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Abstract. A mathematical model has been developed to study the theoretical analysis of long waves in a complex

geometrical port. The domain of interest is categorized into sub regions and wave functions are evaluated 
individually in both the regions. Boundary element method is employed to solve the integral equations by utilizing 
the kinematic and dynamic boundary conditions. The integral equations are further converted into a system of 
linear equations. The domain is discretized non-uniformly to obtain the optimum accuracy. The solution is 
obtained by equating the matching conditions at the entrance of the harbor, by using the continuity conditions of 
the irrotational flow of an incompressible fluid. The theoretical results of the problem obtained from the BEM for 

the rectangular domain have been verified with studies done by Lee (1971). Based on the validation, the present 
numerical model is implemented on real domain as Paradip port, Odisha, India for practical applications. 

INTRODUCTION 

Ocean waves propagating from open sea into the port cause a significant damage to the moored ships, 

coastal structures and the boundaries. The extreme incident wave amplitude originating from the strong 

typhoons induce undesirable movement of ships and create disturbances in loading/unloading of moored 

ships. One of the majorly affected ports is the Paradip port located on the coast of Bay of Bengal in Odisha, 

India. It experiences the direct incoming of long waves which are strong enough to hinder the operations at 

the harbor, especially during weather conditions. 

Many attempts have been made to study the resonance in ports of different geometry. The impacts of these 

oscillations have been studied by various numerical models [1-4]. These models are based on Finite Element 
Method (FEM), Boundary Element Method (BEM), Mild Slope Equation (MSE) or modified MSE [5,6], 

Lagrange equations etc. BEM and Helmholtz equation is utilized to analyze an arbitrary shaped harbor with 

constant depth problems [7-11] whereas time dependent MSE is also utilized [12, 13]. Numerical studies 

based on harbor resonance for multidirectional random waves has also been investigated [14,15].   

Recently, models have been constructed to study realistic harbors, for instance, Pohang New Harbor in 

South Korea [16-18], Port of Ferrol in Spain [19], Hua-lien harbor in Taiwan [8], Marina di Carrara harbor in 

Italy [2], Paradip port in India [20, 21] analyzed the wave induced oscillations of water wave in complex 

geometrical port using Hybrid FEM. Higher order FEM is used to analyze the propagation of waves excited 

by internal elements [22].  

In this article, Helmholtz equation is formulated in a bounded domain corresponding to prescribed 

boundary conditions. Analytical approximations have been carried out to compare the theoretical results with 
the current numerical scheme. To enhance the numerical accuracy, the periphery of Paradip port is discretized 

into irregular elements and refined near the corner points. Further, present model is also implemented on 

Paradip port.  
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MATHEMATICAL FORMULATIONS 

Considering the irrotational flow and incompressible fluid, the mathematical formulations are 
initiated by suggesting a solution for the Laplace equation as: 

( , ) ( )
( , , , ) ,

i tF x y Z z e
x y z t

i







                                             (1) 

where   is the angular frequency, T represents wave period, ( , )F x y  is the wave function, i  is an imaginary 

number. By imposing the prescribed boundary conditions i.e. 0
n





 and using Eq. (1), the Helmholtz 

equation is derived as:  
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where k  is denoted as the wave number i.e. 
2

k
L


 & L is the wave length. Using the boundary conditions 

at the bottom; the solution of Eq. (3) is as follows: 

                                         ( ) cosh ( ),oZ z B k h z                                                                (4) 

where 
0B is an unknown constant and making use of the dynamic free surface conditions, we obtain:  

                                                  

,
cosh( )

B giBo
kh

                                                                       (5) 

where 
iB  is the incident wave amplitude, g  is a gravitational constant. Using Eq. (1), (4) and (5), the 

velocity potential function is written as: 

                                    
cosh ( )1

( , , , ) ( , ) .
cosh

B g k h z i tix y z t F x y e
i kh
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
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Also, using the linearized form of the kinematic condition (z=0) for the small amplitude; a “dispersion 

relation” for water waves is given as follows:  

                                                    
2 tanh( ).gk kh 

                                                                      
(7) 

To determine the velocity potential function given in Eq. (6), wave field ( , )F x y satisfies the Helmholtz 

equation based on the following prescribed conditions: 

(i) Boundary conditions along all the fixed boundaries /dF n =0. 

(ii) As 2 2x y   , i.e. the radiated wave emanating at the entrance decay at infinity.  

