centipede game, the two-player infinite bargaining game of alternating offers, and a dynamic 

game of climate change. First, the application to the centipede game illustrates that in some 

games there may be no conflict between cooperation and non-cooperation. Second, the 

application to the bargaining game establishes an equivalence relationship between the subgame-

perfect core and the static axiomatic Nash solution for the bilateral bargaining problem. Third, 

the application to the dynamic game of climate change shows that the subgame-perfect core can 

be applied also to games of imperfect information. 

     The centipede game (Rosenthal, 1981) has been at the center of the debate concerning the 

SPNE concept (e.g. Binmore, 1996 and Aumann, 1996) and has been often used to motivate the 

extensive form trembling-hand perfect Nash equilibrium (Selten, 1975). The inefficiency of the 

unique SPNE of this game has been also tested in experiments in game theory (McKelvey and 

Palfrey, 1992). We show that the subgame-perfect core of a centipede game may be non-empty 

and consist of a unique payoff vector that, unlike the SPNE, is efficient.  

     The two-player infinite bargaining game of alternating offers (Rubinstein, 1982) is 

foundational to the unification of the static axiomatic and the dynamic non-cooperative 

approaches to bargaining. As is well known, this game admits a unique SPNE. We show that the 

subgame-perfect core of this game is non-empty and equivalent to the unique SPNE payoff 

vector. This equivalence, as will be shown, is independent of the patience, i.e. the discount 

factors, of the players. However, Binmore, Rubinstein and Wolinsky (1986) show that if the 

players are patient, the unique SPNE payoff vector of Rubinstein's game is equal to the Nash 

bargaining solution. It follows that if players are patient, the unique subgame-perfect core payoff 
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vector is also equal to the Nash bargaining solution, since it is then equal to the unique SPNE 

payoff vector in Rubinstein's game.   

     We introduce, as a byproduct of the conceptual framework introduced in this paper, a concept 

of subgame-perfect strong Nash equilibrium (SPSNE) for an arbitrary extensive game.5 We 

show that the subgame-perfect core is generally a weaker concept than SPSNE, but also that the 

two may be equal in some games. In fact, we show that in Rubinstein's game, the unique SPNE 

is also a SPSNE which implies equivalence between the subgame-perfect core, the SPNE, the 

SPSNE, and the axiomatic Nash solution if players are patient. In order to justify the SPSNE as a 

convincing extension of the strong Nash equilibrium for strategic games, we show that, just as in 

strategic games, a SPSNE is a subgame-perfect coalition-proof Nash equilibrium. 

     Our work is related to research that seeks to unify cooperative and non-cooperative game 

theory through the melding of cooperative game theoretical solutions with non-cooperative Nash 

equilibria, the so-called “Nash Program”. Numerous papers have contributed to this program 

including Perry and Reny (1994), Pérez-Castrillo (1994), Compte and Jehiel (2010), and Lehrer 

and Scarsini (2013), for example. In contrast to our work, these papers start with a cooperative 

game and a notion of the core and then propose a non-cooperative procedure to implement the 

core. While our paper makes a contribution to the Nash program our approach is entirely 

different; we start with an extensive game and the notion of subgame perfectness. We show that 

each payoff vector belonging to the subgame-perfect core of an extensive game is a SPNE payoff 

vector of another extensive game that differs from the original extensive game only with respect 

to players’ payoffs at a terminal node with highest payoff for the grand coalition.  

     Our work also differs from another interesting literature that considers cores of sequences of 

characteristic function games; see, for example, Kranich, Perea, and Peters (2005), Habis and 

Herings (2010), and Predtetchinski, Herings, and Perea (2006). In contrast to our paper, these 

studies start from characteristic function games as the primitive and do not consider subgame 

perfectness; instead they place rules on admissible deviations. We conjecture that investigation 

                                                           
5 Rubinstein (1980) introduces a strong perfect equilibrium for a “super” game. But a concept of a subgame-perfect 

strong Nash equilibrium for a general extensive game is apparently missing in the literature.   
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of the subgame-perfect core of the sort of dynamic games considered in these papers would be a 

fruitful line of research but it is beyond the scope of this paper.   

     This work contributes to our knowledge on core concepts in dynamic games, a field that has 

long attracted the interest of economists. Notably Gale (1978) explores the issue of time 

consistency in the Arrow-Debreu model with dated commodities and introduces the sequential 

core which consists of allocations that cannot be improved upon by anyone at any date. 

Similarly, Forges, Mertens, and Vohra (2002) propose the ex-ante incentive compatible core. 

Becker and Chakrabarti (1995) propose the recursive core as the set of allocations such that no 

coalition can improve upon its consumption stream at any time. In contrast, this paper proposes a 

core concept for a general extensive game that satisfies subgame-perfection and can be, as 

shown below, applied to a variety of dynamic games. 

  

Organization of the paper 

     The paper is organized as follows. Section 2 introduces notation and a motivating example. 

Section 3 introduces the definition of the subgame-perfect core and applies it to the centipede 

and Rubinstein’s infinite bargaining games. This section also introduces and characterizes 

credible contracts and establishes equivalence between the subgame-perfect core, the SPNE of 

Rubinstein’s infinite bargaining game, and the axiomatic Nash solution for the two-person 

bargaining problem. Section 4 establishes several additional properties and interpretations, 

introduces an alternative equivalent definition and a weaker notion of the subgame-perfect core. 

Section 5 motivates and introduces the concept of SPSNE for a general extensive game. Section 

6 presents the application to a dynamic game of climate change. Section 7 makes concluding 

remarks that further address the significance of this research and future directions for research. 

     

2. The framework and a motivating example 

We denote an extensive game of perfect information by Γ = (�,�,�,�), where � = {1, … ,�} is 

the player set and � is the game tree with origin denoted by 0. Let � denote the set of terminal 

nodes of game tree � and let � denote the set of non-terminal nodes, i.e., the set of decision 

nodes. The player partition of � is given by � = {�1, … ,��}  where �� is the set of all decision 

nodes of player � ∈ �. The payoff function is �:� → �� where ��(�) denotes the payoff of 
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player � at terminal node �. A payoff vector � = (�1, … ,��) is feasible for terminal node � ∈ � if ∑ ���∈� = ∑ ���∈� (�). The strategy sets need not be explicitly stated for now. 

      

2.1 The induced extensive games  

 Given an extensive game Γ = (�,�,�,�) and a coalition � ⊂ �, the induced extensive game 

Γ� = (��,��,�� ,��) is defined as follows: 

• �� = {�, (�)�∈�\�}: the player set wherein coalition � and all � ∈ �\� are the players 

(thus the game has � − � + 1 players); 

• �� = �: the game tree, equal to the game tree of the game with  player set � (thus the set 

of decision and terminal nodes remain � and �, respectively) 

• �� = {��, ���)�∈�\��: the player partition of � where �� =∪�∈� �� (thus the decision 

nodes of the coalition player � are all the decision nodes of members of �) 

•  �� = (��, (��)�∈�\�) : the profile of payoff functions of the players in �� , where for all � ∈ �,��(�) = ∑ ���∈� (�) is the payoff function of � and ��(�) is the payoff function of � ∈ �\�.  

Notice that if � is a singleton coalition then Γ� = Γ. For each � ⊂ �, the induced game Γ� =

(��,��,�� ,��) represents the situation in which the players in � form a coalition to coordinate 

their decisions at all their decision nodes. Example 1, below, illustrates the definitions so far. 

 

Example 1 Let Γ denote the extensive game depicted in Fig.1. Then, �1 is the origin of the game 

tree �,� = {1,2}: the set of players, � = {�1, �2, �3}: the set of terminal nodes, � = {�1, �2}: the 

set of decision nodes, � = �{�1}, {�2}�: the player partition, and the payoff function �:� → �2 is 

given by �(�1) = (2, 1),�(�2) = (4, 2), and �(�3) = (1, 3). 

 

                                           �1 

                               �        1           � 

                                                               �2 

                        �1: (2, 1)            �       2           � 
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                                            �2: (4, 2)                      �3: (1, 3)            
 
 

Fig. 1                   

 

     The induced extensive game Γ� where players 1 and 2 form a coalition to coordinate their 

decisions in all their decision nodes is depicted in Fig. 2. The game tree is the same, but now we 

have a one-player game with player set{�}. So �� = {{�1, �2}}, ��(�1) = 3,��(z2) = 6, and ��(�3) = 4. Notice that each strategy of player � in game Γ� generates a history of game Γ. 

 

                                           �1  

                              �        �           � 

                                                                �2 

                        �1: 3                 �         �            � 

                               

                                             �2: 6                            �3: 4  
           

 

Fig. 2 

 

2.2 Defining achievable coalitional payoffs 

To derive the characteristic function of an extensive game we need to define the payoff that each 

coalition can achieve. We do so for every subgame and then explain by an example why this is 

necessary. Thus we first define the induced game with origin � for each � ∈ �.   

