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Abstract
This study comprehensively explores the pivotal position that Artificial Intelligence (AI) 
enables on the advancement of decarbonization efforts, mainly in the context of Circular 
Supply Chains (CSCs). Employing a two-stage methodology, this study delves into identi-
fying and analyzing the enablers essential for leveraging AI in the pursuit of decarboniza-
tion objectives. In the first stage, a literature review and an exploratory factor analysis are 
performed to discern the key enablers of AI for decarbonization initiatives. This process 
resulted in the identification of 15 significant enablers and categorization of enablers into 
environmental, organizational, institutional, and technological categories. Building upon 
the findings from the first stage, this study progresses to its second stage, wherein the 
Grey-Ordinal Priority Approach (G-OPA) is applied to analyze the identified enablers. 
The results indicate that adopting recyclable materials to enhance the efficiency of supply 
chains, emphasizing local production for recovery practices through advanced technology, 
and managing product life-cycle through intelligent and additive manufacturing technolo-
gies are the top three enablers. The application of the G-OPA enriches the robustness and 
comprehensiveness of the analysis, enabling an understanding of the complex interplay 
among the enablers. By clarifying the key enablers, business planners and designers can 
migrate from traditional linear supply chains to more sustainable CSCs through the careful 
implementation of enablers for decarbonization.

Keywords  Artificial intelligence · Decarbonization · Circular supply chains · Grey-
ordinal priority approach
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1  Introduction

The notion of circular economy (CE) has received extensive global consideration as a sus-
tainable alternative to the “take, make, and dispose” approach (Geissdoerfer et al., 2017). 
The Ellen MacArthur Foundation (EMF) (2015) promoted CE as a regenerative and cura-
tive business system that seeks to retain the best quality and usefulness of goods, parts, and 
supplies in biological and technical cycles. The shift to a CE is accepted by many as provid-
ing social, environmental, and economic advantages (Geissdoerfer et al., 2017; Genovese 
et al., 2017). It enables more efficient utilization and re-utilization of resources, reducing 
negative environmental impacts while maintaining growth and prosperity on a holistic level 
(D’Orazio & Pham, 2025; Lewandowski, 2016; Manninen et al., 2018).

In this regard, Circular Supply Chains (CSCs) have emerged as a significant facilitator 
driving sustainability in academia and practice (Hobson, 2016; Stewart & Niero, 2018). 
The CSCs model promotes the practice of taking used or discarded materials and repurpos-
ing them for sale, and encourages manufacturers and product sellers to do so (Hazen et al., 
2016; Kumar et al., 2021). Incorporating circularity into supply chains would enlarge the 
scope of sustainability by decreasing the requirement for new materials, thus promoting the 
flow of materials across supply chains (Farooque et al., 2019; Mishra et al., 2024). Even 
though there has been an increase in circularity efforts to advance the efficiency of supply 
chains, it has become quite difficult for organizations to reduce the harmful effects, as it is a 
complex phenomenon. It is found that supply chains are responsible for almost 90% of car-
bon emissions (Shi et al., 2019; Wang et al., 2024). This places a higher priority on actions 
to mitigate environmental and social hazards in CSCs.

The issues of decarbonization and CE have gained significant attention and are converg-
ing rapidly due to their interconnectedness (Spiller, 2021; Zhang et al., 2022). The global 
decarbonization market size was anticipated at USD 1.68 trillion in 2022 and is expected 
to grow at a compound annual rate of 11.6% from 2023 to 2030 (Grand View Research, 
2023). Decarbonizing an economy requires more than just relying on renewable energy 
sources and efficiency improvements; it also necessitates a comprehensive rethinking of the 
entire economic model, including every aspect of the product lifespan (Zhao et al., 2022; 
Zhu & Geng, 2013). Advanced software solutions, such as energy management systems 
and AI-driven algorithms, assist businesses in monitoring, optimizing, and reducing their 
carbon footprints (Huang & Mao, 2024). By facilitating renewable energy adoption and 
waste reduction, the information technology industry inspires organizations to attain net-
zero goals, contributing considerably to environmental sustainability (Greg and Strengers, 
2024). Thus, decarbonization targets must not only focus on reducing direct emissions and 
implementing compensation measures but also incorporate all aspects of the supply chains 
(Leonzio & Zondervan, 2020; Mishra et al., 2024). The CE is anticipated to significantly 
achieve decarbonization goals, as it considers a circular approach to reusing resources, 
resulting in sustainable benefits (Sadawi et al., 2021). To successfully transition to a CE, 
organizations must adopt initiatives and procedures that evaluate activities from a circular 
perspective (Ivanov, 2021). However, implementing these initiatives and processes requires 
monitoring, prediction, forecasting, and optimization to produce additional responsive and 
resilient CSCs (Ozkan-Ozen et al., 2020; Riahi et al., 2021). AI-enabled applications have 
recently appeared as a promising solution for effectively designing and managing CSCs by 
automating operational activities (Riahi et al., 2021).

1 3



Annals of Operations Research

The ability of machines to follow human abilities and communication aids has been 
identified as AI (Jarrahi et al., 2023). AI is used to solve problems more accurately and rap-
idly with large amounts of diverse data. Trends such as robotics, Machine Learning (ML), 
big data, and AI have become prevalent in business to achieve sustainable goals (Di Vaio 
et al., 2020). Such technologies are used as facilitators across various sectors to optimize 
value by managing operations and distributing information for sustainability (Nayal et al., 
2021; Sanders et al., 2019). AI has revolutionized how we generate and utilize information 
for making decisions and solving difficulties (Mikalef et al., 2018) and how business is 
conducted (Schneider & Leyer, 2019). It has increased supply chain efficiency and transpar-
ency, which is essential for CSCs (Sanders et al., 2019). Studies show that relying on incre-
mental innovations and enhancing existing operations may no longer be adequate, given the 
current state of knowledge and technology (Nilsson & Göransson, 2021). John et al. (2022) 
highlighted the positive impact of AI on decarbonization in the steel industry. The advent of 
AI has enabled novel approaches to business, including the shift from conventional supply 
chains to CSCs (Ripanti & Tjahjono, 2019). While supply chain innovation necessitates 
transparency, collaboration, and understanding between the parties involved or partners 
(Yun & Liu, 2019), these parties can spark transitions toward long-term innovation (Vais-
man et al., 2022). Furthermore, big data and digitization have also improved awareness of 
the supaply chain’s social and environmental implications (Wang et al., 2024).

According to recent studies, technological advancements can potentially improve car-
bon reduction by up to 20% (Inderwildi et al., 2020). The UN’s Sustainable Development 
Goals (SDGs), particularly SDG 13 on Climate Action, underline leveraging technology to 
manage climate change and minimize emissions. Similarly, the Green Deal objective of the 
European Union (EU) is to make Europe the first carbon–neutral continent by 2050, sup-
porting the execution of advanced technologies like AI, IoT, and renewable energy systems 
(European Parliament, 2022). On a national level, NITI Aayog has launched initiatives such 
as the National Electric Mobility Mission and the Roadmap for Carbon Capture Utilization 
and Storage, highlighting the role of AI and advanced technologies in converting indus-
tries towards sustainability (Mukherjee & Chatterjee, 2022). Smart grids, smart meters, 
and blockchain are not just trendy buzzwords in the energy industry. A significant study 
on AI and decarbonization (Rolnick et al., 2022) shows that electricity systems possess a 
wealth of data and tremendous potential for AI applications. AI can aid in all aspects, includ-
ing research, deployment, and operation of electrical system technologies. AI can assist in 
developing new technologies, improving demand and renewable energy forecasts, optimiz-
ing grid management, and enhancing system monitoring (Ahmad et al., 2021). Digital tech-
nologies have already begun transforming our economy and way of life. By embracing CE 
principles, this transformation can create value and generate more comprehensive societal 
benefits. However, effective use of AI demands an in-depth comprehension of the problem. 
Moreover, the transition to the CE requires cooperation among a network of trusted partners. 
For example, data generation, collection, and sharing require stakeholder collaboration.

