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Abstract 

 
In this paper, we give a new method for solving the MID CPLP problem that results when vertical decomposition is 
applied to two-stage capacitated warehouse location problem (see Sharma and Agarwal (2014)). In the MID CPLP 
problem, warehouses are locatable in stage 1 and stage 2 (thus incurring fixed costs), and we incur transportation costs 
as goods are transported from stage 1 to stage 2. Here in MID CPLP, we minimize the sum total of the cost of 
warehouse location (stage 1 and stage 2) and transportation. In the method due to Sharma and Agarwal (2014), the 
decomposition is followed where location variables at one of the stages are relaxed, and it is reduced to LHS CPLP 
(Left Hand Side Capacitated Plant/Warehouse Location Problem), and reasonable bounds are obtained by the 
procedures given by Verma and Sharma (2007).  
 
Thus, in the method, due to Sharma and Agarwal (2014), the problem TSCWLP is reduced to LHS CPLP, MID CPLP 
(that is again reduced to LHS CPLP) and an RHS CPLP. This paper reduces the problem TSCWLP to LHS LP (linear 
program), MID CPLP and RHS LP (linear program). It is expected to offer good computational advantages. This 
procedure is outlined in detail in this paper. 
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1. Introduction  
 
In real life situations single and two stage plant/warehouse location problems are frequently encountered. With 
increasing globalization we are encountering multi-echelon supply chains with location decision encountered in each 
stage. Hence research into this problem is very important. Even the simplest location problem, the SPLP (simple plant 
location problem) is NP-Hard; and so are many multistage warehouse location problem. In literature, a new approach 
has been advocated and that is called as VERTICAL DECOMPOSITION (Sharma and Agarwal (2014) and Verma 
and Sharma (2007)). We give a new vertical decomposition approach in this paper that reduces computational burden. 
We hope this approach will have potential to be extended to multi-echelon location-allocation problems.  
 
2. Literature Review  
 
Warehouse/Plant location problems are well known in literature. Here we give only the most relevant references and 
latest ones only. The beginning to location theory was made by work on simple plant location problem (SPLP) and 
capacitated plant location problem (CPLP), see Sharma and Muralidhar (2009) and Cornuejols et. al (1991) for latest 
works. Particularly Cornuejols et. al (1991) gave strengths of different lagrangian relaxations; and some of these are 
used in our current paper. Geoffrion and Graves (1974) and Sharma (1991) were among the first to consider single 
and two stage warehouse location problem and successfully applied Bender’s decomposition. Later Verma and 
Sharma (2007) gave the concept of vertical decomposition that was applied to single stage warehouse location problem 
and they gave the concept of LHS and RHS CPLP and facilitated extension of concepts given by Cornuejols et. al to 
single stage capacitated warehouse location problem (SSCWLP). Later Sharma and Agarwal (2014) extended the idea 
of vertical decomposition to two stage capacitated warehouse location problem. In this paper we give an improvement 
to the method of Sharma and Agarwal (2014).  

 
Formulation and Relaxations of TSCWLP 
 
2.1. Problem Formulation of TSCWLP 
 
In this section, we propose the formulation of TSCWLP using the style of (Sharma1991;Sharma and Sharma, 2001). 
Verma and Sharma (2007) developed a variety of constraints that link real and 0-1 integer variables. They have also 
developed some strong constraints based on Sharma and Berry(2007).  
 
2.1.1. Index Used 
 
h: set of supply points (plants); h = 1,..,H 
i: set of potential warehouse points at stage 1; i = 1,.., I 
j: set of potential warehouse points at stage 2; j = 1,.., J 
k: set of markets; k = 1,..,K 
 