     Given a decision node � ∈ �, let Γ� denote the subgame with origin at �. Since the origin of Γ 

is denoted by 0, Γ0 = Γ and if � ≠ 0, then Γ� is a proper subgame of Γ. It may be noted that the 

player set of a proper subgame Γ� may be smaller than the set � (though not necessarily). A 

player is active in subgame Γ� if some decision node in Γ� is a decision node of the player. 

Similarly, a coalition is active in subgame Γ� if all its members are active in the subgame Γ�. Let � be an active coalition in subgame Γ�. Then, the induced game Γ�� is defined from Γ� in exactly 

the same way as the induced game Γ� is defined from Γ. Clearly, Γ0� = Γ�. Since Γ, by 
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assumption, is a game of perfect information, so is each game Γ��, � ∈ � and � an active coalition 

in Γ�. In what follows, it will be often convenient to refer to “a coalition that is active in the 

subgame with origin at �” simply as “an active coalition at �”. 

     A SPNE of an extensive game induces a Nash equilibrium in each subgame of the extensive 

game. Therefore, for each coalition � which is active at �, a SPNE strategy of � in the game Γ�� 

prescribes a play that is optimal for � from point � onwards, given the optimal strategies of the 

remaining active players. Thus, a SPNE payoff of a coalition � in the induced game Γ�� is a 

payoff that � can achieve if the game reaches node �.  

     The subgame-perfect Nash equilibria of the family of extensive games Γ��, � ∈ � and � an 

active coalition in Γ�, determine the payoffs that coalition � can achieve at each decision node � 

of the game Γ. If the induced game Γ�� has more than one SPNE, then a SPNE with highest 

payoff for coalition � is selected. Choosing the highest SPNE payoff leads to a core concept 

which is independent of which SPNE may be actually played.  

     We return to Example 1 to illustrate the additional definitions introduced. Since the game Γ in 

Example 1 has only two players, Γ�1{1}
= Γ�1{2}

= Γ. The SPNE payoff of coalition {1} in the 

induced game Γ�1{1}
 is 2 and its SPNE strategy is �. Similarly, the SPNE payoff of {2} in the 

induced game Γ�1{2}
 is 1 and its SPNE strategy is �� (≡  � if 1 plays �).  

    The SPNE payoff of player � in the single player game Γ�(= Γ�1� ) in Fig. 2 is 6 and its SPNE 

strategy is (�, ��)(≡ �; � if � plays �). Notice that the SPNE strategy (�, ��) of coalition � is 

not compatible with the SPNE strategies � and �� of coalitions {1} and {2}, respectively.  

 

Changing coalitional payoffs 

The need for defining the payoff of each coalition at each decision node of an extensive game 

arises from the fact that coalitional payoffs may change as the game unfolds along a history. This 

important fact can be explained in terms of Example 1. 

     If players 1 and 2 form a coalition, the payoff of the coalition is 6, as implied by the SPNE of Γ�1� . If coalition {1} decides to deviate from the SPNE strategy (�, ��) of � in the beginning of 
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the game, its resulting payoff is 2, as implied by the SPNE of Γ�1{1}
. Similarly, if {2} decides to 

deviate in the beginning of the game, its resulting payoff is 1, as implied by the SPNE of Γ�1{2}
. In 

sum, the coalitions {1}, {2}, and �, which are active at �1, can obtain payoffs of 2, 1, and 6, 

respectively. Thus, none of them can improve upon a payoff vector (�1,�2) such that �1 ≥
2, �2 ≥ 1,�1 + �2 = 6. E. g., if the payoff vector (3.5, 2.5), then no coalition can obtain a higher 

payoff by deviating from the grand coalition’s strategy (�, ��) in the beginning of the game.  

     Yet, we claim that the strategy profile (�, ��) and the payoff vector (3.5, 2.5) are not a 

sensible prediction of the game. That is because if the strategy profile (�, ��) is followed, the 

game would reach node �2. As a result, the strategy profile (�, ��) and the payoff vector (3.5, 

2.5) should also be immune to deviations by all active coalitions at �2. However, it is not. The 

only active coalition at �2 is {2} and it can obtain a higher payoff of 3 (> 2.5) by taking action � 

once the game reaches �2. Thus, the strategy profile (�, ��) is not immune to deviations by all 

active coalitions along the history generated by it. 

     The above analysis of Example 1 demonstrates that the relative bargaining power of 

coalitions following their SPNE strategies may change as the game unfolds along the history 

generated by a strategy profile. For instance, coalition {2}  can obtain a payoff of only 1 by 

deviating from the SPNE strategy (�, ��) of � at �1, but a payoff of 3 by deviating at �2. Despite 

the fact that coalition {2} follows a SPNE strategy in the induced game Γ�1{2}
, this is possible 

because �2 is not reached in the history generated by the SPNE of the induced game  Γ�1{2}
.  In 

more general terms, it is possible because a SPNE strategy of a coalition (e.g. {1,2} in Example 

1) is not necessarily a SPNE strategy of a proper subcoalition (e.g. {2} in Example 1).  

     In summary, as Example 1 illustrates, the payoff achievable by a coalition following its SPNE 

strategies may change as the game unfolds along the history generated by a strategy profile. A 

core concept that takes account of this fact implies a possibly smaller core.  

 

3. The subgame-perfect core  

We need some additional definitions. A payoff vector (�1, … , ��) is feasible for a strategy profile 

if ∑ ���∈� = ��(�), where � is the terminal node of the history generated by the strategy profile. 
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By a history leading to a payoff vector (�1, … ,��) we mean a history with a terminal node � 

such that ��(�) = ∑ ���∈� . Given an extensive game Γ and the resulting family of the induced 

(extensive) games Γ� and Γ��, let ��(�; �) denote the highest SPNE payoff of coalition � in the 

game Γ��. 5F

6 

     Given the set of SPNE payoffs ��(�; �), � ∈ � and �, an active coalition at �, the subgame-

perfect core of the extensive game Γ consists of payoff vectors with the property that no coalition 

can improve upon its payoff by deviating not only at the origin but also at any decision node 

along the histories leading to the terminal nodes for which the payoff vectors are feasible.7 It 

may be noted that the history generated by any strategy profile begins at the origin of game Γ and 

all coalitions including coalition � are active at the origin. 

   

Definition 1 The subgame-perfect core of an extensive game Γ is the set of payoff vectors 

(�1, … ,��) such that ��(�; �) ≤ ∑ ���∈�  for all decision nodes � along the histories leading to 

the payoff vector (�1, … ,��) and all coalitions � ⊂ � that are active at �.           

     Let �∗ ∈ � be a terminal node such that ��(�∗) ≥ ��(�) for all � ∈ �. Such a terminal node 

exists if the extensive game Γ is finite or if the strategy sets are compact and the payoff functions 

are continuous. Definition 1 implies that the subgame-perfect core of the extensive game Γ must 

be a subset of the set of feasible payoff vectors (�1, … , ��) such that ∑ ���∈� = ��(�∗). That is 

because the origin of the extensive game Γ is a decision node along every history of the game 

and coalition � is active at the origin. Thus, ��(�∗) = ��(�; 0) and there are no other feasible 

payoff vectors (�1, … ,��) such that ��(�; 0) ≤ ∑ ���∈� .    

     Definition 1 takes into account the possibility that the terminal node at which the total payoff  ��(�) is highest may not be unique and that the payoffs that coalitions can obtain along the 

nodes of different histories leading to different terminal nodes with highest total payoff may be 

different. As we will discuss, this implies a concept that may be considered “too strong”. 

Therefore, we also introduce the concept of the weak subgame-perfect core, which is weaker in 

                                                           

6 By definition of Γ��, coalition � must be active in the subgame Γ�.   

7 As Example 1 demonstrates, the SPNE payoffs that a coalition can obtain as the game unfolds along the history 

generated by a strategy profile may be higher. 



12 

 

the sense that the weak subgame-perfect core is non-empty if the subgame-perfect core is, but the 

converse is not true.   

