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Abstract

This study comprehensively explores the pivotal position that Artificial Intelligence (AI)
enables on the advancement of decarbonization efforts, mainly in the context of Circular
Supply Chains (CSCs). Employing a two-stage methodology, this study delves into identi-
fying and analyzing the enablers essential for leveraging Al in the pursuit of decarboniza-
tion objectives. In the first stage, a literature review and an exploratory factor analysis are
performed to discern the key enablers of Al for decarbonization initiatives. This process
resulted in the identification of 15 significant enablers and categorization of enablers into
environmental, organizational, institutional, and technological categories. Building upon
the findings from the first stage, this study progresses to its second stage, wherein the
Grey-Ordinal Priority Approach (G-OPA) is applied to analyze the identified enablers.
The results indicate that adopting recyclable materials to enhance the efficiency of supply
chains, emphasizing local production for recovery practices through advanced technology,
and managing product life-cycle through intelligent and additive manufacturing technolo-
gies are the top three enablers. The application of the G-OPA enriches the robustness and
comprehensiveness of the analysis, enabling an understanding of the complex interplay
among the enablers. By clarifying the key enablers, business planners and designers can
migrate from traditional linear supply chains to more sustainable CSCs through the careful
implementation of enablers for decarbonization.
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1 Introduction

The notion of circular economy (CE) has received extensive global consideration as a sus-
tainable alternative to the “take, make, and dispose” approach (Geissdoerfer et al., 2017).
The Ellen MacArthur Foundation (EMF) (2015) promoted CE as a regenerative and cura-
tive business system that seeks to retain the best quality and usefulness of goods, parts, and
supplies in biological and technical cycles. The shift to a CE is accepted by many as provid-
ing social, environmental, and economic advantages (Geissdoerfer et al., 2017; Genovese
et al., 2017). It enables more efficient utilization and re-utilization of resources, reducing
negative environmental impacts while maintaining growth and prosperity on a holistic level
(D’Orazio & Pham, 2025; Lewandowski, 2016; Manninen et al., 2018).

In this regard, Circular Supply Chains (CSCs) have emerged as a significant facilitator
driving sustainability in academia and practice (Hobson, 2016; Stewart & Niero, 2018).
The CSCs model promotes the practice of taking used or discarded materials and repurpos-
ing them for sale, and encourages manufacturers and product sellers to do so (Hazen et al.,
2016; Kumar et al., 2021). Incorporating circularity into supply chains would enlarge the
scope of sustainability by decreasing the requirement for new materials, thus promoting the
flow of materials across supply chains (Farooque et al., 2019; Mishra et al., 2024). Even
though there has been an increase in circularity efforts to advance the efficiency of supply
chains, it has become quite difficult for organizations to reduce the harmful effects, as it is a
complex phenomenon. It is found that supply chains are responsible for almost 90% of car-
bon emissions (Shi et al., 2019; Wang et al., 2024). This places a higher priority on actions
to mitigate environmental and social hazards in CSCs.

The issues of decarbonization and CE have gained significant attention and are converg-
ing rapidly due to their interconnectedness (Spiller, 2021; Zhang et al., 2022). The global
decarbonization market size was anticipated at USD 1.68 trillion in 2022 and is expected
to grow at a compound annual rate of 11.6% from 2023 to 2030 (Grand View Research,
2023). Decarbonizing an economy requires more than just relying on renewable energy
sources and efficiency improvements; it also necessitates a comprehensive rethinking of the
entire economic model, including every aspect of the product lifespan (Zhao et al., 2022;
Zhu & Geng, 2013). Advanced software solutions, such as energy management systems
and Al-driven algorithms, assist businesses in monitoring, optimizing, and reducing their
carbon footprints (Huang & Mao, 2024). By facilitating renewable energy adoption and
waste reduction, the information technology industry inspires organizations to attain net-
zero goals, contributing considerably to environmental sustainability (Greg and Strengers,
2024). Thus, decarbonization targets must not only focus on reducing direct emissions and
implementing compensation measures but also incorporate all aspects of the supply chains
(Leonzio & Zondervan, 2020; Mishra et al., 2024). The CE is anticipated to significantly
achieve decarbonization goals, as it considers a circular approach to reusing resources,
resulting in sustainable benefits (Sadawi et al., 2021). To successfully transition to a CE,
organizations must adopt initiatives and procedures that evaluate activities from a circular
perspective (Ivanov, 2021). However, implementing these initiatives and processes requires
monitoring, prediction, forecasting, and optimization to produce additional responsive and
resilient CSCs (Ozkan-Ozen et al., 2020; Riahi et al., 2021). Al-enabled applications have
recently appeared as a promising solution for effectively designing and managing CSCs by
automating operational activities (Riahi et al., 2021).
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The ability of machines to follow human abilities and communication aids has been
identified as Al (Jarrahi et al., 2023). Al is used to solve problems more accurately and rap-
idly with large amounts of diverse data. Trends such as robotics, Machine Learning (ML),
big data, and Al have become prevalent in business to achieve sustainable goals (Di Vaio
et al., 2020). Such technologies are used as facilitators across various sectors to optimize
value by managing operations and distributing information for sustainability (Nayal et al.,
2021; Sanders et al., 2019). Al has revolutionized how we generate and utilize information
for making decisions and solving difficulties (Mikalef et al., 2018) and how business is
conducted (Schneider & Leyer, 2019). It has increased supply chain efficiency and transpar-
ency, which is essential for CSCs (Sanders et al., 2019). Studies show that relying on incre-
mental innovations and enhancing existing operations may no longer be adequate, given the
current state of knowledge and technology (Nilsson & Goransson, 2021). John et al. (2022)
highlighted the positive impact of Al on decarbonization in the steel industry. The advent of
Al has enabled novel approaches to business, including the shift from conventional supply
chains to CSCs (Ripanti & Tjahjono, 2019). While supply chain innovation necessitates
transparency, collaboration, and understanding between the parties involved or partners
(Yun & Liu, 2019), these parties can spark transitions toward long-term innovation (Vais-
man et al., 2022). Furthermore, big data and digitization have also improved awareness of
the supaply chain’s social and environmental implications (Wang et al., 2024).