New technologies, particularly AI, have enabled developed nations to achieve circular-
ity, but developing nations lack the necessary infrastructure and advanced technological 
setup (de Sousa Jabbour et al., 2018; Galati & Bigliardi, 2019) to harness the power of such 
technologies. While general AI enablers have been identified for circularity (Moeuf et al., 
2018, 2019; Tortorella & Fettermann, 2018), these have not yet been explored from the per-
spective of emerging economies. Therefore, there is a pressing need to discover potential AI 
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enablers that can lead to CSCs in developing economies, considering environmental, tech-
nological, governance, and institutional factors (Pacchini et al., 2019). This study explores 
potential AI enablers for managing carbon footprint in developing economies, which can 
facilitate the long-term goal of designing CSCs. As a result, this study takes a novel hybrid 
empirical decision-making method to address the challenges raised above. The following 
Research Objectives (ROs) are identified.

RO1: To identify and categorize key AI enablers that support decarbonization within the 
context of CSCs in developing economies.

RO2: To analyze the relative importance of identified enablers of AI for decarbonization.
The following steps were used to attain the aforementioned ROs. Initially, a thorough and 

meticulous literature study was performed to identify possible AI enablers for decarboniza-
tion. A large-scale survey-based empirical analysis was conducted using Exploratory Factor 
Analysis (EFA) to validate the enablers identified during the literature research. Finally, 
G-OPA was used to calculate the weights of each shortlisted enabler to determine their use-
fulness in achieving circularity. The findings of this study are relevant to both researchers 
and practitioners. This one-of-a-kind study identifies critical AI enablers for decarboniza-
tion and proposes strategies for improving circularity in industrial enterprises in developing 
nations. Policymakers can benefit from this research by gaining critical recommendations 
for improving manufacturing policies in developing countries.

2  Literature review

To ensure the relevance of the current study, it is crucial to investigate existing literature 
before embarking on further research. As a result, a comprehensive literature review was 
done. The subsequent subsections describe the research on AI adoption in decarbonization. 
In addition, a separate section discusses the research gaps discovered in the literature.

2.1  Circular supply chains (CSCs)

CSCs represent a shift from traditional linear supply chains towards systems that mini-
mize waste and maximize resource efficiency through reuse, recycling, and remanufacturing 
(Roy et al., 2022; Guide Jr and Van, 2009). This approach aligns with the goals of decarbon-
ization by reducing greenhouse gas emissions across all aspects of the supply chain. Despite 
extensive research on Closed-Loop Supply Chains (CLSC), which focuses on reverse logis-
tics for remanufacturing and reuse, there is a substantial gap in understanding how these 
principles can be extended and incorporated into CSCs to achieve broader decarbonization 
goals (Canales et al., 2017). The existing studies often overlook the potential for proactive 
design and forward logistics strategies that enhance sustainability. CSCs and CLSCs differ 
in their scope and approach to sustainability and decarbonization. While CLSC primar-
ily focuses on reverse logistics, remanufacturing, refurbishing, and reusing returned prod-
ucts to enhance sustainability, CSCs encompass a broader, more integrated approach that 
includes proactive design, forward and reverse logistics, and continuous resource optimiza-
tion throughout the product lifecycle (Mishra et al., 2023). Although the principles of CLSC 
significantly contribute to sustainability, CSCs aim to achieve decarbonization by leverag-
ing advanced technologies such as AI, IoT, and real-time data analytics to optimize resource 
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use and reduce emissions at all stages (Kazancoglu et al., 2022). By incorporating both 
forward and reverse logistics and emphasizing the entire lifecycle of products, CSCs pro-
vide a more comprehensive and dynamic framework for achieving decarbonization goals, 
making it a unique and essential proposition in the current sustainability landscape (Delpla 
et al., 2022). Further, the integration of CLSC insights can indeed enhance CSC strategies, 
but the broader, systemic approach of CSCs ultimately offers more robust solutions for 
decarbonization.

AI plays an essential part in enabling CSCs by optimizing resource use and improving 
process efficiencies (De Giovanni, 2022). AI-driven technologies, such as predictive analyt-
ics, ML, and IoT sensors, support real-time monitoring and data-driven decision-making, 
which are fundamental for identifying inefficiencies and decreasing emissions (Ghoreishi 
et al., 2023). Environmental enablers, such as using sustainable materials and renewable 
energy sources, combined with organizational commitment and supportive institutional 
frameworks, are vital for successfully implementing CSCs (Hussain & Malik, 2020). Tech-
nological advancements, including blockchain and IoT, provide the infrastructure needed 
for efficient resource management and tracking, facilitating transparency and traceability in 
supply chain activities (Esmaeilian et al., 2020).

Despite these advancements, several challenges obstruct the extensive implementation of 
CSCs for decarbonization. Significant obstacles include high initial investment costs, tech-
nological complexity, and organizational opposition to change (Kandasamy et al., 2023). 
Additionally, the lack of standardized metrics for measuring circularity and carbon reduc-
tion poses a challenge. To address these shortcomings, regulators, industry leaders, and 
researchers must work together to establish comprehensive CSC implementation methods 
and frameworks. Future research should focus on integrated frameworks that combine CSC 
principles with AI-driven technologies to enhance decarbonization efforts, providing a more 
robust understanding of how to effectively implement CSCs.

The literature provides a useful framework that suggests that successful adoption of 
CSCs requires technological advancements and alignment of organizational culture, poli-
cies, and human factors (Ciriello et al., 2024). It also emphasizes the value of stakeholder 
engagement, top management support, and good communication at all levels of the supply 
chain. Organizations may construct more resilient and adaptive supply chains that are suited 
to achieving decarbonization and sustainability goals by considering both social and techni-
cal factors.

2.2  Studies related to AI adoption in decarbonization

AI has received greater interest in the past few decades as a viable approach for developing 
more sustainable processes, notably in CSCs. By improving resource tracking and optimiz-
ing operations, AI may serve a crucial role in achieving decarbonization in CSCs (Acerbi et 
al., 2021). Table 1 reflects a summary of recent literature on AI, decarbonization, and CSCs.

Logistics and transportation optimization is one of the primary areas where AI can sup-
port decarbonization efforts. AI algorithms can analyze data from multiple sources, such as 
Global Positioning System (GPS) tracking, weather data, and road conditions, to determine 
the most energy-efficient delivery routes to reduce carbon emissions (Song et al., 2022). 
Additionally, AI can help optimize manufacturing systems by identifying energy efficiency 
improvements through ML algorithms (Bocken et al., 2016).
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In product design, AI algorithms can be used to reduce waste and decrease the envi-
ronmental impact of CSCs by predicting product lifecycles and designing products with 
recyclable materials, which helps decrease the necessity for raw materials and reduces car-
bon emissions (Niu et al., 2019). AI can also help circular business models to keep items 
and resources in use for the longest feasible time through repair, refurbishment, and reuse 
(Bianchini et al., 2019). AI can eliminate new product requirements and lower carbon emis-
sions by predicting demand for second-hand products and supporting the creation of circular 
marketplaces (Ghisellini et al., 2016). In conclusion, AI has great potential to considerably 
contribute to decarbonizing CSCs by optimizing processes, reducing waste, and supporting 
the development of circular business models.

