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Over the last 2 decades, financial systems have been studied and analyzed from the
perspective of complex networks, where the nodes and edges in the network represent
the various financial components and the strengths of correlations between them. Here,
we adopt a similar network-based approach to analyze the daily closing prices of 69
global financial market indices across 65 countries over a period of 2000–2014. We
study the correlations among the indices by constructing threshold networks
superimposed over minimum spanning trees at different time frames. We investigate
the effect of critical events in financial markets (crashes and bubbles) on the interactions
among the indices by performing both static and dynamic analyses of the correlations.
We compare and contrast the structures of these networks during periods of crashes
and bubbles, with respect to the normal periods in the market. In addition, we study the
temporal evolution of traditional market indicators, various global network measures, and
the recently developed edge-based curvature measures. We show that network-centric
measures can be extremely useful in monitoring the fragility in the global financial market
indices.
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1 INTRODUCTION

It is possible to describe a financial market using the framework of complex networks such that the
nodes in a network represent the financial components and an edge between any two components
indicates an interaction between them. A correlation matrix constructed using the cross-correlations
of fluctuations in prices can be utilized to identify such interactions. However, a network resulting
from the correlation matrix contains densely connected structures. A growing amount of research is
focused on methods devised to extract relevant correlations from the correlation matrix and study
the topological, hierarchical, and clustering properties of the resulting networks. Mantegna et al. [1,
2] introduced the minimum spanning tree (MST) to extract networks from the correlation matrices
computed from the asset returns. Dynamic asset trees, introduced by Onnela et al. [3, 4], were
analyzed to monitor the evolution of financial stock markets using the hierarchical clustering
properties of such trees. Boginski et al. [5] constructed threshold networks by extracting the edges
with correlation values exceeding a chosen threshold and analyzed degree distribution, cliques, and
independent sets on the threshold network. Tumminello et al. [6] introduced planar maximally
filtered graph (PMFG) as a tool to extract important edges from the correlation matrix, which
contains more information than theMST, while also preserving the hierarchical structure induced by

Edited by:
Mahdi Jalili,

RMIT University, Australia

Reviewed by:
Gholamreza Jafari,

Shahid Beheshti University, Iran
Chengyi Xia,

Tianjin University of Technology, China

*Correspondence:
Areejit Samal

asamal@imsc.res.in
Anirban Chakraborti

anirban@jnu.ac.in

Specialty section:
This article was submitted to

Social Physics,
a section of the journal

Frontiers in Physics

Received: 31 October 2020
Accepted: 21 December 2020
Published: 12 February 2021

Citation:
Samal A, Kumar S, Yadav Y and

Chakraborti A (2021) Network-centric
Indicators for Fragility in Global

Financial Indices.
Front. Phys. 8:624373.

doi: 10.3389/fphy.2020.624373

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 6243731

BRIEF RESEARCH REPORT
published: 12 February 2021

doi: 10.3389/fphy.2020.624373

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.624373&domain=pdf&date_stamp=2021-02-12
https://www.frontiersin.org/articles/10.3389/fphy.2020.624373/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.624373/full
http://creativecommons.org/licenses/by/4.0/
mailto:asamal@imsc.res.in
mailto:anirban@jnu.ac.in
https://doi.org/10.3389/fphy.2020.624373
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.624373


MST. Triangular loops and four-element cliques in PMFG could
provide considerable insights into the structure of financial
markets.