2.1.2. Definition of Constants 
 
D(k): Demand for the commodity at market “k” 
d(k): D(k)/(sum(k),D(k)), Demand at market “k” as a fraction of total market demand  
S(h): Supply available at plant “h” 
s(h):  S(h)/(sum(k),D(k)), supply available at plant ‘h’ as a fraction of the total market demand 
fws1(i): Fixed cost of locating a warehouse at “i” 
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fws2(j): Fixed cost of locating a warehouse at “j” 
CAPWS1(i): Capacity of a stage 1 warehouse “i” 
CAPWS2(j): Capacity of a stage 2 warehouse “j” 
capws1(i): CAPWS1(i)/(sum(k),D(k)), Capacity of whs-1 at “i”as a fraction of the total market demand 
capws2(j): CAPWS2(j)/(sum(k),D(k)), Capacity of whs-2 at “j” as a fraction of the total market demand 
cpws1(h,i): Cost of transporting (sum(k),D(k)) goods from plant “h” to warehouse1 “i” 
cws1ws2(i,j): Cost of transporting (sum(k),D(k))  goods from warehouse1 “i” to warehouse2 “j” 
cws2m(j,k): Cost of transporting (sum(k),D(k)) goods from warehouse2 “j” to market “k” 
 
2.1.3. Definition of Variables 
 
XPWS1(h,i): Quantity of commodity transported from plant “h” to whs-1 “i” 
xpws1(h,i): XPWS1(h,i)/ (sum(k),D(k)), Quantity transported from “h” to “i” as fraction of total demand 
XWS1WS2(i,j): Quantity of commodity transported from whs-1 “i” to whs-2 “j” 
Xws1ws2(i,j): 1 2ij k XWS WS ΣD , Quantity transported from “i” to “j” as fraction of total demand 
XWS2M(j,k): Quantity of commodity transported from whs-2 “j” to market “k” 
Xws2m(j,k): XWSM2(j,k)/ (sum(k),D(k)), Quantity transported from “j” to “k” as fraction of total demand 
yws1(i): 1 if stage 1 warehouse is located at “i”, 0 otherwise 
yws2(j): 1 if stage 2 warehouse is located at “j”, 0 otherwise 
 
2.1.4. Mathematical Formulation 
 
The cost minimization problem for the TSCWLP can be written as mixed 0-1 integer linear programming problem 
as given in the formulation below. 
 
Objective Function: 
 
Min Z = sum(h,i), xpws1(h,i)*cpws1(h,i) + sum(i,j), xws1ws2(i,j)*cws1ws2(i,j) + 
               sum(j,k), xws2m(j,k)*cws2m(j,k) +  
               sum(i), fws1(i)*yws1(i) + sum(j), fws2(j)*yws2(j)                    (1) 
 
s.t.    sum(h,i), xpws1(h,i) = 1                                                                    (2) 
 
         sum(i,j), xws1ws2(i,j) = 1                                                                 (2a) 
 
         sum(j,k), xws2m(j,k) = 1                                                                   (2b) 
 
         xpws1(h,i) <= yws1(i)*s(h)    for all i,h                                            (3a) 
 
         xws2m(j,k) <= yws2(j)*d(k)   for all j,k                                           (3b) 
 
         xpws1(h,i) <= yws1(i)             for all i,h                                           (4a) 
 
         xws2m(j,k) <= yws2(j)            for all j,k                                           (4b) 
 
         sum(h), xpws1(h,i) <= yws1(i)*capws1(i) for all i                           (5) 
 
         sum(j), xws1ws2(i,j) <= yws1(i)*capws1(i) for all i                        (5a-i) 
 
         sum(i), xws1ws2(i,j) <= yws2(j)*capws2(j) for all j                        (5a-ii) 
 
         sum(k), xws2m(j,k) <= yws2(j)*d(k) for all j and k                         (5b) 
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         sum(i), xpws1(h,i) <= s(h)       for all h                                            (6) 
 
         sum(j), xws1xws2(i,j) <= capws1(i)    for all i                                 (6a-i) 
 
         sum(i), xws1xws2(i,j) <= capws2(j)    for all j                                 (6a-ii) 
 
        sum(j), xws2m(j,k) = d(k)    for all k                                                 (6b) 
 
        xpws1(h,i) >= 0   for all h, i                                                               (7) 
 
        xws1ws2(i,j) >= 0 for all i, j                                                               (7a) 
 
        xws2m(j,k) >= 0    for all j, k                                                             (7b) 
 
        yws1(i) = (0,1)      for all i                                                                  (8a)  
 
        yws2(j) = (0,1)      for all j                                                                  (8b)  
 
        sum(i), yws1(i)*capws1(i) >= 1                                                         (9a) 
 
        sum(j), yws2(j)*capws2(j) >= 1                                                         (9b) 
 
        sum(i), capws1(i) >= 1                                                                       (10a) 
 
        sum(j), capws2(j) >= 1                                                                       (10b) 
 
        sum(h), xpws1(h,i) = sum(j), xws1ws2(i,j) for all i                           (11a) 
 
        sum(i(, xws1ws2(I,j) = sum(k), xws2m(j,k) for all j                          (11b) 
 