According to recent studies, technological advancements can potentially improve car-
bon reduction by up to 20% (Inderwildi et al., 2020). The UN’s Sustainable Development
Goals (SDGs), particularly SDG 13 on Climate Action, underline leveraging technology to
manage climate change and minimize emissions. Similarly, the Green Deal objective of the
European Union (EU) is to make Europe the first carbon—neutral continent by 2050, sup-
porting the execution of advanced technologies like Al IoT, and renewable energy systems
(European Parliament, 2022). On a national level, NITT Aayog has launched initiatives such
as the National Electric Mobility Mission and the Roadmap for Carbon Capture Utilization
and Storage, highlighting the role of Al and advanced technologies in converting indus-
tries towards sustainability (Mukherjee & Chatterjee, 2022). Smart grids, smart meters,
and blockchain are not just trendy buzzwords in the energy industry. A significant study
on Al and decarbonization (Rolnick et al., 2022) shows that electricity systems possess a
wealth of data and tremendous potential for Al applications. Al can aid in all aspects, includ-
ing research, deployment, and operation of electrical system technologies. Al can assist in
developing new technologies, improving demand and renewable energy forecasts, optimiz-
ing grid management, and enhancing system monitoring (Ahmad et al., 2021). Digital tech-
nologies have already begun transforming our economy and way of life. By embracing CE
principles, this transformation can create value and generate more comprehensive societal
benefits. However, effective use of Al demands an in-depth comprehension of the problem.
Moreover, the transition to the CE requires cooperation among a network of trusted partners.
For example, data generation, collection, and sharing require stakeholder collaboration.

New technologies, particularly Al, have enabled developed nations to achieve circular-
ity, but developing nations lack the necessary infrastructure and advanced technological
setup (de Sousa Jabbour et al., 2018; Galati & Bigliardi, 2019) to harness the power of such
technologies. While general Al enablers have been identified for circularity (Moeuf et al.,
2018, 2019; Tortorella & Fettermann, 2018), these have not yet been explored from the per-
spective of emerging economies. Therefore, there is a pressing need to discover potential Al
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enablers that can lead to CSCs in developing economies, considering environmental, tech-
nological, governance, and institutional factors (Pacchini et al., 2019). This study explores
potential Al enablers for managing carbon footprint in developing economies, which can
facilitate the long-term goal of designing CSCs. As a result, this study takes a novel hybrid
empirical decision-making method to address the challenges raised above. The following
Research Objectives (ROs) are identified.

ROI: To identify and categorize key Al enablers that support decarbonization within the
context of CSCs in developing economies.

RO2: To analyze the relative importance of identified enablers of Al for decarbonization.

The following steps were used to attain the aforementioned ROs. Initially, a thorough and
meticulous literature study was performed to identify possible Al enablers for decarboniza-
tion. A large-scale survey-based empirical analysis was conducted using Exploratory Factor
Analysis (EFA) to validate the enablers identified during the literature research. Finally,
G-OPA was used to calculate the weights of each shortlisted enabler to determine their use-
fulness in achieving circularity. The findings of this study are relevant to both researchers
and practitioners. This one-of-a-kind study identifies critical Al enablers for decarboniza-
tion and proposes strategies for improving circularity in industrial enterprises in developing
nations. Policymakers can benefit from this research by gaining critical recommendations
for improving manufacturing policies in developing countries.

2 Literature review

To ensure the relevance of the current study, it is crucial to investigate existing literature
before embarking on further research. As a result, a comprehensive literature review was
done. The subsequent subsections describe the research on Al adoption in decarbonization.
In addition, a separate section discusses the research gaps discovered in the literature.

2.1 Circular supply chains (CSCs)

CSCs represent a shift from traditional linear supply chains towards systems that mini-
mize waste and maximize resource efficiency through reuse, recycling, and remanufacturing
(Roy et al., 2022; Guide Jr and Van, 2009). This approach aligns with the goals of decarbon-
ization by reducing greenhouse gas emissions across all aspects of the supply chain. Despite
extensive research on Closed-Loop Supply Chains (CLSC), which focuses on reverse logis-
tics for remanufacturing and reuse, there is a substantial gap in understanding how these
principles can be extended and incorporated into CSCs to achieve broader decarbonization
goals (Canales et al., 2017). The existing studies often overlook the potential for proactive
design and forward logistics strategies that enhance sustainability. CSCs and CLSCs differ
in their scope and approach to sustainability and decarbonization. While CLSC primar-
ily focuses on reverse logistics, remanufacturing, refurbishing, and reusing returned prod-
ucts to enhance sustainability, CSCs encompass a broader, more integrated approach that
includes proactive design, forward and reverse logistics, and continuous resource optimiza-
tion throughout the product lifecycle (Mishra et al., 2023). Although the principles of CLSC
significantly contribute to sustainability, CSCs aim to achieve decarbonization by leverag-
ing advanced technologies such as Al IoT, and real-time data analytics to optimize resource
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use and reduce emissions at all stages (Kazancoglu et al., 2022). By incorporating both
forward and reverse logistics and emphasizing the entire lifecycle of products, CSCs pro-
vide a more comprehensive and dynamic framework for achieving decarbonization goals,
making it a unique and essential proposition in the current sustainability landscape (Delpla
et al., 2022). Further, the integration of CLSC insights can indeed enhance CSC strategies,
but the broader, systemic approach of CSCs ultimately offers more robust solutions for
decarbonization.

Al plays an essential part in enabling CSCs by optimizing resource use and improving
process efficiencies (De Giovanni, 2022). Al-driven technologies, such as predictive analyt-
ics, ML, and IoT sensors, support real-time monitoring and data-driven decision-making,
which are fundamental for identifying inefficiencies and decreasing emissions (Ghoreishi
et al., 2023). Environmental enablers, such as using sustainable materials and renewable
energy sources, combined with organizational commitment and supportive institutional
frameworks, are vital for successfully implementing CSCs (Hussain & Malik, 2020). Tech-
nological advancements, including blockchain and IoT, provide the infrastructure needed
for efficient resource management and tracking, facilitating transparency and traceability in
supply chain activities (Esmaeilian et al., 2020).

Despite these advancements, several challenges obstruct the extensive implementation of
CSCs for decarbonization. Significant obstacles include high initial investment costs, tech-
nological complexity, and organizational opposition to change (Kandasamy et al., 2023).
Additionally, the lack of standardized metrics for measuring circularity and carbon reduc-
tion poses a challenge. To address these shortcomings, regulators, industry leaders, and
researchers must work together to establish comprehensive CSC implementation methods
and frameworks. Future research should focus on integrated frameworks that combine CSC
principles with Al-driven technologies to enhance decarbonization efforts, providing a more
robust understanding of how to effectively implement CSCs.