 

Geometry of Model 

 

The geometry of the study domain is categorized into two regions; Region I is an unbounded ocean region 

and Region II is bounded by the periphery of harbor. Wave function 1F  is estimated in Region I in terms of 

2 /F n   & wave field is determined in Region II in terms of 2 /F n   at the entrance of harbor. Using the 

matching conditions on the entrance of the harbor; we obtain 1 2F F  & 1 2F F

n n

 
 

 
 where the negative sign 

depicts the sign convention of the normal derivative. To determine the wave function 2F  in Region II; it is 

sufficient to determine the normal derivative 2 /F n   at the harbor entrance. So, our main aim is to find the 

solution of the wave function in both the regions and then develop a procedure for equating at port’s entrance. 
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FIGURE 1. Definition sketch of an arbitrary shaped harbor. 

 

 

Wave Function in Bounded Region 

 

Consider D is closed curve bounded by domain D  in the xy plane. The wave function 2F  is determined 

by utilizing Green’s identity theorem, and the Hankel function of 1st kind and zeroth order, 
(1)

0 ( )H kr which 

satisfies the Helmholtz equation. Due to the presence of logarithmic singularity of Hankel function, the 

Green’s Identity is applied within the domain aD  (bounded externally by D  and internally by 0 ) instead of 

domain D , where F and G are functions, so the integral form becomes:   

      

0
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                          (8) 

Since, the singularity lies outside the domain aD , so take 
(1)

0 ( )g H kr and we obtain: 
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Now on simplifying and utilizing the asymptotic behavior of Hankel function, the wave function in the 

bounded domain can be derived from Eq. (9) as: 
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where 1i   , 
0x is the source point 0 0( , )x y at boundary, x  is a field point ( , )x y  interior of the port,

 

2 0( )F x  is the wave field at the position 
0x , 

2 ( )F x  is the wave function at position x , 
2 0( ( ))F x

n




 is the 

derivative at 
0x . 

To find 2F at the boundary; the above equation is made use of by approaching the field point to a ( , )j jx x y  

from the interior and hence the equation holds: 

          (1) (1)

2 2 0 0 0 2 0 0( ) [ ( ) ( ( )) ( ) ( ( ))] ( )
2

i

S

i
F x F x H kr H kr F x ds x

n n
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                                 (11) 

This integral is approximated by partitioning the boundary into a finite number of segments and can be 

evaluated from Eq. (11) as: 
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And hence, the corresponding matrix obtained from Eq. (12) is given by:                                 
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Hence, on further simplification from Eq. (15) we obtain:  
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Thus, wave function 2F is written as the function of normal derivatives 2( ( ))jF x
n




 at the entrance in 

summation form given by: 
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where p is total segment division of entrance. 

 

Wave Function Outside the Harbor 

  

Using the dynamic free surface condition, the wave amplitude is represented as: 

                                              3( ) ,i t

i i rB F F F e    
                                                            (19) 

where iF is the incident wave function , rF is the reflected wave function & 3F is the radiated wave function. 

Incident wave function can be represented as 
1

cos
2

my  for 90o  whereas the reflected wave function can 

be expressed as ( , ) ( , )r iF x y F x y  . Transforming all the boundary conditions of wave function 1F into 

radiated wave function 3F , we obtain: 
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along with the corresponding boundary conditions as:   
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x

F
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Hence, the radiated wave function 3F can be expressed in a similar fashion as was done for 2F  in Region II. 

Therefore, 
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where r denotes the distance between two points. Also, on x-axis we have:  
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Using boundary conditions Eq. (22) can be represented as, 

                                                3
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On simplification, we get 

1

1

( ) 1 ,
2

p

i ij j

j

i
F x H C



                                                              (24) 

 where 1,2,.......i p . 

 

 

Matching Conditions 

 

From the continuity, we can derive the matching boundary condition, using Eq. (18) and (24), equating the 

values of wave function 1F
 
and 2F , we get the following equation:   

                                               01 ,pM C a HC                                                                    (25) 

                                        1

0( ) .1,pC M a H                                                                  (26)  

Now, we define the “amplification factor” as:            

                                     
22
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where 2 ( , , )x y t  denotes the wave amplitude at ( , )x y  interior of the port. 

 

 

NUMERICAL VALIDATION AND CONVERGENCE 

 

Considering a rectangular domain with l=12.25 in. and b=2.37 in. of depth 10.23 in., the order of 

convergence of current numerical model is evaluated by using the method of least squares. The periphery of 

the harbor is discretized into M1=50, M2=100 and M3=200 regular line segments where M1, M2 and M3 are 
discrete non-uniform finite segments. It is observed that as the number of segments is increased, the error 

norm is eventually decreased. The logarithmic error norm and the error norm are represented in Fig. 2 and it is 

found that the order of convergence is 1.77. Simultaneously, the amplification factor is also evaluated for this 

rectangular domain at point w (back of the wall). In Fig. 3, the present numerical scheme is compared with 

Lee’s experiment (1971) where the ordinate denotes the amplification factor. The results have demonstrated 

that the current numerical scheme agrees well with the analytic approximation and Lee’s experiment (1971). 