Since (sum(k),D(k)) = 1, constraints 2, 2(a) and 2(b) ensure that flow across stages is equal to total demand by all the 
markets. Constraints 3(a) and 3(b) are strong linking constraints (see Sharma and Berry 2008 and Verma and Sharma 
2007). Equations 4(a) and 4(b) are weak linking constraints. Equations 5, 5(a-i), 5(a-ii) and 5(b) strong capacity 
constraints (see Sharma and Berry 2008). Equation 6 ensures the flow from plant is less than supply available at that 
plant. Equations 6(a-i) and 6(a-ii) ensure that throughput form a warehouse is less than or equal to its capacity. 
Equation 6(b) ensures that the quantity received at a market is equal to its demand. Equations 7, 7(a) and 7(b) are non-
negativity restrictions on real variables. Equations 8(a) and 8(b) are 0-1 restrictions on binary location variables. 
Equations 9(a) and 9(b) ensure that located capacity is more than or equal to the total demand of the markets. Equations 
10(a) and 10(b) ensure that total average capacity is more than market demand at each stage. Equations 11(a) and 
11(b) are flow balance constraints (inflow is equal to outflow) at each of the warehouses.  
 
By relaxing different constraints, various relaxations can be obtained as Lagrangian relaxation (LR). LR is a relaxation 
technique, which works by moving hard constraints into the objective to impose a penalty on the objective if they are 
not satisfied. This is easier to solve than the original problem. An optimal objective value of the Lagrangian relaxed 
problem, for a given set of multipliers, provides a lower bound (in the case of minimization) for the optimal solution 
to the original problem. The best lower bound can be derived by updating the multipliers by a dual ascent procedure. 
An upper bound on the optimal solution of the original problem can be derived by using the information obtained 
from the LR to construct a feasible solution to the original problem. This is normally done by applying some heuristic.  
 
In the next section, we present vertical decomposition approach for solving TSCWLP as given by Sharma and Agarwal 
(2014).  
 
3 Methodology: 
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Before we give the best method described in literature, we give below a brief description of LR (Lagrangian 
Relaxation).  
 
Problem P  
 
Min cx 
 
s.t. Ax = b 
Dx >= e 
 
x >= 0 where c, A, b, D and e are matrices of conformable dimensions.  
 
In general problem P is intractable, however if we dualize Dx >= e and put it in the objective function, then the 
remaining problem is easily solvable (typically in polynomial time), that is, 
 
Problem DP 
 
ZD(mu) = min (mu), cx + mu*(e-Dx) 
 
Ax = b 
 
x >= 0 
 
mu are known as Lagrangian multipliers (LMs) and optimal LMs can be easily determined by a suitable sub gradient 
procedure (see Sharma (1991)). Thus we have the following:  
 
Z(*) = max (mu), ZD(mu) 
 
Thus for a minimization problem, by using LR we get a good lower bound to the problem P.  
 
In literature Sharma and Agarwal (2014) gave such a LR scheme. We describe it below in words and later in pure 
mathematical format. Sharma and Agarwal (2014) relaxed constraints (11a) and (11b); and transferred half of location 
cost sum(i), yws1(i)*fws1(i) to LHS CPLP and half to MID CPLP; and for the location cost sum(j), yws2(j)*fws2(j) 
half of it was transferred to MID CPLP and other half to RHS CPLP. Thus by deploying LR (Lagrangian Relaxation) 
they obtained good lower bounds. It is explained in mathematical terms as given below.  
 
Z1 = sum(h,i), xpws1(h,i)*cpws1(h,i) + 0.5*{sum(i), fws1(i)*yws1(i)} 
 
Z2 = sum(i,j), xws1ws2(i,j)*cws1ws2(i,j) +  
         0.5*{sum(i), fws1(i)*yws1(i) + sum(j), fws2(j)*yws2(j)} 
 
Z3 = sum(j,k), xws2m(j,k)*cws2m(j,k) + 0.5*{sum(j), fws2(j)*yws2(j)} 
 
Then LHS CPLP is:  
 
Min Z1, s.t. (2), (3a), (4a), (5), (6), (7), (8(a)), (9(a)), (10(a)). 
 