Network-based analysis has been widely used to study not only
particular stock market structures but also the complex networks
of correlations among different financial market indices across
the globe. For example, MST has been used on stock markets to
detect underlying hierarchical organization [7–9]. Bonanno et al.
[10] studied the correlations of 51 global financial indices and
showed that the corresponding MST was clustered according to
the geographical locations of the indices. In addition, the changes
in the topological structure of MST could help understand the
evolution of financial systems [11–13]. MST and threshold
networks have been used to analyze the indices during the
global financial crisis of 2008 [14–16]. It has also been shown
that geography is one of the major factors which govern the
hierarchy of the global market [17, 18]. Also, Eryǧit and Eryǧit
[19] had investigated the temporal evolution of clustering
networks (MST and PMFG) of 143 financial indices
corresponding to 59 countries across the world from the
period 1995–2008 and once again found that the clustering in
the networks of financial indices was according to their
geographical locations. From the time-dependent network and
centrality measures, they showed that the integration of the global
financial indices has increased with time. Further, Chen et al. [20]
analyzed dynamics of threshold networks of regional and global
financial markets from the period 2012–2018, proposed a model
for the measurement of systemic risk based on network topology,
and then concluded that network-based methods provide a more
accurate measurement of systemic risk compared to the
traditional absorption technique. Silva et al. [21] studied the
average criticality of countries during different periods in
the crisis and found that the United States is the most critical
country, followed by European countries, Oceanian and Asian
countries, and finally Latin American countries and Canada.
They also found a decrease in the network fragility after the
global financial crisis. It has been also shown that financial crises
can be captured using networks of volatility spillovers [22, 23].
Wang et al. [24] constructed and analyzed the dynamical
structure of MSTs and hierarchical trees computed from the
Pearson correlations as well as partial correlations, among 57
global financial markets from the period 2005–2014, and
concluded that MST based on partial correlations provided
more information when compared to MST based on the
Pearson correlations. The market indices from different stock
markets across the globe comprise assets that are very different;
apart from stocks of the big multinational companies that are
traded across markets, the stock markets would have little in
common and hence would be expected to behave independently,
in contrary to the previously reported empirical observations.

In this brief research report, we study the evolution of
correlation structures among 69 global financial indices
through the years 2000–2014. To ensure that we consider only
the most relevant correlations, we construct the network by
creating an MST (which connects all the nodes) and then add
extra edges from the correlation matrix exceeding a certain
threshold, which gives modular structures. Our findings

corroborate the earlier results of geographical clustering [17,
25]. We then study the changes occurring in the market by
analyzing the fluctuations in various global network measures
and the recently developed edge-based geometric measures. Since
there are complex interactions that occur among groups of three
or more nodes, which cannot be described simply by pairwise
interactions, the higher-order architecture of complex financial
systems captured by the geometrical measures can help us in the
betterment of systemic risk estimation and give us an indication
of the global market efficiency. To the best of our knowledge, the
present work is the first investigation of discrete Ricci curvatures
in networks of global market indices. Thus, we find that this
approach along with all these network measures can be used to
monitor the fragility of the global financial network and as
indicators of crashes and bubbles occurring in the markets.
This could in turn relate the health of the financial markets to
the development or downturn of the global economy, as well as
gauging the impact of certain market crises on the multilevel
financial-economic phenomena.

2 METHODS

2.1 Data Description
This study is based on a dataset collected from Bloomberg which
comprises the daily closing prices of 69 global financial market
indices from 65 countries, and this information was compiled for
a period of T � 3,513 days over 14 years from January 11, 2000, to
June 24, 2014. Note that the working days for different markets
are not the same due to differences in holidays across countries.
To overcome any inconsistencies due to this difference in
working days, we filtered the data by removing days on which
> 30% of the markets were not operative. Conversely, if < 30% of
the markets were not operative on a day, we used the closing price
of such markets on the previous day to complete the dataset.
Supplementary Table S1 lists the 69 global market indices
considered here, along with their countries and geographical
regions.

2.2 Cross-correlation Matrix and Market
Indicators
Given the daily closing price gj(t) for market index j on day t,
wherein j � 1, 2, . . . ,N with N � 69 indices, we construct a time
series of logarithmic returns as rj(t) � ln gj(t) − ln gj(t − 1).
Then, we construct the equal time Pearson cross-correlation
matrix as

Cτ
ij(t) �

〈rirj〉 − 〈ri〉〈rj〉
σ iσ j

, (1)

where the mean and standard deviation are computed over a
period of τ � 80 days with end date as t. We also construct the
ultrametric distance matrix with elementsDτ

ij(t) �
����������
2[1 − Cτ

ij(t)]
√

that take values between 0 and 2. To study the temporal dynamics
of the global market indices, we computed the correlation
matrices for overlapping windows of τ � 80 days with a
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rolling shift of Δτ � 20 days. Thence, we obtained 172 correlation
frames between January 11, 2000, to June 24, 2014.