An inadequate understanding of system design, technology implementation, and applica-
tion scenarios might result in uneven collaboration among technical professionals and busi-
ness executives, posing challenges to managers when introducing new technologies (Saberi 
et al., 2019). Recent research has examined the possibilities of AI applications for decar-
bonization in various industries and environments. For example, Zhou (2022) thoroughly 

Table 1  Recent literature specific to AI, decarbonization, and CSCs
References Objectives Methodology Outcomes
Xu et al. 
(2023)

The study aimed to explore the 
influence of technologies in low-
carbon supply chain management

Systematic lit-
erature review

The study integrated technology 
adoption and low-carbon SCM 
based on the technology–organiza-
tion–environment (TOE) framework

Zhao et al. 
(2022)

The study evaluated the drivers 
of decarbonization in the plastic 
industry

Grey DEMA-
TEL approach

The outcomes from the study 
reflected that joint promotion by 
stakeholders and market impact 
substantially affect low-carbon 
production

Alamoush et 
al. (2022)

The study presented an incentive 
scheme for reducing greenhouse 
gas emissions and promoting 
decarbonization

Content analysis 
review

The study proposed a framework 
for providing incentives to ships 
at the forefront of implementing 
decarbonization technologies

Brinken et 
al. (2022)

The study aimed to estimate the 
CO2 reduction potentials for vari-
ous Logistics 4.0 technologies

Empirical 
analysis

The study estimated small reduction 
potentials for technologies and most 
supply chain steps

John et al. 
(2022)

The objective was to study the po-
tential of AI-enabling technologies 
impacting the decarbonization of 
the energy-intensive steel industry

Case study 
approach

The study outcome reflected the 
capabilities to minimize the barriers 
to sustainability innovation

Mulvaney et 
al. (2021)

The study highlighted potential 
materials required to decarbonize 
electricity and mobility

Review study The study outcome recommended 
moving toward a circular economy 
to decarbonize electricity and 
mobility

Thiede 
(2022)

The study highlighted the 
contribution of cyber-physical 
production systems to the decar-
bonization of industry

Empirical 
analysis

The study reflected the best practice 
technologies to support energy de-
mand and renewable energy supply

Nunes et al. 
(2023)

The study identified potential 
drivers for the decarbonization of 
energy production

Systematic lit-
erature review

The outcome of the study reflected 
biomass as an option to decarbonize

Skocz-
kowski et al. 
(2020)

The study identified the potential 
of the Technology Innovation 
System (TIS) towards attaining de-
carbonization in the steel industry

Systematic lit-
erature review

The outcomes of the study reflected 
the role of actors in supporting the 
implementation of new production 
technologies
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evaluated AI applications in renewable energy systems and provided a standard process for 
designing robust renewable energy systems for structures. Liang et al. (2022) modeled a 
network system using a three-stage Data Envelopment Analysis (DEA) model to examine 
the production processes of the manufacturing industry. Li et al. (2022) conducted an empir-
ical investigation on the influence of industrial robots on emissions of carbon reduction 
and discovered that industrial robots have greater emission reduction impacts in developed 
nations compared to developing nations. Bonilla et al. (2022) presented research on AI for 
long-term decarbonization in the Spanish energy market, identifying potential impediments 
to achieving a renewable electrical mix without installed power. Finally, Liao et al. (2022) 
presented research on a cloud-edge-device collaborative, dependable, and communication-
efficient digital twin for managing low-carbon electrical equipment, which optimizes chan-
nel and computational resource allocation to reduce communication costs.

In a recent study, Xie et al. (2022) examined the challenges associated with implement-
ing a digitized power grid and underlined the potential of AI algorithms to drive this imple-
mentation. Additionally, Sun et al. (2022) investigated the low-carbon effects of AI in the 
context of the ice and snow industry using a mathematical model based on low-carbon con-
straints. Damoah et al. (2021) inspected the contribution of AI-enabled medical drones in 
enhancing the Healthcare Supply Chain (HSC) in Ghana, leading to efficient carbon reduc-
tion and noise-free drones for medical product delivery, which can contribute to attaining 
the SDGs. In a different study, Xi et al. (2021) created a low-carbon gas utilization system 
by integrating solvent-based carbon capture with methanol production-based carbon utiliza-
tion and employing the Particle Swarm Optimization (PSO) method to detect low-carbon 
throughout the scheduling period. Alamoush et al. (2022) proposed an incentive plan for 
reducing GHG emissions in the maritime industry. Finally, Pulselli et al. (2019) provided 
an improved carbon accounting approach for analyzing GHG emissions in urban contexts, 
estimating the carbon footprint of urban neighborhoods, and proposing mitigation strategies 
to attain carbon neutrality.

An investigation was conducted to anticipate carbon emissions in China’s cement sec-
tor (Li & Gao, 2018). The study’s findings help to shape regulations for decreasing carbon 
emissions in China’s cement sector. Ibn-Mohammed (2017) offered a mixed-method strat-
egy to address the difficulties of climate change mitigation. The study developed a quan-
titative energy model for building energy retrofit advice. Nabavi-Pelesaraei et al. (2016) 
adopted an AI approach to perform resource management in the cropping system. The study 
focused on orange orchid cultivation in Iran.

Although the research on AI for managing decarbonization in CSCs is in its infancy, 
several studies (Akbari & Hopkins, 2022; Vargas et al., 2018) reported set of enablers influ-
encing the role of AI in achieving circularity. These enablers influence the adoption process 
in a broader context. In this context, Table 2 elaborates upon the enablers identified from 
the literature.

3  Research gaps

Despite extensive research on CLSC, particularly its role in remanufacturing, refurbishing, 
and reusing returned products, a significant gap exists in understanding how these principles 
can be expanded and incorporated into the broader concept of CSCs to achieve decarboniza-
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Code Enablers of AI for 
decarbonization

Description References

E1 Framing standardized inter-
faces for processes associated 
with decarbonization

This enabler helps formulate benchmarks for 
the processes related to decarbonization

Zhou et al.2022; 
Xie et al., 2022

E2 Developing a modular archi-
tecture for better compatibil-
ity of supply chains

To design an efficient supply chain, it is 
essential to have modular technological 
frameworks to improve its functioning

Akbari & Hop-
kins, 2022; Xie et 
al., 2022

E3 Emphasizing local production 
for recovery practices through 
advanced technology

This enabler focuses on recovery mecha-
nisms through local production, which can 
be achieved through technological aspects

Hazen et al., 
2016; Roberts et 
al., 2022; Agostin-
ho et al., 2016

E4 Adopting recyclable materials 
to enhance the efficiency of 
supply chains

To make supply chains more reliable and 
dynamic, it is necessary to adopt recy-
clable inputs that can be later refurbished 
effectively

Vargas et al., 
2018; Liang et al., 
2022

E5 Provision of online monitor-
ing for quality assurance and 
control

Quality assurance and control need to be 
systematically channeled through technologi-
cal activities