The literature provides a useful framework that suggests that successful adoption of
CSCs requires technological advancements and alignment of organizational culture, poli-
cies, and human factors (Ciriello et al., 2024). It also emphasizes the value of stakeholder
engagement, top management support, and good communication at all levels of the supply
chain. Organizations may construct more resilient and adaptive supply chains that are suited
to achieving decarbonization and sustainability goals by considering both social and techni-
cal factors.

2.2 Studies related to Al adoption in decarbonization

Al has received greater interest in the past few decades as a viable approach for developing
more sustainable processes, notably in CSCs. By improving resource tracking and optimiz-
ing operations, Al may serve a crucial role in achieving decarbonization in CSCs (Acerbi et
al.,2021). Table 1 reflects a summary of recent literature on Al, decarbonization, and CSCs.

Logistics and transportation optimization is one of the primary areas where Al can sup-
port decarbonization efforts. Al algorithms can analyze data from multiple sources, such as
Global Positioning System (GPS) tracking, weather data, and road conditions, to determine
the most energy-efficient delivery routes to reduce carbon emissions (Song et al., 2022).
Additionally, AI can help optimize manufacturing systems by identifying energy efficiency
improvements through ML algorithms (Bocken et al., 2016).
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Table 1 Recent literature specific to Al, decarbonization, and CSCs

References  Objectives Methodology Outcomes

Xu et al. The study aimed to explore the Systematic lit-  The study integrated technology

(2023) influence of technologies in low-  erature review  adoption and low-carbon SCM
carbon supply chain management based on the technology—organiza-

tion—environment (TOE) framework
Zhao etal.  The study evaluated the drivers Grey DEMA- The outcomes from the study

(2022) of decarbonization in the plastic TEL approach  reflected that joint promotion by
industry stakeholders and market impact
substantially affect low-carbon
production
Alamoush et The study presented an incentive ~ Content analysis The study proposed a framework
al. (2022) scheme for reducing greenhouse  review for providing incentives to ships
gas emissions and promoting at the forefront of implementing
decarbonization decarbonization technologies
Brinken et  The study aimed to estimate the Empirical The study estimated small reduction
al. (2022) CO, reduction potentials for vari-  analysis potentials for technologies and most
ous Logistics 4.0 technologies supply chain steps
Johnetal.  The objective was to study the po- Case study The study outcome reflected the
(2022) tential of Al-enabling technologies approach capabilities to minimize the barriers
impacting the decarbonization of to sustainability innovation

the energy-intensive steel industry
Mulvaney et The study highlighted potential Review study The study outcome recommended

al. (2021) materials required to decarbonize moving toward a circular economy

electricity and mobility to decarbonize electricity and
mobility

Thiede The study highlighted the Empirical The study reflected the best practice

(2022) contribution of cyber-physical analysis technologies to support energy de-
production systems to the decar- mand and renewable energy supply
bonization of industry

Nunes et al. The study identified potential Systematic lit-  The outcome of the study reflected

(2023) drivers for the decarbonization of  erature review  biomass as an option to decarbonize
energy production

Skocz- The study identified the potential ~ Systematic lit-  The outcomes of the study reflected

kowski et al. of the Technology Innovation erature review  the role of actors in supporting the

(2020) System (TIS) towards attaining de- implementation of new production
carbonization in the steel industry technologies

In product design, Al algorithms can be used to reduce waste and decrease the envi-
ronmental impact of CSCs by predicting product lifecycles and designing products with
recyclable materials, which helps decrease the necessity for raw materials and reduces car-
bon emissions (Niu et al., 2019). Al can also help circular business models to keep items
and resources in use for the longest feasible time through repair, refurbishment, and reuse
(Bianchini et al., 2019). Al can eliminate new product requirements and lower carbon emis-
sions by predicting demand for second-hand products and supporting the creation of circular
marketplaces (Ghisellini et al., 2016). In conclusion, Al has great potential to considerably
contribute to decarbonizing CSCs by optimizing processes, reducing waste, and supporting
the development of circular business models.

An inadequate understanding of system design, technology implementation, and applica-
tion scenarios might result in uneven collaboration among technical professionals and busi-
ness executives, posing challenges to managers when introducing new technologies (Saberi
et al., 2019). Recent research has examined the possibilities of Al applications for decar-
bonization in various industries and environments. For example, Zhou (2022) thoroughly
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evaluated Al applications in renewable energy systems and provided a standard process for
designing robust renewable energy systems for structures. Liang et al. (2022) modeled a
network system using a three-stage Data Envelopment Analysis (DEA) model to examine
the production processes of the manufacturing industry. Li et al. (2022) conducted an empir-
ical investigation on the influence of industrial robots on emissions of carbon reduction
and discovered that industrial robots have greater emission reduction impacts in developed
nations compared to developing nations. Bonilla et al. (2022) presented research on Al for
long-term decarbonization in the Spanish energy market, identifying potential impediments
to achieving a renewable electrical mix without installed power. Finally, Liao et al. (2022)
presented research on a cloud-edge-device collaborative, dependable, and communication-
efficient digital twin for managing low-carbon electrical equipment, which optimizes chan-
nel and computational resource allocation to reduce communication costs.

In a recent study, Xie et al. (2022) examined the challenges associated with implement-
ing a digitized power grid and underlined the potential of Al algorithms to drive this imple-
mentation. Additionally, Sun et al. (2022) investigated the low-carbon effects of Al in the
context of the ice and snow industry using a mathematical model based on low-carbon con-
straints. Damoah et al. (2021) inspected the contribution of Al-enabled medical drones in
enhancing the Healthcare Supply Chain (HSC) in Ghana, leading to efficient carbon reduc-
tion and noise-free drones for medical product delivery, which can contribute to attaining
the SDGs. In a different study, Xi et al. (2021) created a low-carbon gas utilization system
by integrating solvent-based carbon capture with methanol production-based carbon utiliza-
tion and employing the Particle Swarm Optimization (PSO) method to detect low-carbon
throughout the scheduling period. Alamoush et al. (2022) proposed an incentive plan for
reducing GHG emissions in the maritime industry. Finally, Pulselli et al. (2019) provided
an improved carbon accounting approach for analyzing GHG emissions in urban contexts,
estimating the carbon footprint of urban neighborhoods, and proposing mitigation strategies
to attain carbon neutrality.