MID CPLP is:  
 
Min Z2, s.t. (2(a)), (5(a-i)), (5(a-ii)), (6(a-i)), (6(a-ii)), (7(a)), (8(a)), (9(a)), (10(a)), (8(b)), (9(b)), (10(b)).  
 
RHS CPLP is:  
 
Min Z3, s.t. (2(b)), (3(b)), (4(b)), (5(b)), (6(b)), (7(b)), (8(b)), (9(b)) and (10(b)).  
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LHS CPLP (see Sharma and Verma (2007)) and RHS CPLP (see Cornuejols et al. (1991)) are well researched in 
literature. Building on these Sharma and Agarwal (2014) gave a good LR based procedure to get a lower bound.  
 
Now we give the new LR procedure in the section given below.  
 
4 Discussion 
 
  4.1. Theoretical Contribution 
 
Constraints (3a), (3b), (4a), (4b), (5) and (5b) are relaxed along with (11a) and (11b). Now we have following reduced 
problems.  
 
Z1_New = sum(h,i), xpws1(h,i)*cpws1(h,i) 
 
Z2_New = sum(i,j), xws1ws2(i,j)*cws1ws2(i,j) +  
                  sum(i), fws1(i)*yws1(i) + sum(j), fws2(j)*yws2(j) 
 
Z3_New = sum(j,k), xws2m(j,k)*cws2m(j,k) 
 
Now we have LHS LP as:  
 
Min Z1_New, s.t. (2), (6), (7) 
 
MID CPLP NEW as:  
 
Min Z2_New, s.t. (2(a)), (5(a-i)), (5(a-ii)), (6(a-i)), (6(a-ii)), (7(a)), (8(a)), (9(a)), (10(a)), (8(b)), (9(b)), (10(b)).  
 
RHS LP as:  
 
Min Z3_New, s.t. (2(b)), (6(b)), (7(b)).  
 
Now in this scheme of things, our MID_CPLP (given here) is same as MID_CPLP given in Sharma and Agarwal 
(2014). Hence all the nice results for MID_CPLP given in Sharma and Agarwal (2014) are valid for us also. But 
advantage is now we just need to solve two LPs LHS and RHS; and these are simpler problems without binary 
variables (instead of two NP-Hard problems LHS_CPLP (Not yet proved) and RHS_CPLP which is proved to be a 
NP-Hard problem); and it is easy to see it could offer computational advantages. This is a useful contribution we make 
in this paper.  
 
Since the LHS LP and RHS LP problems devoid of all binary variables need to be solved with sum(k), d(k) = 1 and 
equations (2), (2a) and (2b) it can be easily solved by a greedy (polynomial time) procedure which may give upper 
bound generally. This simple procedure is given below as procedure A.  
 
Procedure A:  
 
The LHS LP problem is devoid of all binary variables and needs to be solved with sum(h), s(h) >= 1, and sum(i), 
capws1(i) >= 1, and equation (2) of Sharma and Agarwal (2014) can be easily solved as LP. Below we give a simple 
algorithm/heuristic to solve this problem.  
 
Step 0: Sort all arcs cpws1(h,i) in an increasing order. Obviously sum (h), s(h) >= 1 and sum(i), capws1(i) >= 1 for 
the problem to be feasible. QTY = 0. Set all xpws1(h,i) = 0.  
 
Step 1: if QTY < 1 then {Remove the arc (h1,i1) from consideration & go to step 2} else go to step 3.  
 
Step 2: choose the min cpws1(h1,i1) for all eligible h & i and allot xpws1(h1,i1) = qty = min (s(h1), capws1(i1)). And 
set QTY = QTY + qty. set s(h1) = s(h1) – qty and capws1(i1) = capws1(i1) – qty.  
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Step 3: If QTY = 1 then GO TO STEP 4; else set current xpws1(h,i) = xpws1(h,i)  - (QTY – 1) & GO TO STEP 4.  
 
Step 4: Compute GOOD_SOLN_VAL = sum(h,i), xpws1(h,i)*cpws1(h,i) & STOP.  
 