Schröder et al., 
2019; Roberts et 
al., 2022

E6 Designing ubiquitous network 
technologies for logistics

Decarbonization can be achieved if global 
networking technologies can control the 
logistics network

Zhu et al.2022; 
Liang et al., 2022

E7 Managing product life-
cycle through intelligent 
and additive manufacturing 
technologies

Maintaining the circularity in supply chains 
requires control over the product life cycle 
in every phase. To manage and maintain that 
control, additive manufacturing technologies 
are required

Schröder et al., 
2019; Roberts et 
al., 2022; Chen et 
al., 2022

E8 Optimizing sourcing and pro-
curement processes through 
hyperintelligent sorting 
systems

Hyperintelligent sorting systems are the ex-
emplifications of AI in achieving circularity. 
Using these systems, sourcing and procure-
ment can be easily optimized

Vargas et al., 
2018; Akbari & 
Hopkins, 2022; 
Sharma et al., 
2022

E9 Provisions for regular value 
assessments for used and 
recycled products

Recycled products need to be continually 
assessed through innovative AI technologies 
to enhance the efficiency of circular supply 
chains

Hazen et al., 
2016; Akbari & 
Hopkins, 2022

E10 Developing inventory and 
maintenance systems based 
on real-time data sets

Acquiring technologies to manage inventory 
and maintenance systems through real-time 
data sets ensures that there is no delay in the 
whole supply chain process

Vargas et al., 
2018; Roberts et 
al., 2022; Wang et 
al., 2024

E11 Framing guidelines for con-
tinuous technology transfers

Technology transfers enable continuous 
improvisations and create a path for new 
opportunities

Schröder et al., 
2019; Akbari & 
Hopkins, 2022; 
Jauhar et al., 2023

E12 Support of top management 
and government authorities

Administrative support acts as the catalyst 
for creating a regulatory framework for 
CSCs

Vargas et al., 
2018; Schröder et 
al., 2019

E13 Ensuring effective monitor-
ing through e-governance 
for transparency and 
accountability

Assurance of accountability and transparency 
through effective e-governance mechanisms 
will ensure fair policies throughout the 
system

Hazen et al., 
2016; Zhou et 
al.2022

E14 Facilitating waste reduc-
tion by adapting smart 
technologies

Waste management is an important prerequi-
site for implementing circularity and reduc-
ing carbon emissions

Schröder et al., 
2019; Vargas et 
al., 2018; Zhou et 
al.2022; Okorie et 
al., 2023

Table 2  List of enablers of AI for decarbonization
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tion. While CLSC has successfully demonstrated the benefits of reverse logistics and waste 
reduction, it predominantly focuses on the end-of-life stage of the product lifecycle, often 
neglecting the potential for proactive design and forward logistics strategies that can further 
enhance sustainability and carbon reduction.

Existing studies on CLSC primarily address the operational aspects of reverse logistics, 
with a limited exploration of the systemic and holistic approaches needed for comprehensive 
decarbonization. The current literature does not thoroughly examine how AI and advanced 
technologies can be leveraged to optimize both forward and reverse logistics within CSCs. 
Furthermore, while CLSC has been extensively studied in the context of sustainability, its 
specific implications for decarbonization within the framework of a CE have not been fully 
explored. There is a need to investigate on how the principles of CLSC can be expanded to 
encompass the entire lifecycle of products to advance a more comprehensive approach to 
reducing carbon emissions.

The current body of literature provides limited insights into the influence of the adoption 
of AI-enabled decarbonization practices. There is a need to explore how top management 
support, government policies, and consumer awareness can drive the execution of sustain-
able practices across the supply chain. Addressing such research gaps requires an interdis-
ciplinary approach that combines insights from supply chain management, sustainability 
science, and technology innovation. By exploring the synergies between CLSC and CSCs 
and integrating advanced technologies, further research can provide a more robust frame-
work for achieving decarbonization and promoting CE. This study intends to help close 
such gaps by identifying AI enablers for decarbonization and creating a comprehensive 
framework for CSCs.

4  Research methodology

The priorities of enablers are determined using a two-stage integrated methodology. EFA is 
used in the first stage to categorize and eliminate less important enablers. The second stage 
employs the G-OPA to derive the local and global weights of enablers. Figure 1 depicts the 
framework outlining the integrated methodology, and the description of the methodology is 
provided in the following sub-sections.

4.1  Data collection

This study used an integrated methodology that includes EFA and G-OPA. A questionnaire 
survey was performed for EFA in order to structure and categorize the enablers of AI. Sev-
eral samples relevant to the research topic were selected for this study. The question items 

Code Enablers of AI for 
decarbonization

Description References

E15 Creating awareness towards 
AI-enabled methods for circu-
larity at the consumer level

It is important to create awareness of such 
technologies to achieve circularity on a 
holistic level

Akbari & 
Hopkins, 2022; 
Liang et al., 2022; 
Chowdhury et al., 
2022

Table 2  (continued) 
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were developed using the literature study and piloted by a group of researchers, IT industry 
practitioners, and logistics and supply chain professionals. After completion, it was dis-
tributed in July 2022 for data collection using an online survey. We employed purposive 
sampling techniques to choose samples for data collection. Respondents for this exercise 
include working professionals in supply chains, technology innovation, AI, and sustain-
ability. The participants were informed that the research being conducted was academic and 
that their information would be totally confidential. Additionally, respondents were asked to 
rank the importance of enablers on a scale of 1 to 5.

Purposive sampling was utilized in conjunction with the snowballing technique for the 
G-OPA exercise. Given the importance of expertise, seven experts in the relevant field 
have been invited to participate in this activity. Prior studies have also suggested that seven 
experts are sufficient for applying G-OPA (Mahmoudi & Javed, 2022; Pamucar et al., 2022; 
Shardeo & Sarkar, 2024). Afterward, priority was determined based on their research expe-
rience and academic qualifications. Table 3 lists the details of the experts and their fields of 
expertise. An online questionnaire was issued to the experts, who were asked to rank the 
enablers on a grey scale based on their importance.

Identification of enablersLiterature survey

Perform exploratory factor analysis

Questionnaire development for stage-I

Data collection

Categorization of enablers

Questionnaire development for stage-II

Data collection

Perform G-OPA exercise

Local and global weights of enablers of AI for decarbonization

Experts’ opinion

Respondents
Stage-I

Stage-II

Fig. 1  Methodological framework used in this study
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4.2  Categorization of enablers of AI for decarbonization

Fifteen enablers have been extracted from the literature review, as revealed in Table 2. How-
ever, the enablers need to be further categorized to understand the commonalities explained 
among the variables. EFA has been adopted to do this. EFA is a multivariate technique 
widely used by researchers to extract common factors across items, thereby reducing a 
larger set of variables to a smaller number of underlying dimensions (Chao & Lin, 2017). 
In the present study, it is preferred over comparable methods because it can reduce more 
variables into meaningful sets of constructs while retaining crucial information. Specifi-
cally, this study defines the categories and underlying enablers of AI for decarbonization. 
The suitability of the analysis can be checked prior to using it through the Bartlett Test of 
Sphericity and the Kaiser–Meyer–Olkin (KMO) value. The KMO value must be greater 
than 0.6 to meet the sample size requirement, and the significance level for Bartlett’s Test of 
Sphericity must be p < 0.01 (Yadav et al., 2020). Also, Cronbach’s alpha is frequently used 
to evaluate the data’s reliability and was used in this study. The Varimax method is preferred 
in the selection of the rotation method due to its ability to strengthen the loadings (Singh et 
al., 2021). It has also been argued that it assumes no correlation between the dimensions. 
If correlation is a possibility, the Oblimin rotation method is typically favored to produce 
accurate results (Reio & Shuck, 2015).