     Let �∗ ⊂ �  be such that if �∗ ∈ �∗, then ��(�∗) ≥ ��(�) for all � ∈ �. Let �(�∗) denote the 

set of decision nodes along the history leading to the terminal node �∗.  Let �∗ = ∪ �(�∗) where 

the union is taken over all �∗ ∈ �∗.   
     Definition 1 implies that the subgame-perfect core of an extensive game Γ consists of payoff 

vectors from the set { (�1, … ,��): ∑ ���∈� = ��(�∗)}, �∗ ∈ �∗, which are immune to deviations 

by all coalitions that are active at the decision nodes in the set �∗. Since the origin 0 ∈ �∗ and all 

coalitions are active at the origin, the payoff vectors must additionally satisfy at least ��(�; 0) ≤∑ ���∈�  for all � ⊂ �. In particular, ��({�}; 0) ≤ �� for each � ∈ �. Thus, in our model of 

cooperation, the players are at least as well-off as they would be if the game were played non-

cooperatively without any cooperation. In other words, no player stands to lose by cooperating in 

the manner assumed in this paper. The same property cannot be shown to hold, if the players in 

the complement of a deviating coalition do not form singletons. 

 

3.1 The centipede and the infinite bargaining games 

We illustrate the subgame-perfect core and some of its properties by applying it to two well-

known examples of extensive games. 

 

Example 2 The centipede game (Rosenthal, 1981): There are two players, 1 and 2. The players 

have 1 dollar each in the beginning of the game. When a player says "continue", 1 dollar is taken 

by a regulator from her pile and 2 dollars are put in her opponent's pile. As soon as either player 

says "stop", play is terminated, and each player receives the money currently in her pile. The 

play also stops if both players' piles reach 100 dollars each. The extensive form of this game is 

depicted in Fig. 3; the first number in each pair is the payoff of player 1 and the second number 

is the payoff of player 2.  

                
   1                      2                     1                                      2                      1                       2 

  ●                           ●                            ●                                             ●                          ●                            ●                      (100,100)                                                   
          continue                continue             continue                                      continue                 continue              continue      
                
    stop                         stop                        stop                                         stop                       stop                        stop 
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    (1,1)                  (0,3)                (2,2)                               (97,100)         (99,99)             (98,101) 
 

Fig. 3 

 

This centipede game admits a unique SPNE and the equilibrium strategy for each player is to 

choose "stop" whenever it is her turn to move. In this SPNE equilibrium the payoffs are $ 1 to 

each player while $100 each is possible. For this reason the centipede game has often appeared 

in the debates concerning the SPNE concept. Several experimental studies have demonstrated 

that SPNE is rarely observed. Instead, players regularly show partial cooperation: playing 

“continue” for several moves before eventually choosing “stop”.  It is rare for players to 

cooperate through the whole game. For examples see McKelvey and Palfrey (1992) and Nagel 

and Tang (1998). 

      In the centipede game in Fig. 3, the total payoff of the grand coalition of 1 and 2 is highest at 

the last terminal node and equal to 200 dollars. Therefore, the set �∗ is a singleton. Player 2 is 

active in all subgames and player 1 and the grand coalition of 1 and 2 in all but the last subgame. 

The payoffs ��({1}, �) of player 1, ��({2},�) of player 2, and ��({1,2},�) of the grand 

coalition of 1 and 2 are well-defined in each subgame in which they are active. The set �∗ of 

decision nodes along the history leading to the unique terminal node at which the payoff of the 

grand coalition is highest includes all decision nodes of the game. The payoff  ��({1}, �), � ∈�∗, of player 1 is highest in the last subgame in which it is active and equal to 99 dollars. 

Similarly, the payoff  ��({2}, �), � ∈ �∗, of player 2 is highest in the last subgame in which it is 

active and equal to 101 dollars. These calculations imply that the subgame-perfect core of the 

game is non-empty and consists of the unique payoff vector (99,101). Unlike the SPNE payoff 

vector, this payoff vector is “efficient” and not bad for either of the players or the grand 

coalition.8  

     There is one more important property of the subgame-perfect core worth noting. Consider a 

modified centipede game which is identical to the original game in Fig. 3 except that the payoffs 

                                                           
8 However, it may be noted that the subgame-perfect core of a centipede game may be empty and, thus, no 

cooperation may be possible. In this case a SPNE of the game is a predicted outcome.  
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at the last terminal node have been replaced with the subgame-perfect core payoffs (99,101). It 

is easily verified that the subgame-perfect core payoff vector (99,101) is a SPNE outcome of the 

so-modified game. This means that each subgame-perfect core payoff vector (a cooperative 

solution) can be supported as a SPNE outcome (a non-cooperative solution) of an extensive 

game that differs from the original game only in terms of players’ payoffs at just one terminal 

node.9 We show below (Proposition 1) that this property holds not just for the centipede game 

but for every extensive game of perfect information. This also leads us to conjecture that the 

subgame-perfect core of a general two-player extensive game is non-empty if it admits a SPNE 

with an “efficient” outcome. Before we confirm the conjecture (see Proposition 6 below), it is 

worth checking whether the conjecture holds for another well-known two-player game which 

admits an SPNE with an efficient outcome. 

 

Example 3 The two-player infinite bargaining game of alternating offers (Rubinstein, 1982): 

Two players, 1 and 2, bargain to split 1 dollar. The rules are as follows: The game, to be denoted 

by Γ, begins in period 1 in which player 1 makes an offer of a split (a real number between 0 and 

1) to player 2, which player 2 either accepts or rejects. Acceptance by player 2 ends the game 

and the proposed split is immediately implemented. If player 2 rejects, nothing happens until 

period 2. In period 2, the players’ roles are reversed with player 2 making an offer of split to 

player 1 and player 1 then accepting or rejecting it. The bargaining can potentially go on forever. 

If that indeed happens, both players get zero. Each player � “discounts” the future using the 

discount factor �� ∈ (0 1). That is, a dollar received by player � in period � is worth only ���−1 in 

period 1 dollars. Rubinstein (1982) shows that this game admits a unique SPNE, in which 

• Player 1 always offers �∗ = (�1∗,�2∗) and accepts an offer if and only if �1 ≥ �1∗ 
• Player 2 always offers �∗ = (�1∗, �2∗) and accepts a proposal � if and only if �2 ≥ �2∗, 

where  

                                                           
9 Given that in the modified centipede game there is no conflict between a player’s self-interest and mutual benefit, 

it would be interesting to conduct experiments to check whether the players would cooperate during the entire 

modified game.  
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�∗ = � 1−�21−�1�2 ,
�2(1−�1)1−�1�2 �  

�∗ = ��1(1−�2)1−�1�2 ,
1−�11−�1�2�.  

This equilibrium strategy profile implies an outcome in which player 1 offers �∗ at the start of 

the game, and player 2 accepts it immediately. Therefore, �∗ is the unique SPNE payoff vector 

and, given that there are only two players, the unique SPNE is also the unique SPNE in both the 

induced games Γ{1} and Γ{2}. Hence, ��({1}; 0) = �1∗,��({2}; 0) = �2∗, and ��({1,2}; 0) = 1. 

Since each subgame has exactly the same structure as the original game and the future payoffs 

are discounted, �∗ = {0}, 10 and, therefore, ��({1}) = ��({1}; 0) = �1∗,��({2}) =��({2}; 0) = �2∗, and ��({1,2}) = ��({1,2}; 0) = 1. Since �1∗ + �2∗ = 1, the subgame-perfect 

core is non-empty and consists of the unique SPNE payoff vector �∗ independently of the values 

of the discount factors �1 and �2. 

    This shows that in Rubinstein’s two-player infinite bargaining game, like the modification of 

the centipede game discussed above, there is no conflict between a player’s self-interest and 

mutual benefit. Furthermore, Binmore, Rubinstein, and Wolinsky (1986) show that if the players 

are patient, the SPNE payoff vector �∗ is also the axiomatic Nash solution of the bilateral 

bargaining game (Nash, 1950). This means that if the players are patient, the equivalence 

between the subgame-perfect core and the SPNE for the two-play er infinite bargaining game of 

alternating offers, as established above, also implies equivalence between the subgame-perfect 

core and the axiomatic Nash solution.11 

  

3.2 A non-cooperative interpretation of the subgame-perfect core  

We show that each subgame-perfect core payoff vector can be supported as a SPNE payoff 

vector of a modified game that is identical to the original game except that the individual payoffs 

                                                           
10 This confirms the point made above that even for games with infinite horizon the set �∗ may contain only a finite 

number of nodes. The set �∗includes all decision node in the case of the finite centipede game, but only one node --

the origin -- in the case of the infinite bargaining game.  

11 That is, �1,�2 → 1 in our notation. 
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at a terminal node with highest total payoff for the grand coalition have been replaced by the 

subgame-perfect core payoff vector.    

     We shall henceforth refer to a SPNE that leads to a terminal node with highest total payoff for 

the grand coalition as an efficient SPNE. Also, we define a strategic-transform of an extensive 

game as follows: (a) If the subgame-perfect core is empty, a strategic transform is identical to the 

original game except that the players’ payoffs at a terminal node with highest total payoff for the 

grand coalition are replaced by a subgame-perfect core payoff vector; (b) if the subgame-perfect 

core is empty the strategic–transform is identical to the original game. 