An investigation was conducted to anticipate carbon emissions in China’s cement sec-
tor (Li & Gao, 2018). The study’s findings help to shape regulations for decreasing carbon
emissions in China’s cement sector. Ibn-Mohammed (2017) offered a mixed-method strat-
egy to address the difficulties of climate change mitigation. The study developed a quan-
titative energy model for building energy retrofit advice. Nabavi-Pelesaraei et al. (2016)
adopted an Al approach to perform resource management in the cropping system. The study
focused on orange orchid cultivation in Iran.

Although the research on Al for managing decarbonization in CSCs is in its infancy,
several studies (Akbari & Hopkins, 2022; Vargas et al., 2018) reported set of enablers influ-
encing the role of Al in achieving circularity. These enablers influence the adoption process
in a broader context. In this context, Table 2 elaborates upon the enablers identified from
the literature.

3 Research gaps
Despite extensive research on CLSC, particularly its role in remanufacturing, refurbishing,

and reusing returned products, a significant gap exists in understanding how these principles
can be expanded and incorporated into the broader concept of CSCs to achieve decarboniza-
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Table 2 List of enablers of Al for decarbonization

Code Enablers of Al for Description References
decarbonization
El Framing standardized inter- ~ This enabler helps formulate benchmarks for Zhou et al.2022;

E2

E3

E4

ES

E6

E7

E8

E9

E10

Ell

E12

E13

El14

faces for processes associated
with decarbonization
Developing a modular archi-
tecture for better compatibil-
ity of supply chains
Emphasizing local production
for recovery practices through
advanced technology

Adopting recyclable materials
to enhance the efficiency of
supply chains

Provision of online monitor-
ing for quality assurance and
control

Designing ubiquitous network
technologies for logistics

Managing product life-
cycle through intelligent
and additive manufacturing
technologies

Optimizing sourcing and pro-
curement processes through
hyperintelligent sorting
systems

Provisions for regular value
assessments for used and
recycled products

Developing inventory and
maintenance systems based
on real-time data sets

Framing guidelines for con-
tinuous technology transfers

Support of top management
and government authorities

Ensuring effective monitor-
ing through e-governance
for transparency and
accountability

Facilitating waste reduc-
tion by adapting smart
technologies

the processes related to decarbonization

To design an efficient supply chain, it is
essential to have modular technological
frameworks to improve its functioning

This enabler focuses on recovery mecha-
nisms through local production, which can
be achieved through technological aspects

To make supply chains more reliable and
dynamic, it is necessary to adopt recy-
clable inputs that can be later refurbished
effectively

Quality assurance and control need to be
systematically channeled through technologi-
cal activities

Decarbonization can be achieved if global
networking technologies can control the
logistics network

Maintaining the circularity in supply chains
requires control over the product life cycle
in every phase. To manage and maintain that
control, additive manufacturing technologies
are required

Hyperintelligent sorting systems are the ex-
emplifications of Al in achieving circularity.
Using these systems, sourcing and procure-
ment can be easily optimized

Recycled products need to be continually
assessed through innovative Al technologies
to enhance the efficiency of circular supply
chains

Acquiring technologies to manage inventory
and maintenance systems through real-time
data sets ensures that there is no delay in the
whole supply chain process

Technology transfers enable continuous
improvisations and create a path for new
opportunities

Administrative support acts as the catalyst
for creating a regulatory framework for
CSCs

Assurance of accountability and transparency
through effective e-governance mechanisms
will ensure fair policies throughout the
system

Waste management is an important prerequi-
site for implementing circularity and reduc-
ing carbon emissions

Xie et al., 2022

Akbari & Hop-
kins, 2022; Xie et
al., 2022

Hazen et al.,
2016; Roberts et
al., 2022; Agostin-
ho et al., 2016
Vargas et al.,
2018; Liang et al.,
2022

Schroder et al.,
2019; Roberts et
al., 2022

Zhu et al.2022;
Liang et al., 2022

Schroder et al.,
2019; Roberts et
al., 2022; Chen et
al., 2022

Vargas et al.,
2018; Akbari &
Hopkins, 2022;
Sharma et al.,
2022

Hazen et al.,
2016; Akbari &
Hopkins, 2022

Vargas et al.,
2018; Roberts et
al., 2022; Wang et
al., 2024

Schroder et al.,
2019; Akbari &
Hopkins, 2022;
Jauhar et al., 2023
Vargas et al.,
2018; Schroder et
al., 2019

Hazen et al.,
2016; Zhou et
al.2022

Schroder et al.,
2019; Vargas et
al., 2018; Zhou et
al.2022; Okorie et
al., 2023

@ Springer



Annals of Operations Research

Table 2 (continued)

Code Enablers of Al for Description References
decarbonization
E15 Creating awareness towards It is important to create awareness of such Akbari &
Al-enabled methods for circu- technologies to achieve circularity on a Hopkins, 2022;
larity at the consumer level holistic level Liang et al., 2022;
Chowdhury et al.,
2022

tion. While CLSC has successfully demonstrated the benefits of reverse logistics and waste
reduction, it predominantly focuses on the end-of-life stage of the product lifecycle, often
neglecting the potential for proactive design and forward logistics strategies that can further
enhance sustainability and carbon reduction.

Existing studies on CLSC primarily address the operational aspects of reverse logistics,
with a limited exploration of the systemic and holistic approaches needed for comprehensive
decarbonization. The current literature does not thoroughly examine how Al and advanced
technologies can be leveraged to optimize both forward and reverse logistics within CSCs.
Furthermore, while CLSC has been extensively studied in the context of sustainability, its
specific implications for decarbonization within the framework of a CE have not been fully
explored. There is a need to investigate on how the principles of CLSC can be expanded to
encompass the entire lifecycle of products to advance a more comprehensive approach to
reducing carbon emissions.

The current body of literature provides limited insights into the influence of the adoption
of Al-enabled decarbonization practices. There is a need to explore how top management
support, government policies, and consumer awareness can drive the execution of sustain-
able practices across the supply chain. Addressing such research gaps requires an interdis-
ciplinary approach that combines insights from supply chain management, sustainability
science, and technology innovation. By exploring the synergies between CLSC and CSCs
and integrating advanced technologies, further research can provide a more robust frame-
work for achieving decarbonization and promoting CE. This study intends to help close
such gaps by identifying Al enablers for decarbonization and creating a comprehensive
framework for CSCs.

4 Research methodology

The priorities of enablers are determined using a two-stage integrated methodology. EFA is
used in the first stage to categorize and eliminate less important enablers. The second stage
employs the G-OPA to derive the local and global weights of enablers. Figure 1 depicts the
framework outlining the integrated methodology, and the description of the methodology is
provided in the following sub-sections.