We have computed three market indicators from these
correlation matrices. Firstly, the mean correlation gives the
average of the correlations in the matrix Cτ(t). Secondly, we
have computed the eigenentropy [26] which involves the
calculation of the Shannon entropy using the eigenvector
centralities of the correlation matrix Cτ(t) of market indices.
Both mean correlation and eigenentropy have been shown to
detect critical events in financial markets [26–28]. Thirdly, we
have computed the risk corresponding to theMarkowitz portfolio
of the market indices, which is a proxy for the fragility or systemic
risk of the global financial network [29]. A detailed description of
the Markowitz portfolio optimization is given in the
Supplementary Material.

2.3 Threshold Network Construction and
Characteristics
The distance matrix for the time frame ending on t can be viewed
as a complete, undirected, and weighted graph Dτ(t), where the
element Dτ

ij(t) is the weight of the edge between market indices i
and j. To extract the important edges from Dτ(t), we first
construct its minimum spanning tree (MST) Mτ(t) using
Prim’s algorithm [30]. As MST is an oversimplified network
without cycles, it may lose crucial information on clusters or
cliques. To overcome this, we add edges with correlation
Cτ
ij ≥ 0.65 in Dτ(t) to Mτ(t) and obtain the threshold graph

Sτ(t). Thereafter, we study the temporal evolution of different
network measures in Sτ(t).

Firstly, we have computed standard global network measures
such as the number of edges, edge density, average degree, average
weighted degree [31], average shortest path length, diameter,
average clustering coefficient [32], modularity [33, 34],
communication efficiency [35], global reaching centrality
(GRC) [36], network entropy [37], global assortativity [38, 39],
and clique number. Note that the chosen set of global network
measures studied here are by no means exhaustive and also
depend very much on the specific questions of interest; see,
for example, Wang et al. [40] for several gravitational
centrality measures. Secondly, we have also computed four
edge-centric curvature measures, namely, Ollivier-Ricci (OR)
curvature [29, 41, 42], Forman-Ricci (FR) curvature [42–45],
Menger-Ricci (MR) curvature [46, 47], and Haantjes-Ricci (HR)
curvature [46, 47]. A detailed description of these network
measures along with the appropriate natural weight, strength,
or distance to use in each case is included in the Supplementary
Material.

2.4 Multidimensional Scaling Map
The multidimensional scaling (MDS) technique tries to embed N
objects in high-dimensional space into a low-dimensional space
(typically, 2 or 3 dimensions), while preserving the relative
distance between pairs of objects [48]. Here, we construct the
(average) correlationmatrixCT between the 69market indices for
the complete period of T � 3,513 days between January 11, 2000,
and June 24, 2014, using Eq. 1. Then, we compute the distance

matrix DT from CT for the complete period. Thereafter, we use
MDS to map the 69 market indices into a 2-dimensional space
such that the distances between pairs of indices in DT are
preserved. To create the MDS plot, we used the in-built
function cmdscale.m in MATLAB. Moreover, we also
construct the MST MT starting from the distance matrix DT

and then the threshold network ST for the complete period from
2000 to 2014 by adding edges with CT

ij ≥ 0.65 to MT .