     Note that with this definition, every extensive game has a strategic-transform. We show that 

each subgame-perfect core payoff vector of an extensive game is a SPNE payoff vector of a 

strategic-transform of the extensive game. 

         

Proposition 1 Given an extensive game Γ with a non-empty subgame-perfect core, each 

subgame-perfect core payoff vector of the game is a SPNE payoff vector of a strategic-transform 

of the game. 

 Proof:  Let �∗ be a terminal node of Γ with highest total payoff for the grand coalition and let �(�∗) ≡ {�1∗, … , ��∗ } and (�1∗ , … ,��∗ ) denote (respectively) the decision nodes and actual actions 

taken along the history leading to the terminal node �∗. Let ��∗  denote the player who moves and 

takes action ��∗  at the decision node ��∗ . 

     Given a subgame-perfect core payoff vector (�1∗, … ,��∗), let Γ∗ denote the strategic-transform 

of Γ obtained by replacing the individual payoffs at the terminal node �∗ with the subgame-

perfect core payoff vector (�1∗, … ,��∗). By definition, ∑ ��∗��=1 = ∑ ��(�∗)��=1 . 

     We prove by backward induction that (�1∗, … ,��∗) is a SPNE payoff vector in the strategic-

transform Γ∗.  As above, let ��(�, �), � active at �, denote the highest SPNE payoff of coalition � in the induced subgame Γ��. We start by determining the optimal actions for moves at the final 

decision nodes in the game tree. Since play at these nodes involves no further strategic 

interactions among the players, the determination of optimal behavior at these decision nodes  

involves a single-person decision problem. At the particular final decision node ��∗ , by definition 
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of a SPNE of Γ, ��({��∗ },��∗ ) ≥ ���∗ (�) at all terminal nodes � of subgame Γ��∗ . Since (�1∗, … , ��∗) 

is  a subgame-perfect core payoff vector and ��∗  is a node along the history leading to the 

terminal node �∗, it follows that ���∗∗ ≥ ��({��∗ },��∗ ) ≥ ���∗ (�) at all terminal nodes � of the 

subgame Γ��∗ . Hence, ��∗  is an optimal action of player ��∗  in the subgame Γ��∗∗  of the strategic-

transform Γ∗. Consider next the reduced games with origins at next-to-last decision nodes and 

determine the optimal decisions to be taken there by players who correctly anticipate the actions 

that will be taken at the final decision nodes. The reduced forms of the subgames Γ��−1∗∗ and  Γ��−1∗ , obtained after applying backward induction at the final decision nodes, also involve a 

single-person decision problem. Since ��−1∗  is a decision node of player ��−1∗ , by definition of a 

SPNE of Γ��−1∗ , we have  ��({��−1∗ },��−1∗ ) ≥ ���−1∗ (�) at all terminal nodes of the reduced form 

of the subgame Γ��−1∗ . Since (�1∗, … ,��∗) is  a subgame-perfect core payoff vector and ��−1∗  is a 

node along the history leading to the terminal node �∗, it follows, by definition of a subgame-

perfect core payoff vector,  that ���−1∗∗ ≥ ��({��−1∗ }, ��−1∗ ) ≥ ���−1∗ (�) at all terminal nodes � of 

the reduced form of the subgame Γ��−1∗∗ and ��−1∗  is an optimal action of player ��−1∗ . Thus, 

continuing backward through the game tree will eventually lead to a SPNE of the game Γ∗ with 

payoffs (�1∗, … ,��∗).     ■ 

 

     Proposition 1 justifies the subgame-perfect core, when non-empty, as a non-cooperative 

solution concept satisfying the perfection property of the SPNE. Furthermore, from our 

definition of a strategic-transform of a game, each SPNE of an extensive game with an empty 

subgame-perfect core is a solution of the extensive game. Then, given that the strategic-

transform of a game with an empty subgame-perfect core is identical to the original game, the 

proposition implies that an extensive game always has a solution and every solution is a SPNE of 

a strategic transform of the game irrespective of whether the subgame-perfect core of the game is 

empty. The more “applied” message of the above proposition is that, if the subgame-perfect core 

is non-empty, then cooperation in an extensive game is credible and the subgame-perfect core 

determines the set of reasonable predictions. But if the subgame-perfect core is empty, we cannot 

expect that a cooperative solution will be reached and in this case a SPNE remains the predicted 

outcome, despite the fact that cooperation is allowed.      
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3.3 The subgame-perfect core payoff vectors as credible contracts 

We now interpret subgame-perfect core payoff vectors as credible contracts. A contract in an 

extensive game is an assignment of payoffs to each player at each terminal node of the game.  

Thus, a contract in an extensive game induces a contract in every subgame. We assume that any 

coalition can cancel a contract at any point of the game and take actions to maximize its own 

payoff, and a contract is binding if and only if it has not been cancelled.12 A contract is credible 

in a subgame if no coalition of players who are active in the subgame has incentive to cancel the 

contract at the beginning of the subgame and take actions to obtain a higher payoff for the 

coalition. A contract is credible, if it is credible in each subgame. Examples 1 and 2 above 

further clarify this concept.  

     In Example 1, consider the contract that assigns payoffs equal to (2,1) at  �1, (3.4,2.6) at �2, 

and (1.5, 2.5) at �3. 13 This contract is not credible, since in the subgame with origin at �2, player 

2 can cancel the contract at the beginning of the subgame and take action � to obtain a payoff of 

3 (>2.6). By contrast, if the contract were to assign payoffs equal to (2,1) at �1and (1.5, 2.5) at �3, but (2.9,3.1) at �2, then neither player 1, nor player 2, nor the coalition of players 1 and 2 will 

have incentive to cancel the contract at the beginning of any subgame in which they are active. 

Clearly, only those contracts that assign payoffs equal to those in a subgame-perfect core payoff 

vector at terminal node �2 (the terminal node with highest total payoff for the grand coalition) 

are credible. 

     In the case of the centipede game in Fig. 3, the payoffs at the last terminal node under any 

credible contract must be equal to those in the unique subgame-perfect core payoff vector 

(99,101). That is so because any other contract that assigns different payoffs will be either 

cancelled by player 2, who can play "stop" to obtain a payoff of 101 in the subgame with origin 

                                                           
12 In other words, a contract is binding if and only if it has not been cancelled.  

13 We are intellectually indebted to Philippe Jehiel for counter posing this specific example of a contract which 

eventually led us to propose and characterize the concept of a credible contract in an extensive game. 
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at his last decision node, or by player 1, who can play "stop" to obtain a payoff of 99 in the 

subgame with origin at his last decision node.14  

Proposition 2 If a contract is credible in an extensive game Γ, then the payoffs assigned to the 

players at each terminal node with highest payoff for the grand coalition must be equal to those 

in a subgame-perfect core payoff vector. 

Proof: We prove the proposition by contradiction. First, suppose contrary to the assertion that a 

vector of payoffs (�1, … ,��) assigned to the players at a terminal node �∗with highest total 

payoff for the grand coalition is not a subgame-perfect core payoff vector. Accordingly, there 

exists a decision node � along the history leading to �∗, i.e. � ∈ �∗, and a coalition � of players 

who are active in the subgame with origin at � such that ��(�, �) > ∑ ���∈� . That, however, 

contradicts the supposition that the contract is credible because it implies that there is a subgame 

in which a coalition of players who are active in the subgame can cancel the contract and obtain 

a higher payoff.     ■ 

     Given the focus on the subgame-perfect core in this paper, Proposition 2 does not characterize 

the entire credible contract. Notice, nonetheless, that a credible contract induces a credible 

contract in each subgame by definition. It follows from Proposition 2 that the payoffs at some of 

the other terminal nodes must be equal to those in a payoff vector belonging to the subgame-

perfect core of a subgame. However, a credible contract for a proper subgame may never come 

into effect, except by mistake. 

     The form of contracting proposed above is relevant for environments in which the terminal 

node (state) that has been reached in a play of the game is verifiable and a mechanism to enforce 

terminal node-dependent (i.e. state-dependent) contracts is in place whereas actions taken are not 

verifiable by the enforcement authorities. Because most contracts in real life are of this type, 

existing institutions and mechanisms are sufficient for their enforcement.15 In fact, forward 

                                                           
14 In operational terms, the unique subgame-perfect core payoff vector (99,101) requires player 1 to transfer 1 dollar 

to player 2 unless the contract has been cancelled. Despite that, player 1 has no incentive to cancel the contract. 