4.1 Data collection
This study used an integrated methodology that includes EFA and G-OPA. A questionnaire

survey was performed for EFA in order to structure and categorize the enablers of Al. Sev-
eral samples relevant to the research topic were selected for this study. The question items
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Literature survey > Identification of enablers

Questionnaire development for stage-I

v

\
' |
! I
1 1
Respondents L, Data collection 1
! I Stage-1
1 * 1
! |
I Perform exploratory factor analysis I
! |
! v !
I\ Categorization of enablers Il
\ ’
T -
. E,_—_——_—_—_———————— ~
l, ' )
| Questionnaire development for stage-II 1
1 1
| v |
. | -
Experts’ opinion g Data collection | Stage-Il
I v :
1
\ Perform G-OPA exercise [
\ /
N e e e e e o e e ] e e e o e e = o — ”

Local and global weights of enablers of Al for decarbonization

Fig. 1 Methodological framework used in this study

were developed using the literature study and piloted by a group of researchers, IT industry
practitioners, and logistics and supply chain professionals. After completion, it was dis-
tributed in July 2022 for data collection using an online survey. We employed purposive
sampling techniques to choose samples for data collection. Respondents for this exercise
include working professionals in supply chains, technology innovation, Al, and sustain-
ability. The participants were informed that the research being conducted was academic and
that their information would be totally confidential. Additionally, respondents were asked to
rank the importance of enablers on a scale of 1 to 5.

Purposive sampling was utilized in conjunction with the snowballing technique for the
G-OPA exercise. Given the importance of expertise, seven experts in the relevant field
have been invited to participate in this activity. Prior studies have also suggested that seven
experts are sufficient for applying G-OPA (Mahmoudi & Javed, 2022; Pamucar et al., 2022;
Shardeo & Sarkar, 2024). Afterward, priority was determined based on their research expe-
rience and academic qualifications. Table 3 lists the details of the experts and their fields of
expertise. An online questionnaire was issued to the experts, who were asked to rank the
enablers on a grey scale based on their importance.
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Table3 Experts’ details used for  Expert Designation Years of Field of
the G-OPA exercise experience expertise
Expert 1 Technologist 8 Information
technology
Expert 2 Assistant manager 11 Information
technology
Expert 3 Deputy manager 18 Circular sup-
ply chains
Expert 4 Professor 22 Supply chain
and logistics
Expert 5 Associate vice 24 Information
president technology
Expert 6 Senior researcher 7 Circular sup-
ply chains
Expert 7 General manager 19 Goods trans-
portation

4.2 Categorization of enablers of Al for decarbonization

Fifteen enablers have been extracted from the literature review, as revealed in Table 2. How-
ever, the enablers need to be further categorized to understand the commonalities explained
among the variables. EFA has been adopted to do this. EFA is a multivariate technique
widely used by researchers to extract common factors across items, thereby reducing a
larger set of variables to a smaller number of underlying dimensions (Chao & Lin, 2017).
In the present study, it is preferred over comparable methods because it can reduce more
variables into meaningful sets of constructs while retaining crucial information. Specifi-
cally, this study defines the categories and underlying enablers of Al for decarbonization.
The suitability of the analysis can be checked prior to using it through the Bartlett Test of
Sphericity and the Kaiser-Meyer—Olkin (KMO) value. The KMO value must be greater
than 0.6 to meet the sample size requirement, and the significance level for Bartlett’s Test of
Sphericity must be p<0.01 (Yadav et al., 2020). Also, Cronbach’s alpha is frequently used
to evaluate the data’s reliability and was used in this study. The Varimax method is preferred
in the selection of the rotation method due to its ability to strengthen the loadings (Singh et
al., 2021). It has also been argued that it assumes no correlation between the dimensions.
If correlation is a possibility, the Oblimin rotation method is typically favored to produce
accurate results (Reio & Shuck, 2015).

4.3 Prioritization of enablers of Al for decarbonization

Once the enablers have been categorized, they must be further prioritized using priority
weights. In this study, OPA has been utilized to obtain the priority weights of the enablers.
The OPA is a new Multi-Attribute Decision Making (MADM) method developed by Ataei
et al. (2020). It is widely used in business research. However, the decision-making pro-
cess becomes more complex daily due to associated complexities. It is critical to evaluate
the uncertainties involved with them while making decisions. Grey theory is employed to
handle ambiguities related to experts’ opinions. The rationale behind preferring G-OPA over
other similar methodologies is as follows.
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Table 4 Sets, indexes, param- Sets
eters, and variables 7 Set of experts ¥ ae A
B Set of enablers V be B
Indexes
a Index of experts (1, ..., m)
b Index of enablers (7, ..., n)
Variables
®RZ Grey objective function
W, Grey weight of b™ enabler by a™ expert at 7" rank
Parameters
®a Grey rank of the expert a
®b Grey rank of the enabler b
Table 5 Grey scale used in this Grey number Interpretation
study Lower Upper
0.5 1.5 Most important
1.5 2.5 Moderately high important
2.5 3.5 Moderately important
3.5 4.5 Moderately less important
4.5 5.5 Least important

e [t does not require linguistic variables and pairwise comparisons like other methods,
such as Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), or Best
Worst Method (BWM) (Mahmoudi et al., 2021).

It requires a lesser number of questions to be asked, which increases its efficiency.

e [t is simple to use and has fewer complexities.

Since its inception, it has been applied in sustainable technologies selection (Islam, 2021),
supplier selection (Mahmoudi et al., 2021), and Electric Vehicle (EV) adoption (Candra,
2022). Despite having several advantages, it has not often been adopted to prioritize criteria
and sub-criteria together (categories and enablers in our case). Thus, this study employs
G-OPA to prioritize the enablers and their categories of Al technology for decarbonization.
The sets, indexes, and variables associated with the G-OPA model are presented in Table 4.

The steps of G-OPA are explained as follows (Mahmoudi et al., 2021).

Step 1: Determination of enablers: The experts determine the potential enablers related
to the study.

Step 2: Identification and ranking of the experts: Identify the research domain experts
and rank them. Generally, expertise or academic background is considered when prioritiz-
ing them.

Step 3: Prioritization of the enablers: In this step, the enablers are ranked by the experts.
Based on the crisp rank received from the experts, it is further converted into grey ranks
using the scale (Chakraborty et al., 2023) as presented in Table 5.