3 RESULTS AND DISCUSSION

The primary goal of this investigation is to evaluate different
network measures for their potential to serve as indicators of
fragility or systemic risk and monitor the health of the global
financial system. For this purpose, we compiled a dataset of the
daily closing prices of 69 global financial market indices from 65
different countries for a 14-year period from 2000 to 2014
(Section 2). Thereafter, we use the time series of the
logarithmic returns of the daily closing prices for 69 global
market indices to compute the Pearson cross-correlation
matrices Cτ(t) with a window size of τ � 80 days with an
overlapping shift of Δτ � 20 days, and ending on trading days
t (Section 2). Subsequently, we employ a minimum spanning tree
(MST) based approach to construct 172 threshold networks Sτ (t)
corresponding to the cross-correlation matrices Cτ(t) spanning
the 14-year period (Section 2). Here, we study the temporal
evolution of the structure of these correlation-based threshold
networks Sτ(t) of global market indices using several network
measures and moreover contrast the evolution of network
properties with generic market indicators such as mean
correlation and minimum risk obtained using the Markowitz
framework.

We reiterate that the threshold networks Sτ(t) are constructed
by computing the MST of the cross-correlation matrices Cτ(t)
followed by the addition of edges with correlation Cτ

ij ≥ 0.65
(Section 2). Intuitively, this network construction procedure
ensures that each threshold network is a connected graph and
captures the most relevant edges (correlations) between market
indices. Since the obtained results may depend on the choice of
the threshold (0.65) used for network construction, we present
the temporal evolution of properties in networks constructed
using 0.65 as threshold in the main text and in networks
constructed using 0.75 or 0.85 as threshold in Supplementary
Material. In the sequel, we will show that the qualitative nature of
the obtained results is not very sensitive to the choice of 0.65, 0.75,
or 0.85 as thresholds to construct the networks of global market
indices.

In Figures 1, 2 and Supplementary Figure S1, we show the
temporal evolution of generic indicators and networkmeasures in
the threshold networks of global market indices over the 14-year
period (2000–2014). Moreover, the four shaded regions in
Figure 1 highlight four periods of the financial crisis, namely,
US housing bubble, Lehman brothers crash, Dow Jones flash
crash, and August 2011 stock markets fall. From Figure 1, it is
seen that the mean correlation between market indices increases
during periods of the financial crisis. Also, the eigenentropy

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 6243733

Samal et al. Global Financial Indices Network Indicators

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 1 | Evolution of generic indicators and network characteristics for the global market indices networks Sτ(t), constructed from the correlation matrices
Cτ (t) of window size τ � 80 days and an overlapping shift of Δτ � 20 days over a period of 14 years (2000–2014). The threshold networks Sτ(t) were constructed by
adding edges with correlation Cτ

ij(t)≥0.65 to the minimum spanning trees (MST). From top to bottom, we compare the plots of mean correlation among market
indices, minimum risk corresponding to the Markowitz portfolio optimization, eigenentropy, number of edges, average weighted degree, diameter, clustering
coefficient, modularity, communication efficiency, global reaching centrality (GRC), network entropy, and global assortativity. The four shaded regions correspond
to the epochs around the four important market events, namely, US housing bubble, Lehman brothers crash, Dow Jones flash crash, and August 2011 stock
markets fall.
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FIGURE 2 | Evolution of network characteristics and visualization of the threshold networksSτ (t) ofmarket indiceswith awindow size of τ � 80 days and an overlapping
shift of Δτ � 20 days, constructed by adding edges with correlation Cτ