4.3  Prioritization of enablers of AI for decarbonization

Once the enablers have been categorized, they must be further prioritized using priority 
weights. In this study, OPA has been utilized to obtain the priority weights of the enablers. 
The OPA is a new Multi-Attribute Decision Making (MADM) method developed by Ataei 
et al. (2020). It is widely used in business research. However, the decision-making pro-
cess becomes more complex daily due to associated complexities. It is critical to evaluate 
the uncertainties involved with them while making decisions. Grey theory is employed to 
handle ambiguities related to experts’ opinions. The rationale behind preferring G-OPA over 
other similar methodologies is as follows.

Expert Designation Years of 
experience

Field of 
expertise

Expert 1 Technologist 8 Information 
technology

Expert 2 Assistant manager 11 Information 
technology

Expert 3 Deputy manager 18 Circular sup-
ply chains

Expert 4 Professor 22 Supply chain 
and logistics

Expert 5 Associate vice 
president

24 Information 
technology

Expert 6 Senior researcher 7 Circular sup-
ply chains

Expert 7 General manager 19 Goods trans-
portation

Table 3  Experts’ details used for 
the G-OPA exercise
 

1 3



Annals of Operations Research

	● It does not require linguistic variables and pairwise comparisons like other methods, 
such as Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), or Best 
Worst Method (BWM) (Mahmoudi et al., 2021).

	● It requires a lesser number of questions to be asked, which increases its efficiency.
	● It is simple to use and has fewer complexities.

Since its inception, it has been applied in sustainable technologies selection (Islam, 2021), 
supplier selection (Mahmoudi et al., 2021), and Electric Vehicle (EV) adoption (Candra, 
2022). Despite having several advantages, it has not often been adopted to prioritize criteria 
and sub-criteria together (categories and enablers in our case). Thus, this study employs 
G-OPA to prioritize the enablers and their categories of AI technology for decarbonization. 
The sets, indexes, and variables associated with the G-OPA model are presented in Table 4.

The steps of G-OPA are explained as follows (Mahmoudi et al., 2021).
Step 1: Determination of enablers: The experts determine the potential enablers related 

to the study.
Step 2: Identification and ranking of the experts: Identify the research domain experts 

and rank them. Generally, expertise or academic background is considered when prioritiz-
ing them.

Step 3: Prioritization of the enablers: In this step, the enablers are ranked by the experts. 
Based on the crisp rank received from the experts, it is further converted into grey ranks 
using the scale (Chakraborty et al., 2023) as presented in Table 5.

Step 4: Obtaining the weight of enablers: The final G-OPA model is solved to obtain the 
final weights of enablers. The linear model for G-OPA is expressed in Eq. (1).

Grey number Interpretation
Lower Upper
0.5 1.5 Most important
1.5 2.5 Moderately high important
2.5 3.5 Moderately important
3.5 4.5 Moderately less important
4.5 5.5 Least important

Table 5  Grey scale used in this 
study
 

Sets
A Set of experts ∀ a ∈ A
B Set of enablers ∀ b ∈ B
Indexes
a Index of experts (1, …, m)
b Index of enablers (1, …, n)
Variables
⊗Z Grey objective function
⊗W r

ab
Grey weight of bth enabler by ath expert at rth rank

Parameters
⊗a Grey rank of the expert a
⊗b Grey rank of the enabler b

Table 4  Sets, indexes, param-
eters, and variables
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Max ⊗ Z

Subject to,

⊗Z ≤ ⊗a
(
⊗b

(
⊗W r

ab − ⊗W r+1
ab

))
∀a, band r

⊗Z ≤ ⊗a (⊗b (⊗W n
ab)) ∀aand b

m∑
a=1

n∑
b=1

⊗Wab = [0.8, 1.2]

⊗Wab ≥ 0∀aand b

� (1)

where ⊗Z is unrestricted in sign.
After solving Eq. 1, we need to obtain the grey weights of the experts and enablers. The 

grey weights of the enablers can be obtained using Eq. (2).

	
⊗Wb =

m∑
a=1

n∑
b=1

⊗Wab∀b� (2)

To obtain the weights of experts, Eq. (3) is used.

	
⊗Wa =

m∑
a=1

n∑
b=1

⊗Wab∀a� (3)

Step 5: Obtaining final crisp weights: In this step, the grey weights are converted into crisp 
weights using a kernel. The kernel is expressed in Eq. (4).

	
⊗W = 1

2
(W + W )� (4)

5  Result analysis

The study used an integrated methodology incorporating both EFA and G-OPA. This section 
details the outcomes of the various stages. Section 4.1. reflects the results obtained from the 
EFA exercise. The application of G-OPA and its results are described in Sect. 4.2.

5.1  Categorization of enablers

As mentioned in the previous section, this study used EFA to categorize the identified 
enablers. There are several parameters on which sample size requirements for EFA are 
determined, including participant-to-indicator ratio, communalities, loadings, the number 
of factors, and the number of variables (Howard, 2023; McNeish, 2017). We used the par-
ticipant-to-indicator ratio as an approach to determine the sample size requirement since 
it is most commonly practiced in the literature. According to this, the literature suggested 
around 10 or more participants per indicator as an acceptable suggested value (Cattell, 2012; 
Anthoine et al., 2014). As a result, 118 responses were obtained out of 150, with a response 
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rate of 78.66%. Table 6 shows the demographics of the respondents, while Table 7 shows a 
descriptive summary of the collected data.

In this study, the EFA has been conducted using Jamovi software (The Jamovi Project, 
2022). The gathered responses were analyzed after using EFA with Oblimin rotation. The 
correlation among the categories, which is also confirmed by the Bartlett Test of Sphericity 
presented in Table 8, justifies the use of Oblimin rotation. In addition, the KMO value of 
0.750 is more than the recommended value of 0.6 (Yadav et al., 2020).

Table 7  Descriptive summary of data for exploratory factor analysis
Measures/ Enablers E1 E2 E3 E4 E5 E6 E7 E8
N 118 118 118 118 118 118 118 118
Mean 3.73 3.25 3.78 3.96 3.61 3.82 3.75 3.69
Median 4 4 4 4 4 4 4 4
Standard Deviation 0.88 1.27 1.14 1.08 1.00 0.98 0.89 0.89
Minimum 2 1 1 1 1 1 2 1
Maximum 5 5 5 5 5 5 5 5
Skewness − 0.26 − 0.44 − 0.99 − 0.78 − 1.05 − 0.45 − 0.21 − 0.31
Kurtosis − 0.59 − 0.87 0.23 − 0.18 0.86 − 0.54 − 0.71 − 0.23
Measures/ Enablers E9 E10 E11 E12 E13 E14 E15
N 118 118 118 118 118 118 118
Mean 3.76 3.22 3.11 3.74 3.11 3.46 3.25
Median 4 3 3 4 3 3 3
Standard Deviation 0.86 0.86 1.23 0.98 1.04 0.73 0.99
Minimum 1 1 1 1 1 2 1
Maximum 5 5 5 5 5 5 5
Skewness − 1.14 0.03 − 0.26 − 0.88 0.32 0.47 0.01
Kurtosis 2.09 0.23 − 0.92 0.60 − 0.68 − 0.14 − 0.15