Step 4: Obtaining the weight of enablers: The final G-OPA model is solved to obtain the
final weights of enablers. The linear model for G-OPA is expressed in Eq. (1).
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Max ® Z

Subject to,

®Z < ®a (®b (® b — ®W;b+1)) Ya,band r

®Z < ®a (?b(®Wa)) Vaand b (1
SN @Wa =[08,1.2)

a=1 b=1

@Wap > OVaand b

where ®Z is unrestricted in sign.
After solving Eq. 1, we need to obtain the grey weights of the experts and enablers. The
grey weights of the enablers can be obtained using Eq. (2).

m n

QW = Z Z @WapVb )

a=1 b=1

To obtain the weights of experts, Eq. (3) is used.

W, = Z Z WaVa 3)

a=1 b=1

Step 5: Obtaining final crisp weights: In this step, the grey weights are converted into crisp
weights using a kernel. The kernel is expressed in Eq. (4).

QW =W +W) 4)

5 Result analysis

The study used an integrated methodology incorporating both EFA and G-OPA. This section
details the outcomes of the various stages. Section 4.1. reflects the results obtained from the
EFA exercise. The application of G-OPA and its results are described in Sect. 4.2.

5.1 Categorization of enablers

As mentioned in the previous section, this study used EFA to categorize the identified
enablers. There are several parameters on which sample size requirements for EFA are
determined, including participant-to-indicator ratio, communalities, loadings, the number
of factors, and the number of variables (Howard, 2023; McNeish, 2017). We used the par-
ticipant-to-indicator ratio as an approach to determine the sample size requirement since
it is most commonly practiced in the literature. According to this, the literature suggested
around 10 or more participants per indicator as an acceptable suggested value (Cattell, 2012;
Anthoine et al., 2014). As a result, 118 responses were obtained out of 150, with a response
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Table 6 Demographic details of Socio-demographic characteristics n(%)

the respondents
Gender
Male 84 (71.19%)
Female 34 (28.81%)
Age
18-30 21 (17.80%)
31-40 32 (27.12%)
41-50 41 (34.75%)
51-60 24 (20.33%)
Education qualification
Graduate 66 (55.93%)
Post-graduate 43 (36.44%)
Doctorate 9 (7.63%)

Table 7 Descriptive summary of data for exploratory factor analysis

Measures/ Enablers El E2 E3 E4 E5 E6 E7 E8
N 118 118 118 118 118 118 118 118
Mean 3.73 3.25 3.78 3.96 3.61 3.82 3.75 3.69
Median 4 4 4 4 4 4 4 4
Standard Deviation 0.88 1.27 1.14 1.08 1.00 0.98 0.89 0.89
Minimum 2 1 1 1 1 1 2 1
Maximum 5 5 5 5 5 5 5 5
Skewness -0.26 -0.44 -0.99 -0.78 -1.05 -0.45 -0.21 -0.31
Kurtosis -0.59 —-0.87 0.23 -0.18 0.86 -0.54 -0.71 -0.23
Measures/ Enablers E9 E10 Ell El12 E13 El4 E15
N 118 118 118 118 118 118 118
Mean 3.76 3.22 3.11 3.74 3.11 3.46 3.25
Median 4 3 3 4 3 3 3
Standard Deviation 0.86 0.86 1.23 0.98 1.04 0.73 0.99
Minimum 1 1 1 1 1 2 1
Maximum 5 5 5 5 5 5 5
Skewness -1.14 0.03 -0.26 —-0.88 0.32 0.47 0.01
Kurtosis 2.09 0.23 -0.92 0.60 —0.68 -0.14 -0.15
Table 8 Assumptions checks Bartlett’s test of sphericity KMO measure of sampling adequacy
v df p

824 105 <.001 0.750

rate of 78.66%. Table 6 shows the demographics of the respondents, while Table 7 shows a
descriptive summary of the collected data.

In this study, the EFA has been conducted using Jamovi software (The Jamovi Project,
2022). The gathered responses were analyzed after using EFA with Oblimin rotation. The
correlation among the categories, which is also confirmed by the Bartlett Test of Sphericity
presented in Table 8, justifies the use of Oblimin rotation. In addition, the KMO value of
0.750 is more than the recommended value of 0.6 (Yadav et al., 2020).
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We have used Cronbach’s a as a measure to check internal reliability. The recommended
value for modest reliability is above 0.7, but a few studies also suggested a Cronbach’s a
value above 0.6 as acceptable (Nunnally, 1978; Churchill, 1979). Accordingly, Cronbach’s o
in this study is 0.698, which is closer to 0.7 and greater than 0.6, confirming the reliability of
the results. Because the Eigen vectors of the first four factors were greater than 1, a total of
four categories have been identified, accounting for 60.8% of the total variance that met the
criteria suggested by Hair et al. (2014). Also, it is suggested that the factor loadings above
0.6 and 0.7 are acceptable for exploratory and confirmatory studies, respectively (Hair et
al., 2014). Considering this, the variables with factor loadings less than 0.6 have been elimi-
nated from the analysis. It resulted in categories with their underlying enablers.

Uniqueness defines how well a variable is defined by its elements. As suggested by
Costello and Osborne (2005), the elements having uniqueness values below 0.6 are pref-
erable. The values met the criteria as all values of uniqueness are less than 0.6. Further-
more, we again consulted with the experts to name the identified categories, considering the
characteristics of the underlying enablers. For instance, the environmental category has all
the underlying enablers that commonly address environmental concerns in the context of
CSCs. Enablers under this category include: adopting recyclable materials to enhance the
efficiency of supply chains, provisions for regular value assessments for used and recycled
products, and facilitating waste reduction by adapting smart technologies. Similarly, the
categories were named as: institutional, technological, organizational, and environmental
categories. The categories and underlying enablers with factor loadings are presented in
Table 9.