ij (t)≥ 0.65 to the MST. (Lower panel) Comparison of the plots of mean correlation among market
indices, clique number, average of Ollivier-Ricci (OR), Forman-Ricci (FR), Menger-Ricci (MR), and Haantjes-Ricci (HR) curvature of edges in threshold networks over the 14-
year period. (Upper panel) Visualization of the threshold networks at three distinct epochs of τ � 80 days ending on trading days t equal to August 4, 2005 (normal),
August 14, 2006 (US housing bubble), and June 4, 2010 (Dow Jones flash crash). Threshold networks show a higher number of edges and a lower number of communities
during the crisis. Correspondingly, there is an increase in mean correlation, clique number, average OR, MR, and HR curvature, and a decrease in average FR curvature of
threshold networks during the financial crisis. Node colors and labels are based on geographical region and country, respectively, of the indices and edge colors are based on
the communities determined by the Louvain method. The four United Statesmarket indices, NASDAQ, NYSE, RUSSELL1000, and SPX, are labeled as USA1, USA2, USA3,
and USA4, respectively, while the two Indian indices, namely, NIFTY and SENSEX30, are labeled as IND1 and IND2, respectively.
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which is directly computed from the correlation matrix Cτ(t)
increases during the crisis. Earlier works have shown that mean
correlation and eigenentropy are indicators of instabilities in the
stock market network [26, 28], and we show here that these
measures can also serve as indicators of crisis in the network of
global financial indices. In Figure 1, we also show the temporal
evolution of the minimum risk corresponding to the portfolio
comprising the market indices using the Markowitz framework.
Moving on to widely used network properties, it is seen that the
number of edges, edge density, average degree, average weighted
degree, clustering coefficient, communication efficiency, and
network entropy increase while diameter, average shortest path
length, and modularity decrease during periods of the financial
crisis (Figure 1; Supplementary Figure S1). In Figure 1, we also
show the evolution of two other network measures, global
reaching centrality (GRC) and global assortativity. In Figure 2,
we also visualize the threshold network at three distinct time
windows of τ � 80 days ending on trading days t corresponding to
August 4, 2005 (normal period), August 14, 2006 (US housing
bubble crisis), and June 4, 2010 (Dow Jones flash crash), where
the node colors are based on geographical regions of the market
indices and edge colors are based on modules determined by
Louvain method [34] for community detection. The identified
communities in the three networks corresponding to the normal
period, the US housing bubble, and the Dow Jones flash crash
typically reflect the geographical proximity of financial market
indices. For example, the indices of the United States, Canada,
Mexico, Argentina, Brazil, and Chile form a single community in
the threshold network for the normal period (Figure 2). It is
evident that the number of edges in threshold networks
corresponding to the US housing bubble (246 edges) or Dow
Jones flash crash (390 edges) is much higher in comparison to
that for the normal period (109 edges). In contrast, the
modularity of threshold networks corresponding to the crisis
periods, US housing bubble (0.418), or Dow Jones flash crash
(0.232) is lower in comparison to that for normal period (0.508).
In Figure 2, it is clearly seen that the clique number or size of the
largest clique in threshold networks increases during financial
crisis, and this is also evident from the network visualizations for
normal period, US housing bubble, and Dow Jones flash crash.
Note that bubbles are not easy to detect. In fact, our proposition is
that holistic approaches with network measures, both node- and
edge-based measures, including geometric curvatures, may help
us to better detect and distinguish the bubbles from market
crashes, as also pointed out in recent contributions [26, 49]. In
sum, we find that during a normal period the network of global
market indices is less connected, very modular, and
heterogeneous, whereas, during a fragile period, the network is
highly connected, less modular, and more homogeneous.

In addition to the node-centric global network measures
described in the preceding paragraph, we have also studied
edge-centric network measures, specifically, four discrete Ricci
curvatures [Olivier-Ricci (OR), Forman-Ricci (FR), Menger-Ricci
(MR), and Haantjes-Ricci (HR)] in threshold networks of global
market indices. From Figure 2, it is seen that the average OR,MR,
or HR curvature of edges increases during crisis periods in
comparison to normal periods. In contrast, the average FR

curvature of edges decreases during crisis periods in
comparison to the normal periods. Notably, Sandhu et al. [29]
have shown that OR curvature can serve as an indicator of
fragility in stock market networks. However, to our
knowledge, the present work is the first investigation of
discrete Ricci curvatures in networks of global market indices.
Note that different discretizations of Ricci curvature do not
capture the entire features of the classical definition for
continuous spaces, and thus, the four discrete Ricci curvatures
studied here can capture different aspects of analyzed networks
[42]. Overall, our results suggest that discrete Ricci curvatures can
serve as indicators of fragility and monitor the health of the global
financial system.