Bartlett’s test of sphericity KMO measure of sampling adequacy
χ2 df P
824 105  < .001 0.750

Table 8  Assumptions checks 

Socio-demographic characteristics n(%)
Gender
Male 84 (71.19%)
Female 34 (28.81%)
Age
18–30 21 (17.80%)
31–40 32 (27.12%)
41–50 41 (34.75%)
51–60 24 (20.33%)
Education qualification
Graduate 66 (55.93%)
Post-graduate 43 (36.44%)
Doctorate 9 (7.63%)

Table 6  Demographic details of 
the respondents
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We have used Cronbach’s α as a measure to check internal reliability. The recommended 
value for modest reliability is above 0.7, but a few studies also suggested a Cronbach’s α 
value above 0.6 as acceptable (Nunnally, 1978; Churchill, 1979). Accordingly, Cronbach’s α 
in this study is 0.698, which is closer to 0.7 and greater than 0.6, confirming the reliability of 
the results. Because the Eigen vectors of the first four factors were greater than 1, a total of 
four categories have been identified, accounting for 60.8% of the total variance that met the 
criteria suggested by Hair et al. (2014). Also, it is suggested that the factor loadings above 
0.6 and 0.7 are acceptable for exploratory and confirmatory studies, respectively (Hair et 
al., 2014). Considering this, the variables with factor loadings less than 0.6 have been elimi-
nated from the analysis. It resulted in categories with their underlying enablers.

Uniqueness defines how well a variable is defined by its elements. As suggested by 
Costello and Osborne (2005), the elements having uniqueness values below 0.6 are pref-
erable. The values met the criteria as all values of uniqueness are less than 0.6. Further-
more, we again consulted with the experts to name the identified categories, considering the 
characteristics of the underlying enablers. For instance, the environmental category has all 
the underlying enablers that commonly address environmental concerns in the context of 
CSCs. Enablers under this category include: adopting recyclable materials to enhance the 
efficiency of supply chains, provisions for regular value assessments for used and recycled 
products, and facilitating waste reduction by adapting smart technologies. Similarly, the 
categories were named as: institutional, technological, organizational, and environmental 
categories. The categories and underlying enablers with factor loadings are presented in 
Table 9.

Table 10 presents the summary statistics of the identified categories. The values of SS 
loadings, also known as Eigenvalues of factors, highlight the total variance explained by 
each factor. Generally, the factors having SS loadings greater than 1 are retained (Hair et al., 
2014). To understand relative explanatory power, the percentage of total variance is calcu-
lated. In our case, institutional, technological, organizational, and environmental categories 
accounted for 18.5%, 17.0%, 14.1%, and 11.2% of the total variance, respectively. Another 

Enabler Categories Unique-
nessInstitutional Technologi-

cal
Orga-
niza-
tional

Envi-
ron-
mental

E2 0.934 0.113
E11 0.912 0.176
E12 0.733 0.466
E13 0.710 0.484
E6 0.846 0.282
E8 0.829 0.332
E7 0.791 0.362
E1 0.709 0.423
E5 0.848 0.284
E3 0.678 0.513
E10 0.665 0.563
E15 0.660 0.548
E4 0.843 0.297
E9 0.714 0.468
E14 0.639 0.563

Table 9  Factor loadings 
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way to retain the number of factors is the cumulative percentage of total variance explained. 
According to Hair et al. (2014), a cumulative variance of 60% or more is adequate in social 
sciences research. As shown in Table 10, the four categories explain 60% of the total vari-
ance that meets the criteria of retention.

5.2  Ranking of enablers based on influence

The results from the previous section have been carried forward to determine the global 
weights of the enablers. Following the steps of G-OPA, as discussed in Sect. 2.2, a total 
of 15 enablers have been determined and categorized under four categories, as reflected 
in Table 9. Next, the experts were asked to prioritize the categories using a grey scale pre-
sented in Table 5. The same process was also followed to prioritize enablers under each cat-
egory. Afterward, the collected data were converted as per G-OPA specifications using the 
scale presented in Table 5. For instance, if an expert ranks any enabler/category as “Moder-
ately high important”, the corresponding grey number is “1.5, 2.5”. The conversion of the 
linguistic scale into corresponding grey numbers for a category is presented in Table 11. 
Similarly, all responses were converted and the collective responses of experts on the pri-
oritization of categories using grey numbers. Also, the experts’ opinions regarding enablers 
under the environmental category using grey numbers are presented in Table 12. Similarly, 
data collected on the prioritization of enablers under the institutional, organizational, and 
technological categories have been converted into grey numbers. Furthermore, the collected 
data was formulated as a linear programming model, as shown in Eq. (1). The model was 
run on LINGO software using a linear solver to obtain the weights. Thereafter, the attained 
weights were integrated to obtain weights of categories and enablers using Eq. (2).

The final crisp weights of categories and corresponding enablers have been calculated 
using Eq.  (4) and are presented in Table  13. The global weights of enablers shown in 
Table 13 have been calculated by multiplying the category’s weights and the local weights 
of corresponding enablers. The higher weights reflect the higher priority of the enablers.

Table 11  Experts’ opinion regarding the prioritization of categories using the grey number
Expert Environmental Institutional Organizational Technological

Lower Upper Lower Upper Lower Upper Lower Upper
Expert 1 2.5 3.5 3.5 4.5 0.5 1.5 1.5 2.5
Expert 2 1.5 2.5 0.5 1.5 3.5 4.5 2.5 3.5
Expert 3 2.5 3.5 0.5 1.5 1.5 2.5 3.5 4.5
Expert 4 0.5 1.5 3.5 4.5 2.5 3.5 1.5 2.5
Expert 5 1.5 2.5 2.5 3.5 3.5 4.5 0.5 1.5
Expert 6 0.5 1.5 2.5 3.5 3.5 4.5 1.5 2.5
Expert 7 1.5 2.5 3.5 4.5 0.5 1.5 2.5 3.5

Categories SS loadings % of variance Cumulative %
Institutional 2.77 18.5 18.5
Technological 2.56 17.0 35.5
Organizational 2.12 14.1 49.7
Environmental 1.68 11.2 60.8

Table 10  Summary statistics of 
categories
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6  Discussions

Transitioning from linear to CSCs might pose real obstacles for organizations. To solve 
these problems, organizations must identify key enablers that can assist corporate busi-
ness planners and designers navigate the transition process. In this regard, the current study 
explores and assesses the enablers of AI for decarbonization to design CSCs. This study 
identified 15 enablers through an extensive literature review and further classified them into 
four categories: environmental, institutional, organizational, and technological categories 
by adopting the EFA. Furthermore, the G-OPA approach was adopted to prioritize the iden-
tified enablers to assess the implementation levels. The findings from this study reveal that 
the enablers under the environmental category are the most crucial in adopting AI-enabled 
CSCs for decarbonization. Prior research has shown that AI may be used to sort plastic and 
improve knowledge of recycled plastics utilizing multi-sensor data fusion AI-based algo-
rithms (Chidepatil et al., 2020). The technological aspect was also shown to be a crucial 
enabler for the decarbonization of supply chains using AI. Using AI algorithms brings vari-
ous advantages, including real-time data analysis to alleviate traffic congestion, optimizing 
energy consumption for cooling services, and more. AI advancement has resulted in strong 
analysis algorithms that help with prediction, optimization, and pattern identification. Also, 
AI aids CSC methods in operational processes by combining operational data with failure 
and maintenance records for decision assistance (Kristoffersen et al., 2021). In this way, 
this study contributes to Responsible Consumption and Production (SDG 12) and Climate 
Action (SDG 13) of the UN’s SDGs.