15 This type of contracts fit well the original definition of a contingent contract in Debreu (1959:100) and further 

elaborated in Shaffer (1984) who notes that “The only risk faced by those who buy these contracts is the possibility 
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looking players may write in the beginning of the game a contract for each terminal node that is 

binding if and only if a play of the game reaches the terminal node for which the contract is 

written.16 Since a terminal node is reached in a play of the game if and only if the players take a 

certain set of actions (indeed, a unique set of actions), a contract is binding if and only if the 

players take those actions. Put differently, players (including coalition of players) are free to not 

fulfil a contract by deviating from the implicitly required actions and prevent the play from 

reaching the terminal node for which the contract is written and binding.  

 

4. Additional properties of the subgame-perfect core 

We now establish some additional properties of the subgame-perfect core. To that end, we may 

notice that if coalition � is active in the subgame Γ�, then so is every coalition �′ ⊂ �. Therefore, 

for each � ∈ �, ��(�; �) satisfies the standard definition of a characteristic function. 

Accordingly, we interpret the core of the characteristic function game ��(�; 0) as the core of the 

extensive game Γ, and, for each � ∈ �, the core of the characteristic function game ��(�; �) as the 

core of the subgame Γ�. We show below that the subgame-perfect core is a refinement of the 

core of the extensive game Γ.  

      As an illustration of this property, we may notice that the core of the centipede game in Fig. 3 

consists of the set of payoff vectors (�1,�2) such that  �1 + �2 = 200,�1 ≥ 1, and  �2 ≥ 1. In 

contrast, the subgame-perfect core consists of the unique payoff vector (99,101) in the set. The 

question remains as to whether the subgame-perfect core of an extensive game, like the core of a 

strategic game, is also the core of a characteristic function game. To see that, for each � ⊂ �, let  ��(�) =  sup�  ��(�; �) 

                                                           

that a state of the world occurs in which delivery is not promised in the contract; if those circumstances occur under 

which delivery is promised, then delivery is (correctly) foreseen to occur with certainty.”   

16 We can interpret the collection of contracts, one for each terminal node, as a “grand contract” and a contract for a 

terminal node as a “clause” in the grand contract which may never come into effect unless it is for a terminal node at 

which grand coalition’s  payoff is highest.  
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where the supremum is taken over all nodes � ∈ �∗ at which � is active. We shall refer to the 

function ��(�) as the characteristic function form of the extensive game Γ. 17  

 

Proposition 3 The subgame-perfect core of an extensive game Γ is equal to the core of the 

characteristic function game ��.  

Proof: Let (�1, … ,��) be a payoff vector that belongs to  the core of the characteristic function 

game ��. Then, ∑ ���∈� = ��(�) and  ∑ ���∈� ≥  ��(�), � ⊂ �. By definition of the 

characteristic function ��, for each � ⊂ �,��(�) ≥ ��(�; �) at each decision node � ∈ �∗ at 

which � is active and ��(�) = ��(�∗), for all �∗ ∈ �∗. The inequalities imply that for each  � ⊂�,∑ ���∈�  ≥ ��(�) ≥ ��(�; �) at each � ∈ �∗ at which � is active and the equalities imply that  ∑ ���∈� = ��(�∗) for all �∗ ∈ �∗, that is (�1, … ,��) is a feasible payoff vector for all terminal 

nodes �∗ with the highest payoff for coalition �. Hence,  (�1, … ,��) meets all conditions for a 

payoff vector to be in the subgame-perfect core of Γ.     

     Conversely, let (�1, … , ��) be a payoff vector in the subgame-perfect core of the extensive 

game Γ, then for each � ⊂ �,  ��(�; �) ≤ ∑ ���∈�  at each decision node � along the history 

generated by any strategy profile for which the payoff vector (�1, … ,��) is feasible. Since the 

origin 0 is a decision node of the history generated by any strategy profile and coalition � is 

active at the origin, ∑ ���∈� ≥ ��(�; 0). Furthermore, since (�1, … , ��) is a feasible payoff 

vector, ∑ ���∈� = ��(�, 0) = ��(�). Accordingly, ∑ ���∈� = ��(�)  and (�1, … ,��) is a 

feasible payoff vector for any history of the game leading to a �∗ ∈ �∗. Therefore, for each � ⊂�,  ��(�; �) ≤ ∑ ���∈�  at each � ∈ �∗. Thus, ∑ ���∈� ≥  ��(�) for each  � ⊂ �, and the payoff 

vector (�1, … ,��) is in the core of the characteristic function game ��. This proves that the core 

of the characteristic function game �� is equal to the subgame-perfect core of the extensive 

game Γ.     ∎ 

 

     Since the proposition shows that an extensive game can be converted into a characteristic 

function game, it extends the standard approach for strategic games (Aumann, 1961) to extensive 

                                                           
17 In many games, including games of infinite horizon as in Example 3, the set �∗ may be finite and, thus, the 

supremum a maximum. 
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games. This means that the concepts and ideas from the vast literature on characteristic function 

games can now be applied to games in extensive form. For instance, it is now possible to define 

and calculate the Shapley value of a centipede game and compare it with the actual outcomes of 

the game obtained in experiments. 

     In the following proposition, we interpret the subgame-perfect core in terms of the cores of 

the family of subgames Γ�, � ∈ �∗ and show that the former is a refinement of the latter. Note 

that the family of subgames Γ�, � ∈ �∗, includes at least one subgame in which all � players are 

active, namely, Γ (=Γ0). But in some games the family of subgames may include many more: For 

example, in the centipede game the set �∗ includes all decision nodes and both players are active 

in all but one subgame. 

 

Proposition 4 The subgame-perfect core of an extensive game Γ with � players is a subset of the 

intersection of the cores of subgames in the family Γ�, � ∈ �∗ with � active players. If all � 

players are active in all subgames in the family Γ�,� ∈ �∗, then it is equal to the intersection and, 

therefore, non-empty if and only if the core of every subgame in the family is non-empty. 

Proof:  Let (�1, … ,��) be a payoff vector in the subgame-perfect core. Then, for each coalition � ⊂ �,  ��(�) ≤ ∑ ���∈�  and ��(�; �) ≤ ��(�) for all � ∈ �∗ at which coalition � is active. 

Therefore, for each � ∈ �∗, ��(�; �) ≤ ∑ ���∈�  for all coalitions � which are active at �. 

Furthermore, if Γ�, � ∈ �∗, is a game with � players, then � is a node in the set �∗at which 

coalition � is active. Therefore, ��(�; �) = ��(�) = ∑ ���∈� . This proves that (�1, … ,��) 

belongs to the core of each subgame with � players in the family Γ�,� ∈ �∗. However, if  

(�1, … ,��) is a payoff vector in the subgame-perfect core, then, by definition, it must satisfy the 

constraints ��(�; �) ≤ ∑ ���∈�  also at nodes � ∈ �∗ at which not all � players are active. 

Therefore, the set of payoff vectors in the subgame-perfect core may be a strict subset of the 

intersection of the cores of subgames with � players in the family Γ�, � ∈ �∗, as indeed is the 

case in Example 1.  

     If all � players are active in all games in the family Γ�, � ∈ �∗, then coalition � is active in 

each Γ�, � ∈ �∗, and the set of decision nodes along any history generated by any strategy 

profile that maximizes the payoff of coalition � in Γ�, � ∈ �∗, is a subset of the set �∗. 
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Therefore, ��(�, �) = ��(�, 0) for all � ∈ �∗. This implies that if  (�1, … ,��) belongs to the 

core Γ�, then ��(�; �) = ��(�) = ∑ ���∈� . Furthermore, if  (�1, … , ��) belongs to the cores of 

all Γ�, � ∈ �∗, then for each coalition � which is active at �,��(�; �) ≤ ∑ ���∈�  for all � ∈ �∗. 
Given that ��(�) =  sup�  ��(�; �), this implies that there is no coalition � for which ��(�) >∑ ���∈�  at some decision node � ∈ �∗. This proves that if all � players are active in all games in 

the family Γ�, � ∈ �∗, then a payoff vector  (�1, … ,��) that belongs to the intersection of the 

cores of the games in the family also belongs to the subgame-perfect core. It was shown above 

that if  (�1, … ,��) belongs to the subgame-perfect core then it also belongs to intersection of all 

games with � active players in the family Γ�, � ∈ �∗.     ■ 

 

     On reflection, Proposition 4 really shows that the subgame-perfect core is a subset of the 

intersection of the subgame-perfect cores of subgames in a family and equal to the intersection if 

all players are active in all subgames in the family.      

     The game in Example 1 illustrates the first part of Proposition 4. Both players are active in 

only one subgame and the core of this subgame consists of vectors (�1,�2) such that  �1 + �2 =

6, �1 ≥ 2, and  �2 ≥ 1, but the subgame-perfect core is the smaller set �1 + �2 = 6,�1 ≥ 2, and 

 �2 ≥ 3, since in one of the subgames in the family only player 2 is active and can obtain a 

payoff of 3.  