In Figure 3, we show the correlation between generic market
indicators and different characteristics of the threshold networks
Sτ(t) of global market indices computed across the 14-year period
from 2000 to 2014. From this figure, it is seen that eigenentropy
and several network measures have a very high (absolute)
Pearson correlation ( ≈ 0.9) with generic indicator, mean
correlation of market indices. Such network measures include
the number of edges, average weighted degree (strength),
clustering coefficient, communication efficiency, clique
number, FR curvature, and MR curvature. In contrast to mean
correlation of market indices, there is moderate to no correlation
between minimum risk corresponding to the portfolio
comprising the market indices and eigenentropy or network
measures (Figure 3). In sum, these results indicate that
network measures including edge-centric FR curvature can be
used to forecast crisis and monitor the health of the global
financial system. To the best of our knowledge, our work is
the largest survey of network measures to identify potential
network-centric indicators of fragility in global financial
market indices.

We must mention that though in the preceding paragraphs we
have described only the results obtained from networks
constructed using a threshold of 0.65, we have shown in
Supplementary Figures S2–S9 that the qualitative conclusions
remain unchanged even when networks with a threshold of 0.75
and 0.85 are considered. In other words, our results are robust to
the choice of the threshold used to construct the networks of
global market indices.

In previous works, the econophysics community has
employed either minimum spanning tree (MST) [7, 9–13, 15,
19] or planar maximally filtered graph (PMFG) [12, 19] or
threshold networks [11, 14, 20] to study the correlation
structure between global financial market indices. As far as we
know, this work is the first to use threshold networks of MST plus
edges with a correlation higher than a specified threshold, to
study the temporal evolution of relationships between global
financial market indices. In contrast, such threshold networks
based on MST have been used earlier to study the structure of
stock market networks [29, 49]. While MST has a tree structure
without loops or cycles, PMFG or threshold network permits
loops or cycles. In Supplementary Text and Supplementary
Figures S10–S13, we also display the temporal evolution and
correlation between generic market indicators and network
measures in PMFG of global market indices constructed from
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cross-correlation matrices Cτ(t). While the construction of
PMFG unlike threshold networks is independent of any
specific choice of the threshold, the number of edges (thus,
edge density and average degree) is fixed in case of PMFG
(Supplementary Figures S10, S11). Due to this reason, we
find that most of the network measures studied here are not
correlated with the generic market indicator, mean correlation of
market indices, in the PMFG case (Supplementary Figure S13).
Still, we find that average weighted degree (strength), clustering
coefficient, and communication efficiency have a very high
correlation with the mean correlation of market indices in
PMFG-based networks (Supplementary Figure S13). Based on
these results, the threshold network construction based on MST
plus edges with high correlation seems to be a better framework to
monitor the state of the global financial system.

Finally, we have also studied the average correlation structure
between global market indices over the 14-year period by

computing the correlation matrix CT between the 69 market
indices by taking window size as the complete period of T days
between 2000 and 2014 (Section 2). Subsequently, we have
constructed a threshold network ST corresponding to CT by
combining MST plus edges with a correlation above the
chosen threshold of 0.65 (Section 2). In Figure 4A, we
visualize this overall threshold network ST of market indices
for the complete 14-year period of T days. In this figure, the node
colors are based on geographical regions of the market indices
and edge colors are based on communities obtained from the
Louvain method. In Figure 4B, we have separated the
communities in this overall threshold network ST of market
indices by removing the intermodule edges in the
visualization. From Figures 4A,B, it is clear that the market
indices form communities in this overall threshold network based
on their geographical proximity. Moreover, we have also
employed multidimensional scaling (MDS) technique to map