Table 10 presents the summary statistics of the identified categories. The values of SS
loadings, also known as Eigenvalues of factors, highlight the total variance explained by
each factor. Generally, the factors having SS loadings greater than 1 are retained (Hair et al.,
2014). To understand relative explanatory power, the percentage of total variance is calcu-
lated. In our case, institutional, technological, organizational, and environmental categories
accounted for 18.5%, 17.0%, 14.1%, and 11.2% of the total variance, respectively. Another

Table 9 Factor loadings Enabler  Categories Unique-
Institutional Technologi- Orga- Envi- 1ess
cal niza-  ron-
tional mental
E2 0.934 0.113
Ell 0.912 0.176
E12 0.733 0.466
El3 0.710 0.484
E6 0.846 0.282
E8 0.829 0.332
E7 0.791 0.362
El 0.709 0.423
ES5 0.848 0.284
E3 0.678 0.513
E10 0.665 0.563
El15 0.660 0.548
E4 0.843 0.297
E9 0.714 0.468
El4 0.639 0.563
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Table 10 Summary statistics of Categories SS loadings % of variance Cumulative %
categories —
Institutional 2.77 18.5 18.5
Technological 2.56 17.0 355
Organizational ~ 2.12 14.1 49.7
Environmental 1.68 11.2 60.8

Table 11 Experts’ opinion regarding the prioritization of categories using the grey number

Expert Environmental Institutional Organizational Technological
Lower Upper Lower Upper Lower Upper Lower Upper

Expert 1 2.5 35 35 4.5 0.5 1.5 1.5 2.5
Expert 2 1.5 2.5 0.5 1.5 3.5 4.5 2.5 35
Expert 3 2.5 3.5 0.5 1.5 1.5 2.5 3.5 4.5
Expert 4 0.5 1.5 35 4.5 2.5 35 1.5 2.5
Expert 5 1.5 2.5 2.5 3.5 35 4.5 0.5 1.5
Expert 6 0.5 1.5 2.5 3.5 3.5 4.5 1.5 2.5
Expert 7 1.5 2.5 3.5 4.5 0.5 1.5 2.5 3.5

way to retain the number of factors is the cumulative percentage of total variance explained.
According to Hair et al. (2014), a cumulative variance of 60% or more is adequate in social
sciences research. As shown in Table 10, the four categories explain 60% of the total vari-
ance that meets the criteria of retention.

5.2 Ranking of enablers based on influence

The results from the previous section have been carried forward to determine the global
weights of the enablers. Following the steps of G-OPA, as discussed in Sect. 2.2, a total
of 15 enablers have been determined and categorized under four categories, as reflected
in Table 9. Next, the experts were asked to prioritize the categories using a grey scale pre-
sented in Table 5. The same process was also followed to prioritize enablers under each cat-
egory. Afterward, the collected data were converted as per G-OPA specifications using the
scale presented in Table 5. For instance, if an expert ranks any enabler/category as “Moder-
ately high important”, the corresponding grey number is “1.5, 2.5”. The conversion of the
linguistic scale into corresponding grey numbers for a category is presented in Table 11.
Similarly, all responses were converted and the collective responses of experts on the pri-
oritization of categories using grey numbers. Also, the experts’ opinions regarding enablers
under the environmental category using grey numbers are presented in Table 12. Similarly,
data collected on the prioritization of enablers under the institutional, organizational, and
technological categories have been converted into grey numbers. Furthermore, the collected
data was formulated as a linear programming model, as shown in Eq. (1). The model was
run on LINGO software using a linear solver to obtain the weights. Thereafter, the attained
weights were integrated to obtain weights of categories and enablers using Eq. (2).

The final crisp weights of categories and corresponding enablers have been calculated
using Eq. (4) and are presented in Table 13. The global weights of enablers shown in
Table 13 have been calculated by multiplying the category’s weights and the local weights
of corresponding enablers. The higher weights reflect the higher priority of the enablers.
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Table 12 Experts’ opinion regarding enablers of the environmental category using the grey number

Expert E4 E9 E14
Lower Upper Lower Upper Lower Upper

Expert 1 0.5 1.5 1.5 2.5 2.5 35
Expert 2 1.5 2.5 0.5 1.5 2.5 35
Expert 3 0.5 1.5 1.5 2.5 2.5 35
Expert 4 0.5 1.5 2.5 3.5 1.5 2.5
Expert 5 1.5 2.5 0.5 1.5 2.5 35
Expert 6 0.5 1.5 2.5 3.5 1.5 2.5
Expert 7 0.5 1.5 1.5 2.5 2.5 3.5

6 Discussions

Transitioning from linear to CSCs might pose real obstacles for organizations. To solve
these problems, organizations must identify key enablers that can assist corporate busi-
ness planners and designers navigate the transition process. In this regard, the current study
explores and assesses the enablers of Al for decarbonization to design CSCs. This study
identified 15 enablers through an extensive literature review and further classified them into
four categories: environmental, institutional, organizational, and technological categories
by adopting the EFA. Furthermore, the G-OPA approach was adopted to prioritize the iden-
tified enablers to assess the implementation levels. The findings from this study reveal that
the enablers under the environmental category are the most crucial in adopting Al-enabled
CSCs for decarbonization. Prior research has shown that AI may be used to sort plastic and
improve knowledge of recycled plastics utilizing multi-sensor data fusion Al-based algo-
rithms (Chidepatil et al., 2020). The technological aspect was also shown to be a crucial
enabler for the decarbonization of supply chains using Al. Using Al algorithms brings vari-
ous advantages, including real-time data analysis to alleviate traffic congestion, optimizing
energy consumption for cooling services, and more. Al advancement has resulted in strong
analysis algorithms that help with prediction, optimization, and pattern identification. Also,
Al aids CSC methods in operational processes by combining operational data with failure
and maintenance records for decision assistance (Kristoffersen et al., 2021). In this way,
this study contributes to Responsible Consumption and Production (SDG 12) and Climate
Action (SDG 13) of the UN’s SDGs.

The findings from the study highlight the critical interplay between technological
advancements and organizational dynamics in achieving decarbonization through CSCs.
The identification of 15 enablers, including key factors such as adopting recyclable materi-
als to enhance the efficiency of supply chains, emphasizing local production for recovery
practices through advanced technology, and managing product life-cycle through intelli-
gent and additive manufacturing technologies, underscores the importance of both tech-
nical solutions and social factors. The study emphasizes that the successful execution of
CSCs requires the integration of advanced Al-driven technologies and the alignment of
organizational culture, policies, and human factors (Vlachos, 2023). This study’s findings
suggest that while environmental and technological enablers are crucial, the human and
institutional components, such as top management support and stakeholder engagement, are
equally important to drive the transition from linear to CSCs. Furthermore, the prioritiza-
tion of enablers using the G-OPA approach reveals the necessity for a balanced approach
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Table 13 Enablers and their local  Catego- Enablers of Al for Local  Global Rank
and global weights ry with  decarbonization weight weight
weight
Envi-  Adopting recyclable materials to  0.584  0.237 1
ron- enhance the efficiency of supply