      For each coalition � ⊂ �, the functions ��(�; �), � ∈ �∗, determine the lower bounds on the 

characteristic function ��(�). Since these lower bounds may be attained for different coalitions 

at different nodes �,  the characteristic function ��(�) may not inherit all "characteristics" of the 

family of functions ��(�; �) unless the bounds are all attained at the same node � ∈ �∗.18 

Indeed, if the family of subgames Γ�, � ∈ �∗, includes  a game with � players, say Γ�∗ such that 

for each � ⊂ �, ��(�) = ��(�; �∗), then the subgame-perfect core and core of the subgame Γ�∗ 
are equal, since their derived characteristic functions are equal. If �∗ ≠ 0, the subgame-perfect 

core is possibly smaller than the core of Γ. But if �∗ = 0, then the subgame-perfect core is equal 

                                                           
18 However, this is not peculiar to the subgame-perfect core of an extensive game. The same is also true for the 

SPNE of an extensive game which may not have the similar characteristics as the SPNE of proper subgames unless 

the game has additional structure in place.  
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to the core of Γ, since no refinement takes place as the game unfolds along the nodes in the set � ∈ �∗. That is indeed so in the case of Rubinstein’s bargaining game discussed above, since �∗ = {0}.  

 

4.1 The weak subgame-perfect core 

To motivate the weaker notion, we introduce first an alternative, but equivalent definition of the 

subgame-perfect core. 

      For each �∗ ∈ �∗, let ��∗� (�) = max� �� (�; �), � ⊂ �, where the maximum is taken over all 

nodes � ∈ �(�∗) at which � is active. Because the origin of the game 0 ∈ �(�∗), each coalition � 

is active at least at some � ∈ �(�∗), and ��∗� (�) = ��(�∗). We shall refer to the function ��∗� (�),� ⊂ �, as the characteristic function corresponding to the terminal node �∗, and the core 

of the characteristic function game ��∗�  as the subgame-perfect core corresponding to the 

terminal node �∗ ∈ �∗. 19 Knowing that ��(�) = max�∗ ��∗� (�) where the maximum is taken over 

all �∗ ∈ �∗, the  subgame-perfect core of an extensive game as proposed in Definition 1 is equal 

to the intersection of the  subgame-perfect cores corresponding to the terminal nodes in the set �∗. 
     This equivalence suggests an additional interpretation of the subgame-perfect core, pointedly 

that it is a refinement of the set of subgame-perfect cores corresponding to the terminal nodes 

with highest payoff for the grand coalition. However, this refinement, like many others in game 

theory, though intuitive implies a concept which is in a sense “too strong”, since it implies that 

the subgame-perfect core is empty if the subgame-perfect core corresponding to any terminal 

node with highest payoff for the grand coalition is empty.20 Since we regard the subgame-perfect 

                                                           
19 Notice that the subgame-perfect core corresponding to a terminal node �∗ ∈ �∗ has the same properties as the 

subgame-perfect core for the extensive game. That is because the subgame-perfect core corresponding to a terminal 

node �∗ ∈ �∗ is the subgame-perfect core of a modified extensive game in which the payoffs of the players at all 

terminal nodes in �∗, except �∗, have been reduced by arbitrary small amounts.  

20 Many selection procedures in game theory are motivated by intuitive criteria. However, they can sometimes lead 

to an empty solution set even though the game has a natural solution, e.g., a strategic game with a unique Nash 

equilibrium may have no strong Nash equilibrium. 
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core as the rule for the distribution of gains from coalitional choices, it makes sense to assume 

that the grand coalition will not choose a strategy that leads to a terminal node for which the 

corresponding subgame-perfect core is empty. Thus, a weaker concept results if the intersection 

is restricted only to the non-empty subgame-perfect cores corresponding to terminal nodes. We 

shall refer to the so-defined weaker notion as the weak subgame-perfect core (WSPC) of an 

extensive game. In most applications there is no difference between the two notions; either the 

set of terminal nodes �∗ with the highest payoff for the grand coalition is a singleton or the 

subgame-perfect core corresponding to each terminal node �∗ ∈ �∗ is non-empty. However, the 

WSPC may be non-empty in some instances in which the subgame-perfect core is not. 

     The WSPC has the same properties as the subgame-perfect core. In essence, the WSPC is the 

subgame-perfect core of a modified extensive game in which the payoffs of the players at every 

terminal node in the set �∗ for which the corresponding subgame-perfect core is empty have 

been reduced by arbitrary small amounts. Importantly, the WSPC is not really an alternative 

concept. In fact, it is a complementary concept that differs and can be useful only if the subgame-

perfect core is empty. Our analysis above would remain unchanged even if we were to use the 

concept of the WSPC instead. 

    

5. Other concepts of cooperation in extensive games 

Aumann (1959) introduces a concept of strong Nash equilibrium for a strategic game which 

allows coaitional deviations. Similarly, Bernheim, Peleg, and Whinston (1987) introduce a 

concept of a coalition-proof Nash equilibrium for games in both strategic and extensive forms. In 

this section, we first introduce a concept of strong Nash equilibrium for an extensive game and 

then study how these two alternative concepts of cooperation are related to the subgame-perfect 

core.21  

   

5.1 The subgame-perfect strong Nash equilibrium 

                                                           
21 However, unlike the subgame-perfect core, there are no known sufficient conditions for the existence of the strong 

and the coalition-proof Nash equilibria. In fact, their existence can be proved in applications only by ad hoc 

methods. 
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 Given an extensive game Γ, let  Ω ≡ [{��}�∈�, {��}�∈�], where �� is the strategy set of player �, 
denote its strategic form.22 Then, � = �1 × ⋯× ��  becomes the set of strategy profiles, � =

(�1, … , ��) ∈ � is a strategy profile, and ��(�1, … , ��) is the payoff function of player �. 
Given � = (�1, … , ��) ∈ �, let �� ≡ (��)�∈�, �−� ≡ (��)�∈�\�, and (��, �−�) ≡ � = (�1, … , ��). 

Similarly, let �� ≡×�∈� �� and  �−� ≡×�∈�\� ��. Finally, for each ��̅ ∈ ��, let Γ/�−̅� denote the 

game restricted to the players in � by the strategies �−̅� for the players in �\� and let Ω/�−̅� ≡ 

[{���}�∈�, {��}�∈�], where ���(��) = ��(��, �−̅�) for all � ∈ � and �� ∈ ��, denote the corresponding 

restricted strategic game. The strategy set of coalition � in the induced game Γ� is �� ≡×�∈� ��. 
 

Definition 2 Given an extensive game Γ, a strategy profile �̅ = (�1̅, … , ��̅) ∈ � is a strong 

subgame perfect Nash equilibrium in Γ, if (��̅, �−̅�) = � ̅is a subgame perfect Nash equilibrium in 

every induced game Γ�, � ⊂ �.  

     Unlike the subgame-perfect core, a subgame-perfect Nash equilibrium (SPSNE) in an 

extensive game requires the same strategy �̅ to be a SPNE in every induced game Γ�, � ⊂ �. 

Clearly, appropriate restrictions of the SPSNE strategy �̅, by definition, are SPNE in every 

subgame of each induced game Γ�, � ⊂ �, and, therefore, SPSNE in every subgame of  Γ. 23  

Notice that for each coalition � ⊂ �,  if �̅ = (��̅, �−̅�) is a SPSNE in the extensive game Γ, then it 

is also a SPSNE in every restricted game Γ/�−̅�. This suggests the following recursive but 

equivalent definition of SPSNE which, as will be seen below, is sometimes more convenient to 

use. 

 

Definition 3 (1) In a single player extensive game Γ, �̅ ∈ � is a SPSNE if and only if �̅ is a SPNE 

in Γ. (2) Let � > 1 and assume that SPSNE has been defined for extensive games with fewer 

than � players. For any extensive game Γ with � players, �̅ ∈ � is a SPSNE in Γ if for all proper 

                                                           
22See Osborne and Rubinstein (1994: 94) for an elegant definition of the strategic form of an extensive game. In 

terms of the earlier notation, ��(�1, … , ��) ≡ ��(�) where � is the terminal node generated by the strategy profile 

(�1, … , ��).  