The findings from the study highlight the critical interplay between technological 
advancements and organizational dynamics in achieving decarbonization through CSCs. 
The identification of 15 enablers, including key factors such as adopting recyclable materi-
als to enhance the efficiency of supply chains, emphasizing local production for recovery 
practices through advanced technology, and managing product life-cycle through intelli-
gent and additive manufacturing technologies, underscores the importance of both tech-
nical solutions and social factors. The study emphasizes that the successful execution of 
CSCs requires the integration of advanced AI-driven technologies and the alignment of 
organizational culture, policies, and human factors (Vlachos, 2023). This study’s findings 
suggest that while environmental and technological enablers are crucial, the human and 
institutional components, such as top management support and stakeholder engagement, are 
equally important to drive the transition from linear to CSCs. Furthermore, the prioritiza-
tion of enablers using the G-OPA approach reveals the necessity for a balanced approach 

Table 12  Experts’ opinion regarding enablers of the environmental category using the grey number
Expert E4 E9 E14

Lower Upper Lower Upper Lower Upper
Expert 1 0.5 1.5 1.5 2.5 2.5 3.5
Expert 2 1.5 2.5 0.5 1.5 2.5 3.5
Expert 3 0.5 1.5 1.5 2.5 2.5 3.5
Expert 4 0.5 1.5 2.5 3.5 1.5 2.5
Expert 5 1.5 2.5 0.5 1.5 2.5 3.5
Expert 6 0.5 1.5 2.5 3.5 1.5 2.5
Expert 7 0.5 1.5 1.5 2.5 2.5 3.5
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that considers both technical efficiencies and social adaptability. The significant role of AI 
in facilitating real-time data analysis, optimizing energy use, and supporting decision-mak-
ing processes aligns with the technical aspects. Simultaneously, the need for collaboration, 
partnerships, and consumer awareness highlights the social dimension. These findings sug-
gest that organizations must adopt a holistic strategy that integrates advanced technologies 
with robust organizational practices and stakeholder collaboration to achieve sustainable 
and decarbonized supply chains. The study presents an exhaustive model for comprehend-

Catego-
ry with 
weight

Enablers of AI for 
decarbonization

Local 
weight

Global 
weight

Rank

Envi-
ron-
mental 
(0.405)

Adopting recyclable materials to 
enhance the efficiency of supply 
chains (E4)

0.584 0.237 1

Provisions for regular value as-
sessments for used and recycled 
products (E9)

0.210 0.085 5

Facilitating waste reduction by 
adapting smart technologies 
(E14)

0.206 0.083 6

Institu-
tional 
(0.121)

Developing modular architecture 
for better compatibility of supply 
chains (E2)

0.141 0.017 14

Framing guidelines for continu-
ous technology transfers (E11)

0.133 0.016 15

Support of top management and 
government authorities (E12)

0.451 0.054 8

Ensuring effective monitoring 
through e-governance for trans-
parency and accountability (E13)

0.275 0.033 11

Organi-
zational 
(0.215)

Emphasizing local production 
for recovery practices through 
advanced technology (E3)

0.495 0.106 2

Provision of online monitoring 
for quality assurance and control 
(E5)

0.311 0.067 7

Developing inventory and 
maintenance systems based on 
real-time data sets (E10)

0.086 0.018 13

Creating awareness towards AI-
enabled methods for circularity 
at consumer levels (E15)

0.110 0.024 12

Techno-
logical 
(0.259)

Framing standardized interfaces 
for processes associated with 
decarbonization (E1)

 0.141  0.037  10

Designing ubiquitous network 
technologies for logistics (E6)

0.170 0.044 9

Managing product life-cycle 
through intelligent and additive 
manufacturing technologies (E7)

0.349 0.090 3

Optimizing sourcing and 
procurement processes through 
hyper-intelligent sorting systems 
(E8)

0.339 0.088 4

Table 13  Enablers and their local 
and global weights
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ing and dealing with the complexity of implementation, highlighting the importance of 
both technological and social factors in driving successful and sustainable decarbonization 
initiatives.

Among the 15 enablers extracted from the literature and discussion with experts, three 
top enablers were identified. The first-ranked enabler was adopting recyclable materials to 
enhance the efficiency of supply chains (E4). This is because adopting recyclable materi-
als can enhance the circularity in the supply chain. By using materials that can be recycled 
and reused, the supply chain can reduce its reliance on virgin materials, reduce waste, and 
improve resource efficiency. This, in turn, contributes to reducing carbon emissions and 
achieving decarbonization goals. The second-ranked enabler was emphasizing local produc-
tion for recovery practices through advanced technology (E3). The supply chain can reduce 
transportation-related emissions and enhance supply chain resilience by producing goods 
locally (Ugarte et al., 2016). Adopting advanced technology, such as 3D printing and robot-
ics, can further enhance the efficiency of local production and reduce energy consumption 
(Kanyilmaz et al., 2022). The third-ranked enabler is managing product life-cycle through 
intelligent and additive manufacturing technologies (E7). Collaboration and partnerships 
are crucial in controlling the product life cycle using intelligent and additive manufacturing 
technologies (Ming et al., 2008). Collaboration can assist in sharing data and insights to 
increase supply chain efficiency and enhance the effectiveness of decarbonization activities 
(Kumar et al., 2024). Partnerships can also help in sharing resources and expertise to adopt 
and implement intelligent and additive manufacturing technologies (Li et al., 2017). In 
existing times, several organizations focus on the 4Rs (Reduce, Reuse, Recycle & Recover) 
of sustainability (Leong et al., 2023). However, few of them assess to used and recycled 
products, which is important for sustainability. Recycled products help to address environ-
mental issues; however, it can be difficult to manage such products due to reliability and life 
cycle (Zhang et al., 2020). AI-based technologies are promising to facilitate the assessment 
of such products, as they will further help to keep track of the products and their potential 
processing. The enabler, Provisions for regular value assessments for used and recycled 
products (E9), stood at the fifth rank in terms of its influence on adopting AI-enabled tech-
nologies. Afterward, the waste generated by organizations can also be traced and monitored 
using smart technologies for better handling. Also, AI-based technologies can be integrated 
with organizations to improve processes. The importance of these activities is evident from 
this study, where Facilitating waste reduction by adapting smart technologies (E14) and 
Provision of online monitoring for quality assurance and control (E5) stood at the sixth 
and seventh positions, respectively. However, the literature highlights that awareness of 
AI-enabled methods for circularity at both consumer and practitioner levels is important for 
its smooth adoption process (Vishwakarma et al., 2024). This is because consumers play 
an important part in determining the business tactics firms use. Sensitizing them towards 
environmental aspects using emergent AI-enabled technologies might force organizations to 
boost adoption processes. In this study, the awareness of AI-enabled methods for circularity 
at consumer levels has been rated relatively low. The reason might include the perspective 
of the internal processes of an organization.