It is easy to see that solution given by primal based procedure A is an upper bound. Similar procedure can be used for 
solving RHS LP. From this good solution one can proceed to optimality easily. It is to be noted that complexity of 
procedure A is O(n*ln(n)) if we use binary sort (at Step 0).  
 
Now we give below a dual based procedure to obtain a lower bound to LHS LP and RHS LP that have similar structure. 
LHS LP and RHS LP is similar to as given below.  
 
Procedure B 
 
Min sum(h,i), C(h,i)*x(h,i)                                     (12) 
 
s.t. sum(h,i), x(h,i) = 1                                            (13) 
                                      
     -sum(h), x(h,i) >= - capws1(i) for all i              (14) 
 
     -sum(i), x(h,i) >= -s(h) for all h                        (15) 
 
      x(h,i) >= 0                                                        (16) 
 
(14) follows from (6a-i) and (11a).  
 
Where we have in general sum (h), s(h)) >= 1 and sum(i), capws1(i) >= 1   (17).  
 
This is similar to problem P in Sharma and Sharma (2000). We associate dual variables vo with equation (13), v1(i) 
with equations (14) and v2(h) with equations (15).  Then its dual is written as given below.  
 
Max vo – sum(i), capws1(i)*v1(i) – sum(h), s(h)*v2(h)          (18) 
 
s.t. vo – v1(i) – v2(h) <= C(h,i)  for all h, i                               (19) 
 
v0 uis, v1(i) >= 0 for all i, v2(h) >= 0 for all h                         (20)  
 
Although in Sharma and Sharma (2000) it is assumed that sum (h), s(h)) = 1 and sum(i), capws1(i) = 1   (18); but it 
causes no problems. For a given value of v2(h) optimal value of the remaining dual problem can be easily found (see 
p. 219 of Sharma (1996) (problem DRP3)).  
 
Thus, very easily a lower bound to problem LHS LP can be found by solving dual problem (18), (19) and (20) by 
using method given in Sharma and Sharma (2000).  
 
These lower and upper bounds to LHS LP and RHS LP can be fruitfully used to quickly determine the optimal solution.  
 
5 Conclusion  
 
In this paper we give a new relaxation scheme for solving problem TSCWLP that leads to 2 LPs and one MID CPLP 
problem (that is intractable). In the earlier method due to Sharma and Agarwal (2014) the problem TSCWLP was 
decomposed into one LHS CPLP, one MID CPLP and one RHS CPLP (all three of them are intractable). The method 
given in this paper could offer computational advantages (as only one problem is computationally intractable; and 
other two LPs (RHS LP and LHS LP) can be solved by polynomial time procedure to get a good upper bound and 
lower bound).  
 
 

Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangalore, India, August 16-18, 2021

© IEOM Society International 7



References  
 
G. Cornuejols, R. Sridharan and J. M. Thizy, “A Comparison of Heuristics and Relaxations for the Capacitated Plant 
Location Problem,” European Journal of Opera-tional Research, Vol. 50, No. 3, 1991, pp. 280-297.  
 
Geoffrion AM and Graves, ‘Multicommodity distribution system design’, Management Science, 1974, 20(5), 82-116.  
 
Priyanka Verma and Sharma R.R.K., “Vertical decomposition approach to solve the single stage capacitated 
warehouse location problem”, Proceedings of 2007 IEEE IEEM conference held in SINGAPORE during Dec 4-8, 
2007, pp. 907 – 911; ISBN : 978-1-4244-1529-8. (appeared in IEEE/IEEE Explore Proceedings).  
 
Sharma, R.R.K., “Modeling a Fertilizer Distribution System”, European Journal of Operational Research, 51, 1991, 
pp. 24-34.  
 
Sharma, R.R.K., “Food grains distribution in the Indian context:  An operational study”, in “Operations Research for 
Development”, Ahmedabad, India; Chapter 5, Eds. Prof. A. Tripathy and Prof. J. Rosenhead, New Age International 
Publishers, New Delhi, 1996, pp. 212-227. ISBN 81-224-1016-2. 
 
Sharma, R.R.K. and Berry, V., “Developing New Formulations and Relaxations of Single Stage Capacitated 
Warehouse Location Problem (SSCWLP): Empirical Investigation for Assessing Relative Strengths and 
Computational Effort”, European Journal of Operational Research, 2007, V 177, pp. 803-812.  
 