23 For a game of perfect information Γ, the SPSNE strategy, by definition, induces a SPNE in every subgame of each 

induced game Γ��, � ⊂ �, � ∈ �, and, therefore, a SPSNE in every subgame Γ�, � ∈ �.  
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subsets � ⊂ �, ��̅ is a SPSNE in the restricted game Γ/�−̅� and if there does not exist a strategy � ∈ � such that ∑ ��(� ) > ∑ ��(� ̅).�∈�  �∈�  

   

Proposition 5 Let Γ be an extensive game such that each induced game Γ�, � ⊂ � , admits a 

unique SPNE. Then if Γ admits a SPSNE, the SPSNE is unique and the subgame-perfect core 

consists of the unique SPSNE payoff vector. But if Γ admits no SPSNE, the subgame-perfect 

core of Γ  may still be non-empty.  

Proof:  We first prove that if the extensive game Γ admits a SPSNE, then it must be unique. If 

not, then some induced games Γ� must admit more than one SPNE, which contradicts our 

supposition that each induced game Γ� admits a unique SPNE. Therefore, let  �̅ ∈ � denote the 

unique SPSNE. Then,  �̅ = (��̅, �−̅�)  is a unique SPNE in every induced game Γ�, � ⊂ �, and, 

therefore, it also induces a unique SPNE in every subgame of each induced game Γ�, � ⊂ �.  

     By supposition, Γ� admits a unique SPNE, thus the terminal node with highest payoff for 

coalition � is unique. Since �̅ is the unique SPNE of every induced game Γ�, � ⊂ �,  the SPNE 

of each  induced game Γ�, � ⊂ �, generates a history which is identical to the history leading to 

the terminal node with the highest payoff for coalition �. Let �∗ denote the set of nodes along 

the history leading to the terminal node with the highest payoff for �. Then, for each  � ∈ �∗,  ��(�; �) = ��(�; 0) = ∑ ��(�̅ ),�∈� � ⊂ �,  since �∗ is the set of nodes along the history 

generated by the unique SPNE of Γ�, � ⊂ �. Thus, ��(�) = ��(�; 0), � ⊂ �. Therefore, if 

(�1, … ,��) belongs to the subgame-perfect core, then it must satisfy ∑ �� = ��(�)�∈� =∑ ��(�)̅�∈�  and  ∑ �� ≥ ��(�)�∈� = ∑ ��(�̅).�∈�  Consequently, the SPSNE payoff vector 

(�1(� ̅), … ,��(� ̅)) is the unique subgame-perfect core payoff vector. This proves the first part of 

the proposition. 

     For the second part of the proposition, note that the centipede game in Fig.3 is a game in 

which every induced game admits a unique SPNE. Given that the unique SPNE of the game is 

not efficient, it is not a SPSNE. But, as seen, the game admits a non-empty subgame-perfect 

core.     ■   
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     Propositions 3 and 5 together imply that the subgame-perfect core of an extensive game is a 

weaker concept than SPSNE in the sense that the necessary and sufficient condition for the 

existence of a non-empty subgame-perfect core is not sufficient for the existence of a SPSNE. 

The proof for the proposition also illustrates the point made above that the characteristic 

functions ��(�) and ��(�; �), � ∈ � and � active at �, may be closely related if the extensive 

game has additional structure. We note two implications of Proposition 5. 

   

Proposition 6 If a two-player extensive game Γ admits a unique SPNE and the SPNE is 

efficient, then it admits a non-empty subgame–perfect core.   

 Proof:  The unique SPNE of Γ is also a unique SPNE in both the induced games Γ{1} and Γ{2}. 

Furthermore, given that the unique SPNE is efficient, by Definition 3, it is actually a unique 

SPSNE of  Γ. Thus, by Proposition 5, the subgame-perfect core of Γ is non-empty and consists of 

the unique SPNE payoff vector.      ■  

 

     As an application of this proposition, we may note that Rubinstein’s two-player bargaining 

game admits a unique SPNE and the SPNE is efficient. Therefore, its subgame-perfect core, by 

Proposition 6, is non-empty. Incidentally, this implies equivalence between the subgame-perfect 

core, the Nash bargaining solution (if the players are patient), the SPSNE, and the SPNE of 

Rubinstein’s two-player bargaining game.  

      

5.2 Subgame-perfect strong and coalition-proof Nash equilibria 

As is well-known, a strong Nash equilibrium of a strategic game is also a coalition-proof Nash 

equilibrium. Therefore, for the concept of SPSNE, introduced and compared with the subgame-

perfect core, to qualify as a convincing extension of the strong Nash equilibrium for a strategic 

game, it must be shown that a SPSNE of an extensive game is also a coalition-proof subgame-

perfect Nash equilibrium (SPCPNE) of the extensive game. For that we need to reproduce the 

definition of a SPCPNE. 

 

Definition 4 (1) In a single player extensive game Γ, �̅ ∈ � is a SPCPNE if and only if �̅ is a 

SPNE of Γ. (2) Let � > 1 and assume that SPCPNE has been defined for extensive games with 
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fewer than � players. For any extensive game Γ with � players, �̅ ∈ � is self-enforcing if for all 

proper subsets � ⊂ �, ��̅ is a SPCPNE of the restricted game Γ/�−̅�.  For an extensive game Γ with � players, �̅ ∈ � is a SPCPNE if it is self-enforcing and if there does not exist another 

self-enforcing strategy � ∈ � such that ∑ ��(� ) > ∑ ��(�̅ ).�∈�  �∈� 24 

     Observe that if �̅ is a SPCPNE in Γ, then  �̅ is a SPNE in Γ and for every � ⊂ �, ��̅ is a 

SPCPNE in the restricted extensive game Γ/�−̅�.  We show that, as in strategic games, a SPSNE 

in an extensive game is a SPCPNE. However, the converse is not true, since the unique SPNE in 

the centipede game in Fig. 3 is a SPCPNE, but not a SPSNE. 

 

Proposition 7 Every SPSNE of an extensive game Γ is a SPCPNE in Γ. 

Proof: The proof is by induction. The proposition is true for games with a single player. Suppose 

the proposition is true for games with � players 1 ≤ � < �. We show that then it is also true for 

games with  � + 1 players. Let �̅ ∈ � be a SPSNE of a game Γ with � + 1 players. Then, as 

noted earlier, ��̅ is a SPSNE of Γ/�−̅S for each proper subset � of players, and , by definition, 

there is no � ∈ � such that ∑ ��(�) > ∑ ��(�̅).�+1�=1�+1�=1   Since the proposition is true for games with � players, ��̅ is a SPCPNE of Γ/�−̅S for each proper subset � of players. Furthermore, there is no 

self-enforcing � ∈ � such that ∑ ��(�) > ∑ ��(�̅).�+1�=1�+1�=1  Hence, �̅ ∈ � is a SPCPNE of game Γ 

with � + 1 players.     ■     

 

6. An application to a dynamic game of climate change 

For the sake of a clear exposition, we have so far restricted ourselves to applications of the 

subgame-perfect core to games with two-players. To demonstrate its wider applicability, we now 

consider an �-player extensive game of imperfect information. For that we model climate change 

as a finite horizon dynamic game in discrete time in which each country/player chooses its level 

of economic activity, which generates benefits for the country as well as emissions that add to 

the existing stock of greenhouse gases (GHG). Any addition to the GHG stock spurs climate 

change and negatively affects the welfare of all countries in the current and future periods. The 

                                                           
24 This definition is equivalent to the original definition of SPCPNE in Bernheim, Peleg, and Whinston (1987:10). 

We believe it to be slightly less cumbersome. 
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GHG stock evolves over time through additions due to emissions and depletions due to natural 

decay. We show that if players’ payoff functions are linear in the GHG stock, the game admits a 

non-empty subgame-perfect core. 

 

6.1 The model 

There are � countries, indexed by � = 1, … ,�. Time is discrete, indexed by � = 1, … ,�, where � 

is finite but may approach infinity. The variables ��� ≥ 0 and ��� ≥ 0 denote the consumption 

and production, respectively, of a composite private good of country � in period �; ��� and ��� 
may differ because transfers between countries are permitted. The variables ���  ≥  0 and  �� ≥ 0 

denote, respectively, the amount of GHG emitted by country � and the GHG stock in period �. 
While ��� ,��� , and ��� are flow variables, �� is a stock variable which evolves overtime according 

to the second equation below. The output of the private good and emissions of each country � are 

related according to the equation ��� = ��(���) where ��(���) is the benefit function. Each 

country � suffers damages from climate change and derives utility from the private good 

consumption in each period � according to the (utility) function ��(���, ��) = ��� − ��(��),  where ��� is the private good consumption and ��(��) is the damage function. Thus, the model is similar 

to the classical model with one private and one public good and quasi-linear utility functions 

except that it is dynamic, the endowments of the private good are not exogenously fixed, and the 

public good is a public bad. 