Compared to traditional supply chains, CSCs focus on incorporating social and environmen-
tal aspects to expand the economic element of the Triple Bottom Line, whereas traditional supply 
chains emphasize financial and economic business performance. Meeting the environmental and 
technological requirements of CSCs is necessary, as is satisfying economic standards and con-
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sumer demands to maintain competitiveness (Seuring & Müller, 2008). The existing literature 
comprehensively explains the management of CSCs across various dimensions (Di Vaio et al., 
2020; Nilsson & Göransson, 2021). Moreover, previous research has studied the relevance of AI 
in constructing models for CSCs that incorporate several circular elements, such as waste mini-
mization (Klumpp & Zijm, 2019), supply chain collaboration (Son et al., 2021), and consumer 
awareness (El Amrani et al., 2021).

The use of AI as a ground-breaking analytical tool for enhancing supply chain performance is 
well-recognized in the literature (Grover et al., 2022). Technology plays a crucial part in the con-
struction of worldwide flexible CSCs (Gunasekaran et al., 2016; Vegter et al., 2020). Managers 
at all levels need to reconsider their approach to managing, viewing, designing, deploying, rede-
signing, and measuring performance and environmental sustainability across the entire CSCs to 
ensure circularity (Sanders et al., 2019). Digital applications have influenced almost every indus-
try and all supply chains (Klumpp & Zijm, 2019), and advanced technologies such as big data, 
AI, and robotics are increasingly used to achieve circularity (Sanders et al., 2019). Consumers 
also demand easy access to product data to validate circularity, which puts pressure on suppliers 
to follow circular practices at both the local and global levels (Nikolakis et al., 2018; Parmentola 
et al., 2022). The establishment of CSCs poses additional challenges, such as inadequate coor-
dination, limited information sharing, unpredictability, planning of material flow, transportation, 
and supplier selection, which impact the performance of the network and decarbonization efforts 
(Ali et al., 2022). Organizations need to address these challenges to establish efficient CSCs.

7  Implications of the study

The adoption of AI in the decarbonization of CSCs entails several crucial managerial implica-
tions that must be considered. The use of AI can significantly aid CSCs in achieving decarbon-
ization objectives. One of the foremost managerial implications of incorporating AI in CSCs is 
the need for effective data management. Managers must collect, process, and administer data 
from various sources, including suppliers, customers, and the supply chain itself. The data col-
lected must be precise, up-to-date, and relevant if AI is to generate meaningful insights. Conse-
quently, managers must invest in sturdy data management systems that can manage large data 
volumes, process them rapidly, and deliver accurate insights (Chidepatil et al., 2020).

Another important implication is the need for coordination. AI implementation requires syn-
chronization between different stakeholders, including suppliers, customers, technology pro-
viders, and regulatory bodies (Ångström et al., 2023). Managers need to identify and engage 
with the right partners to develop an effective AI-driven decarbonization strategy. Coordination 
will also help in sharing data and insights, thus enhancing the decarbonization efforts (Son et 
al., 2021). Investment in AI technology is also crucial for the success of CSCs. For instance, 
AI-powered predictive maintenance tools can help optimize resource use and minimize carbon 
emissions (Nikolakis et al., 2018). Furthermore, waste management can be improved by using 
AI-powered tools to identify and reduce waste, thus increasing sustainability and circularity in 
the supply chain. Furthermore, incorporating AI-based technology can boost the efficiency of 
supply chain processes and help manage decarbonization initiatives (Chowdhury et al., 2021).

The current study can be used in practice to encourage the transformation of applicable busi-
ness models into CSCs. The latest study’s considerable contribution of findings is valuable for 
manufacturing businesses seeking to achieve sustainability by implementing circular practices 
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in their supply chains. This study’s findings on AI enablers for decarbonization can encourage 
business model innovation to progress toward circular practices in various manufacturing enter-
prises (Mubarik et al., 2025; Yang et al., 2018). The implications of the study assist in securing 
the fulfillment of SDG 12 related to responsible production and consumption (Roy et al., 2022). 
The proposed findings from the study result in social, economic, and environmental advantages 
that concentrate on waste reduction, transparency, and improved operations in supply chains.

Transitioning to CSCs requires a comprehensive approach that integrates forward and reverse 
logistics, optimizing resource use throughout the product lifecycle. Managers should leverage 
advanced technologies like AI, IoT, and blockchain to enhance real-time monitoring, data analyt-
ics, and decision-making. Additionally, fostering a strong organizational commitment to sustain-
ability is essential. Managers must align corporate strategies with sustainability goals, engage 
employees at all levels, and ensure top management support to drive the adoption of circular 
practices and improve overall effectiveness in decarbonization efforts.

Based on the study’s findings, the Government should focus on investing in digital infrastruc-
ture and incentivizing the development and implementation of AI-enabled technologies, such as 
energy management systems and predictive analytics, to optimize resource use and reduce emis-
sions. Policymakers should also introduce regulations mandating circular practices, including the 
use of recyclable materials, lifecycle emission tracking, and waste reduction strategies. Engaging 
with policymakers and stakeholders is vital for creating an enabling environment for CSCs. 
Managers should advocate for supportive policies, collaborate with industry partners, and estab-
lish standards for sustainable practices. Continuous innovation and adaptation are necessary to 
stay informed about emerging technologies and best practices. These actions, aligned with mul-
tilateral frameworks like the Paris Agreement, can significantly enhance global decarbonization 
efforts while promoting sustainable economic growth (Gota et al., 2019). By addressing these 
managerial implications, organizations can successfully transition to CSCs, optimize resource 
use, and significantly lessen carbon emissions, contributing to environmental sustainability.

8  Conclusions, limitations, and future research directions

This study investigates how AI technology can be integrated with CSC practices to achieve 
decarbonization. This study assessed the enablers of AI for decarbonization in CSCs by analyz-
ing the literature and prioritizing influential enablers using G-OPA. The results demonstrate that 
environmental and technological categories are the most influential for AI-enabled CSCs, with 
adopting recyclable materials to enhance the efficiency of supply chains being the most influ-
ential for decarbonization. However, challenges in terms of a lack of data, standardization, and 
understanding of AI’s benefits and risks need to be addressed.

Organizations must grasp how AI might assist their operations while also acknowledging its 
limitations. While the present study provided insights into enablers of AI for decarbonization, 
it has some limitations. First, within a particular industrial and regional context, the factors that 
facilitate AI-enabled decarbonization in CSCs were determined and ranked using a literature-
driven and expert-oriented methodology. As a result, the findings may not fully capture industry-
specific or country-specific differences, especially in sectors with unique supply chain structures 
or regulatory frameworks. Furthermore, a thorough analysis of the socio-cultural factors affect-
ing AI adoption and circular  practices, such  as  workforce preparedness,  policy awareness, 
and consumer behavior, was lacking. The dynamic and rapidly evolving nature of AI technolo-
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gies also poses a challenge, as the relevance and applicability of some enablers may shift over 
time due to technological advancements or policy changes.

Longitudinal and cross-industry studies should be considered for future research to validate 
and improve the enablers in various settings. By combining qualitative and quantitative tech-
niques such as case studies, structural equation modeling, and system dynamics, it will be possible 
to better understand  the  interdependencies and causal relationships among enablers. Further-
more, a more comprehensive perspective might be obtained by broadening the focus to encom-
pass behavioral and socio-cultural factors, such as stakeholder perceptions, workforce digital 
literacy, and consumer willingness. Future inquiries may also explore the relationship between 
AI governance, ethical concerns, and data privacy in the context of CSCs. Lastly, how collabora-
tion with policymakers and international organizations helps decode the technical findings into 
actionable policy guidelines, ensuring the broader scalability and impact of AI-driven CSCs for 
global decarbonization, can be explored.
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