Sharma, R.R.K. and Muralidhar, A., “A new formulation and relaxation of the simple plant location problem”, Asia 
Pacific Journal of Operational Research, V 26(1), Feb 2009; pp. 1-11.  
 
Sharma, RRK and Pritee Agarwal, “Approaches to solve MID_CPLP problem: Theoretical results and empirical 
investigation”, American J of Operational Research, 4, 2014, pp. 142-154.  
 
Sharma, R.R.K. and Sharma, K.D., “A new dual based procedure for the transportation problem”, European Journal 
of Operational Research, V 122 (3), 2000, pp. 611-624.  
 
Biographies:  
 
Prof. RRK Sharma: He is B.E. (mechanical engineering) from VNIT Nagpur India, and PhD in management from 
I.I.M., Ahmedabad, INDIA. He has nearly three years of experience in automotive companies in India (Tata Motors 
and TVS-Suzuki). He has 32 years of teaching and research experience at the Department of Industrial and 
Management Engineering, I.I.T., Kanpur, 208016 INDIA. To date he has written 1167 papers (peer-reviewed (370) 
/under review (24) / working papers 773 (not referred)). He has developed over ten software products. To date, he has 
guided 62 M TECH and 21 Ph D theses at I.I.T. Kanpur. He has been Sanjay Mittal Chair Professor at IIT KANPUR 
(15.09.2015 to 14.09.2018) and is currently a H.A.G. scale professor at I.I.T. Kanpur. In 2015, he received 
“Membership Award” given by IABE USA (International Academy of Business and Economics). In 2016 he received 
the “Distinguished Educator Award” from IEOM (Industrial Engineering and Operations Management) Society, 
U.S.A. In 2019 and 2020, he was invited by the Ministry of Human Resources Department, India, to participate in the 
NIRF rankings survey for management schools in India. In 2019, he was invited to participate in the Q.S. ranking 
exercise for ranking management schools in South Asia. 
 
Jai Kumar Drave: He has done B.tech in Production Engineering from the National Institute of Technology, 
Tiruchirappalli, India. He is soon joining the supply chain department, HEC Montreal, Canada as a postgraduate 
student. He is working in the area of both Green and sustainable supply chain 
 
Dr. Vinayak A Drave: He is an Assistant Professor and Researcher in the area of Operations and Supply Chain 
Management at Jindal Global Business School, O.P Jindal Global University. He also holds the position of Visiting 
Researcher at the Department and Graduate Institute of Business Administration, College of Management, Chaoyang 
University of Technology, Taiwan. Resolute in Technology management and Operations research, he possesses a 
convincing academic background with a Bachelor of Science (B.Sc.) in Mathematics followed by Master’s in Business 

Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangalore, India, August 16-18, 2021

© IEOM Society International 8



Administration (MBA) with a dual specialization in Operations and Human resource management, UGC-NET fellow 
(2013) for Assistant Professorship and a doctorate degree, Ph.D. in Supply Chain and Technology Management from 
the Department of Industrial and Management Engineering, Indian Institute of Technology (IIT), Kanpur. He is also 
associated with Shiv Nadar University, Gr. Noida as Visiting faculty and has conducted simulation workshop in 
Institute of Management Technology (IMT), Ghaziabad as a resource person. Vinayak, in his demonstrated six years 
of research span has showcased 21 of his research articles in several National/International conferences (mostly 
Scopus Indexed). Also, he is an author of a general management case published by Ivey Case Publishing and featured 
in Harvard Business Publishing.  

Ateequr Rahman: He is working as Assistant Registrar (Academic Affairs) in Indian Institute of Technology, 
Kanpur. He has done Master of Business Administration in Finance. Soon, he is joining the College of Management, 
Department of Business Administration, Chaoyang University of Technology, Taiwan as a PhD research scholar. He 
is working in the field of sustainable strategy and green Finance. 

 
 
 
 

Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangalore, India, August 16-18, 2021

© IEOM Society International 9


	1. Introduction
	In real life situations single and two stage plant/warehouse location problems are frequently encountered. With increasing globalization we are encountering multi-echelon supply chains with location decision encountered in each stage. Hence research i...
	2. Literature Review
	References