Thus, the current numerical model can be applied on realistic harbors as well.   
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FIGURE 2. Logarithmic error norm and error norm is provided with respect to the number of segment divisions 
(logarithmic). 
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FIGURE 3. Validation of present model with Lee (1971)’s experiment data and analytical approximation. 

 

SIMULATION RESULTS 
 

Amplification Factor 

 

Paradip Port ( 20 15' 55.14''o N   & 20 14' 27.34''o E   ) is a deep water port situated in Jagatsinghpur 

district of Odisha, India. At present, it handles various Cargo like Thermal Coal, Coking Coal, Charge 

Chrome, Ferro Chrome, Crude oil, Iron Ore and many more. This port might plan to increase its cargo 
capacity from 118.5 million metric tons per annum (mmt) to 325 mmt to become India’s biggest port. The 

simulation results and their better approximation with the previous studies enable us to execute our current 

numerical scheme on Paradip port for the evaluation of amplification factor. The amplification factor is 

demonstrated for irregular boundary discretization M=1215 corresponding to / 2   over Paradip port (see 

Fig. 5).  

 

 

 
 

FIGURE 4. Bird view of the Paradip port, Odisha and two record stations are considered as R1 and R2 and red arrows 
show the incident waves propagating toward harbor’s entrance. 
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FIGURE 5. Amplification factor at Paradip port boundary with respect to the wave number (ka). The resonance 

frequencies are obtained at k1, k2, k3, k4, k5 and k6. 

 

 

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8
0

4

8

12

16

20

Wave Number (ka)

A
m

p
li

fi
ca

ti
o

n
 F

ac
to

r

Record Station - 1

E1 E2

R1

Wave Number (ka)

Record Station - 2

A
m

p
lif

ic
a
ti
o
n
 F

a
c
to

r R2

E1 E2

 
 

FIGURE 6. Amplification factor at Record station-1 and 2 inside the Paradip port for incident waves at angle / 2   

 

The frequencies (resonance modes) are calculated at Paradip port with frequency difference 0.01k  . 

The response of the amplification factor for incident waves is studied corresponding to waves propagating at

/ 2  . The higher amplification peaks are sharp and narrow whereas low amplification peaks are wider. A 

strong amplification for an incident wave directed at / 2   is obtained for k1 and k2 resonance modes. We 

also analyze the amplification factor of two record stations R1 and R2 in Paradip port depending upon the 

loading and unloading of the moored ships as shown in Fig. 4. The record stations R1 and R2 are situated at 

the key port locations. It is observed that the record station R2 has high amplification as compared to that of 

R1 as shown in Fig. 6. Extreme resonance inside the port due to the matching of resonance frequency of 

incident waves with the natural port frequency could result in coastal hazards. To determine the safe location 

for the moored ships in Paradip port, it is imperative to evaluate the wave amplification precisely at the 

resonance modes. Incoming waves with distinct resonance modes and directions have variable impacts at the 

port. Thus, it has been observed that incident waves from east direction possess greater amplification than 
other directional waves.  
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Ocean Surface Wave Field 

 

Direct incoming incident waves at key location of the port generate high resonance. The topographical 

features of Paradip port are considered corresponding to incident waves at / 2   to deduce the wave field. 

Discretizing the boundary of the port as M=1215 segments with P=80 segments on the harbor entrance with 

two record stations R1 and R2, Fig. 7 represents the regularly distributed points by red dots. Ocean surface 

wave field is evaluated for two modes k1 and k2. The wave field response for k1 and k2 is shown in Fig. 7 with 

incident wave at / 2  .Thus, the incident wave direction plays an crucial role inducing the wave 

amplification.  
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FIGURE 7. Ocean surface wave contours at resonance modes k1 and k2 for directional incident wave angle. 

 

CONCLUSION  
 

Paradip port, Odisha, India experiences wave induced oscillations of about 3-5m during the high 

amplitude incident waves. Under the resonance conditions, an efficient system is developed to study the port 

problem with refined corner points. The numerical model is validated with the Lee’s experiment (1971) and 

the analytic approximations. It is concluded that the incident wave propagating at an angle / 2   in the 

east direction have the highest amplification. Also, the incoming waves from Northeast direction produce less 

resonance in comparison to the incoming waves from east direction ( / 2  ). In order to prevent the 

damage of coastal structures, it is important to analyze the direction of incident waves and amplification 
factor to investigate safe locations at the Paradip port. 
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