     We assume that the benefit function, ��(���), of each country � is strictly increasing and 

strictly concave, and the damage function, ��(��) is strictly increasing and convex or linear, i.e., ��′(���) > 0,��′′(���) < 0,��′(��) > 0, and ��′′(��) ≥ 0. We assume that for all � ≥ 0 and each 

country �, there exists an �0 > 0 such that ��′(�0) ≤ ��′(�0 + �) and lim��→0��′(��) > ∑ ��′(�)�∈� . 

This assumption implies that for all levels of the GHG stock �, the marginal benefit of emissions 

for each country � is smaller (larger) than its own marginal damages for large (small) enough 

emissions. The assumption ensures that each utility maximizing country � will choose its 

emissions ��� in any period � such that  0 < ��� < �0, � = 1, … ,�.  

     Given an initial GHG stock �0 ≥ 0, a time-profile of consumption (�1�, … , ���; ��)�=1�  is 

feasible if there exists a time-profile of emissions (�1�, … , ���)�=1�  such that                                                                                      
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                                                         ∑ �����=1 = ∑ ��(���)��=1 = ∑ �����=1  

                                                

                                                �� = (1 − �)��−1 + ∑ �����=1 , � = 1, … ,�.                                     

 

Here 0 ≤ � < 1 is the natural rate of decay of the GHG stock. Each feasible consumption time-

profile (�1�, … , ���; ��)�=1�  uniquely generates an aggregate utility ∑ ��−1��=1 ��(���, ��) = ∑ ��−1��=1 [��� − ��(��)] for each country � where 0 < � ≤ 1 is the discount factor, assumed to 

be the same for all countries. In the optimal control literature, the GHG emissions (���)�=1� , � =

1, … , �, are called control variables and the resulting GHG stocks ��−1, � = 1, … ,�, are called 

the state variables. Although the latter are not strategies in the dynamic game introduced below, 

they are generated by the former and appear in the payoff functions of the countries. In fact, they 

have the same role as decision nodes in a dynamic game. 

 

6.2 The dynamic game 

Given an initial stock z0 ≥  0 and time periods � > 1, Γ�0denotes the dynamic game in which  

• N = {i = 1, 2 ,…, n} is the player set 

• � = �1 × �2 × ⋯× ��, where �� = {�� ≡ (���)�=1� : 0 ≤ ��� ≤ �0}, is the set of all terminal 

histories,                                                                        

• � = (�1, … , ��) is the profile of payoff functions such that for each terminal history � ≡
(�1, … , ��) ≡ ((�1�)�=1� , … , (���)�=1� ) ∈ �,  ��(�) = ∑ ��−1[��(���)− ����=1 (��)],  where �� = (1− �)��−1 + ∑ ��� ,�∈� � = 1, … ,�. 

                                                                         

     We assume that the strategy of each player � is a function ��(��−1), 0 ≤ ��(��−1) ≤ �0, � =

1, … ,�  and the “statistic” ��−1 summarizes the history before the game reaches the state ��−1. 

Accordingly, the set of all terminal histories after the game reaches a state ��−1 is �1� × �2� ×⋯× ���, where ��� = {(���)�=�� : 0 ≤ ��� ≤ �0}. Thus, for each state ��−1, we denote a subgame 

of the dynamic game Γ�0 by Γzt−1 , � = 1, …�, in which each player �’s strategy is a function ��(��−1), 0 ≤ ��(��−1) ≤ �0, � = 1, … ,�, and the payoff corresponding to each terminal history 

((�1�)�=�� , … , (���)�=�� ) of the  subgame is ∑ ��−1[��(���)− ����=� (��)] with �� =
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(1− �)��−1 + ∑ ��� ,�∈� � = �, … ,�. Notice that each subgame Γzt−1depends only on ��−1 and 

not on the history before the game reaches the decision node ��−1. Thus, each subgame Γzt−1 , � =

1, …�, has essentially the same mathematical structure as the original game Γz0 .                                

 

6.3 The subgame-perfect core 

We first specify the payoffs that a coalition can achieve in each subgame without cooperation of 

the other countries. To that end, given the dynamic game Γ�0, let Γ�0� ,� ⊂ �, denote the induced 

dynamic game in which coalition � acts as one single player. In other words, within the coalition 

the individual strategies are selected so as to maximize the sum of the total payoffs of its 

members, given the strategies of the non-members. Similarly, let Γ��−1� , � ⊂ �, denote  an 

induced game of the subgame Γ��−1, to be called an induced subgame. Then, we show that each 

induced subgame admits a SPNE. By definition, a SPNE of Γ�0 is also a SPNE of each induced 

game Γ�0{�}, � = 1, … ,�. 

      Let ��(�, ��−1) denote the highest SPNE payoff of coalition � in the induced game Γ��−1� , � ⊂ �. Then, a feasible consumption time-profile (�1�, … , ���; ��)�=1�  belongs to the subgame-

perfect core of the dynamic game  Γ�0 , if  ��(�, ��−1) ≤ ∑ ∑ ��−�(��� − ��(��)��=� )�∈�   for each 

coalition � ⊂ � and � = 1, …�. 

 

Proposition 8 Each induced subgame Γ��−1� , � ⊂ �, ��−1 ≥ 0, � = 1, … ,�, admits a unique SPNE 

if the benefit functions ��, � = 1, …� are strictly concave, the damage functions ��, � = 1, … ,� are 

strictly convex or linear and the third derivatives ��′′′ = ��′′′ = 0, � = 1, …�. The unique subgame-

perfect Nash equilibrium payoff ��(�; ��−1),� ⊂ �, is a  non-increasing and concave function of ��−1. 

 

Proposition 9 The dynamic game Γz0 admits a non-empty subgame-perfect core if the benefit 

functions �� are strictly concave with ��′′′ = 0, � = 1, …�, and the damage functions �� , � =

1, … , � are linear. 
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     Proofs for these propositions may be found in Chander (2015: theorems 3 and 4). These 

propositions show that the concept of subgame-perfect core can be applied also to a general class 

of extensive games of imperfect information. Since the subgame-perfect core of the dynamic 

game is non-empty, it follows that climate change can be tackled by cooperation, as indeed a 

cooperative agreement on climate change has been recently signed by 196 countries-- known as 

the Paris Agreement. An empty subgame-perfect core would have implied that no cooperation 

was possible and a SPNE of the dynamic game was the more likely outcome.   

 

7. Concluding remarks 

This paper brings together two of the most important solution concepts in game theory: 

subgame-perfect Nash equilibrium of a non-cooperative game and the core of a cooperative 

game. A link between the two is apparently missing in the extant literature. It opens the door for 

applications of the concepts and ideas from cooperative game theory to extensive form games. 

      Our approach to define coalitional payoffs and subgame-perfect cooperation can be extended 

to the case in which if a coalition deviates, the remaining players may form one or more non-

singleton coalitions. Papers taking this approach include Ray and Vohra (1997) and Maskin 

(2003). Ray and Vohra address the question of the properties that might be expected of binding 

agreements. Because the authors address strategic rather than extensive games, subgame 

perfection plays no role in their framework. Maskin proposes a core concept for partition 

function form games in which if a coalition deviates, the remaining players form a coalition of 

their own. Our approach can be used to extend the idea underlying Maskin’s core to an extensive 

game. More specifically, the induced games will now have only two players: If � is the set of all 

active players at a decision node �,  then for each �′ ⊂ �,  the player set of the induced game 

with origin at � consists of {�′, �\�′}.  As in the case of subgame-perfect core, the highest 

SPNE payoff of this induced game is the highest payoff that coalition �′ can obtain in the 

induced game. Defined thusly, the properties of Maskin’s core for an extensive game with 

perfect information need to be explored further. Unlike the subgame-perfect core, it does not 

seem to have similar properties and cannot be related to subgame-perfect strong and coalition-

proof Nash equilibria.    
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     More generally, our approach can be used to derive a partition function from an extensive 

game: For each partition of the total player set, consider the induced game in which each 

coalition in the partition becomes a single player. Then, the worth of a coalition in a partition is 

equal to its highest SPNE payoff in the game induced by the partition. Since the player set in an 

extensive game, unlike a strategic game, may become smaller as the game unfolds along a 

history, the same partition of players may no longer be possible. As a result no refinement may 

take place and the so-derived partition function may just be equal to the partition function of the 

strategic form of the extensive game. Therefore, both the subgame-perfect core and Maskin’s 

core of the so-derived partition function may be larger than those proposed in this paper. 

     Our approach differs from that in Chander (2007) and others in that we consider extensive 

games and subgame perfection. Our approach rests on two fundamental ideas discussed in the 

introduction: Coalitions become players and, at the origin of any subgame, only those players 

who still have decisions to make can become part of a coalition. Possibilities for coalition actions 

are taken into account through the equilibrium notion – in this, paper, the subgame-perfect core.   
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