FIGURE 3 | Correlations between generic indicators and network characteristics of the global market indices networks Sτ(t), constructed from the correlation
matricesCτ(t) of window size τ � 80 days and an overlapping shift of Δτ � 20 days over a period of 14 years (2000–2014). The threshold networks Sτ(t) were constructed
by adding edges with correlation Cτ

ij (t)≥0.65 to the minimum spanning tree (MST).
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FIGURE 4 | The average correlation structure between 69 market indices over the 14-year period is visualized based on the correlation matrix CT for the complete
period of T � 3513 days between 2000 to 2014. (a) Visualization of the overall threshold network ST corresponding to CT obtained by combining MST plus edges with
correlation ≥0.65. The node colours are based on geographical regions of the market indices and edge colours are based on communities obtained from Louvain
method. (b) Visualization of the communities in the overall threshold network ST after removing the inter-module edges. It is evident that the market indices form
communities in this network based on their geographical proximity. (c)Multidimensional scaling (MDS) map in 2-dimensions of the 69 market indices. In this figure, the
indices are labelled in different colours based on their geographical region and country, respectively. The four USAmarket indices, NASDAQ, NYSE, RUSSELL1000 and
SPX, are labelled as USA1, USA2, USA3 and USA4, respectively, while the two Indian indices, NIFTY and SENSEX30, are labelled as IND1 and IND2, respectively.
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the 69 market indices into a 2-dimensional space such that the
distances between pairs of indices are preserved (Figure 4C;
Section 2). It can be seen that the MDS map is able to partition
the 69 market indices into groups based on their geographical
proximity, and further, the structure in the MDS map has a close
resemblance to the community structure of the overall threshold
network (Figure 4). For example, the grouping of indices from
the United States, Canada, Mexico, Argentina, Brazil, and Chile
can be seen in both the threshold network and MDS map
(Figure 4). Interestingly, when we plotted in Supplementary
Figure S14 the evolution of the eigenvector centralities of the
nodes (market indices), as well as their OR and FR curvature, we
found that there exist certain periods of time when some of the
countries in close geographical proximity display high (absolute)
values and others display low values, indicative of the changes in
the complex interactions and community structures.

4 SUMMARY AND CONCLUDING
REMARKS

In summary, we have investigated the daily closing prices of 69
global financial indices over a 14-year period using various
techniques of cross-correlations based network analysis. We
have been able to continuously monitor the complex
interactions among the global market indices by using a
variety of network-centric measures, including recently
developed edge-centric discrete Ricci curvatures. In the
present study of the global market indices, the novelty lies in
the following: i) Construction of the threshold network Sτ(t), as
superposition of the MST of the cross-correlation matrix and
the network of edges with correlations Cτ

ij ≥ 0.65, which ensures
that each threshold network is a connected graph and captures
the most relevant edges (correlations) between market indices.
In Supplementary Material, we have also reported the results
for networks constructed using MST and two other threshold
values, i.e., Cτ

ij ≥ 0.75 and Cτ
ij ≥ 0.85. Besides, we have also

reported results for networks constructed using PMFG
method. ii) The usage of discrete Ricci curvatures in
networks of global market indices, which capture the higher-
order architecture of the complex financial system. To the best
of our knowledge, this is the first study employing edge-based
discrete Ricci curvatures to networks of global financial indices.
Our recent work underscores the utility of edge-based curvature
measures in the analysis of networks of stocks [49] or global
financial indices. In future, curvature measures may also find
application in other financial networks including Banking
networks [50]. iii) The largest yet by no means exhaustive
survey of network measures to identify potential network-
centric indicators of fragility and systemic risk in the system
of global financial market indices.

The global financial system has become increasingly complex
and interdependent and thus prone to sudden unpredictable

changes like market crises. Our results, compared to the
traditional market indicators, do provide a deeper
understanding of the system of global financial markets.
Specially, we find that the four discrete Ricci curvatures can be
effectively used as indicators of fragility in global financial
markets. We reiterate that the methods used in this work can
detect instabilities in the market and can be used as early warning
signals so that policies can be made in order to prevent the
occurrence of such events in the future.
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