mental chains (E4)
(0.405)  provisions for regular value as-  0.210  0.085 5
sessments for used and recycled
products (E9)
Facilitating waste reduction by ~ 0.206  0.083 6
adapting smart technologies
(E14)
Institu- Developing modular architecture 0.141  0.017 14
tional  for better compatibility of supply
(0.121) chains (E2)
Framing guidelines for continu-  0.133  0.016 15
ous technology transfers (E11)
Support of top management and 0.451  0.054 8
government authorities (E12)
Ensuring effective monitoring 0275 0.033 11
through e-governance for trans-
parency and accountability (E13)
Organi- Emphasizing local production 0.495 0.106 2
zational for recovery practices through
(0.215) advanced technology (E3)
Provision of online monitoring ~ 0.311  0.067 7
for quality assurance and control
(E5)
Developing inventory and 0.086 0.018 13
maintenance systems based on
real-time data sets (E10)
Creating awareness towards AI-  0.110  0.024 12
enabled methods for circularity
at consumer levels (E15)
Techno- Framing standardized interfaces  0.141  0.037 10
logical for processes associated with
(0.259) decarbonization (E1)
Designing ubiquitous network 0.170 0.044 9
technologies for logistics (E6)
Managing product life-cycle 0.349 0.090 3
through intelligent and additive
manufacturing technologies (E7)
Optimizing sourcing and 0.339 0.088 4
procurement processes through
hyper-intelligent sorting systems
(E8)

that considers both technical efficiencies and social adaptability. The significant role of Al
in facilitating real-time data analysis, optimizing energy use, and supporting decision-mak-
ing processes aligns with the technical aspects. Simultaneously, the need for collaboration,
partnerships, and consumer awareness highlights the social dimension. These findings sug-
gest that organizations must adopt a holistic strategy that integrates advanced technologies
with robust organizational practices and stakeholder collaboration to achieve sustainable
and decarbonized supply chains. The study presents an exhaustive model for comprehend-
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ing and dealing with the complexity of implementation, highlighting the importance of
both technological and social factors in driving successful and sustainable decarbonization
initiatives.

Among the 15 enablers extracted from the literature and discussion with experts, three
top enablers were identified. The first-ranked enabler was adopting recyclable materials to
enhance the efficiency of supply chains (E4). This is because adopting recyclable materi-
als can enhance the circularity in the supply chain. By using materials that can be recycled
and reused, the supply chain can reduce its reliance on virgin materials, reduce waste, and
improve resource efficiency. This, in turn, contributes to reducing carbon emissions and
achieving decarbonization goals. The second-ranked enabler was emphasizing local produc-
tion for recovery practices through advanced technology (E3). The supply chain can reduce
transportation-related emissions and enhance supply chain resilience by producing goods
locally (Ugarte et al., 2016). Adopting advanced technology, such as 3D printing and robot-
ics, can further enhance the efficiency of local production and reduce energy consumption
(Kanyilmaz et al., 2022). The third-ranked enabler is managing product life-cycle through
intelligent and additive manufacturing technologies (E7). Collaboration and partnerships
are crucial in controlling the product life cycle using intelligent and additive manufacturing
technologies (Ming et al., 2008). Collaboration can assist in sharing data and insights to
increase supply chain efficiency and enhance the effectiveness of decarbonization activities
(Kumar et al., 2024). Partnerships can also help in sharing resources and expertise to adopt
and implement intelligent and additive manufacturing technologies (Li et al., 2017). In
existing times, several organizations focus on the 4Rs (Reduce, Reuse, Recycle & Recover)
of sustainability (Leong et al., 2023). However, few of them assess to used and recycled
products, which is important for sustainability. Recycled products help to address environ-
mental issues; however, it can be difficult to manage such products due to reliability and life
cycle (Zhang et al., 2020). Al-based technologies are promising to facilitate the assessment
of such products, as they will further help to keep track of the products and their potential
processing. The enabler, Provisions for regular value assessments for used and recycled
products (E9), stood at the fifth rank in terms of its influence on adopting Al-enabled tech-
nologies. Afterward, the waste generated by organizations can also be traced and monitored
using smart technologies for better handling. Also, Al-based technologies can be integrated
with organizations to improve processes. The importance of these activities is evident from
this study, where Facilitating waste reduction by adapting smart technologies (E14) and
Provision of online monitoring for quality assurance and control (E5) stood at the sixth
and seventh positions, respectively. However, the literature highlights that awareness of
Al-enabled methods for circularity at both consumer and practitioner levels is important for
its smooth adoption process (Vishwakarma et al., 2024). This is because consumers play
an important part in determining the business tactics firms use. Sensitizing them towards
environmental aspects using emergent Al-enabled technologies might force organizations to
boost adoption processes. In this study, the awareness of Al-enabled methods for circularity
at consumer levels has been rated relatively low. The reason might include the perspective
of the internal processes of an organization.

Compared to traditional supply chains, CSCs focus on incorporating social and environmen-
tal aspects to expand the economic element of the Triple Bottom Line, whereas traditional supply
chains emphasize financial and economic business performance. Meeting the environmental and
technological requirements of CSCs is necessary, as is satisfying economic standards and con-

@ Springer



Annals of Operations Research

sumer demands to maintain competitiveness (Seuring & Miiller, 2008). The existing literature
comprehensively explains the management of CSCs across various dimensions (Di Vaio et al.,
2020; Nilsson & Goransson, 2021). Moreover, previous research has studied the relevance of Al
in constructing models for CSCs that incorporate several circular elements, such as waste mini-
mization (Klumpp & Zijm, 2019), supply chain collaboration (Son et al., 2021), and consumer
awareness (El Amrani et al., 2021).

The use of Al as a ground-breaking analytical tool for enhancing supply chain performance is
well-recognized in the literature (Grover et al., 2022). Technology plays a crucial part in the con-
struction of worldwide flexible CSCs (Gunasekaran et al., 2016; Vegter et al., 2020). Managers
at all levels need to reconsider their approach to managing, viewing, designing, deploying, rede-
signing, and measuring performance and environmental sustainability across the entire CSCs to
ensure circularity (Sanders et al., 2019). Digital applications have influenced almost every indus-
try and all supply chains (Klumpp & Zijm, 2019), and advanced technologies such as big data,
Al and robotics are increasingly used to achieve circularity (Sanders et al., 2019). Consumers
also demand easy access to product data to validate circularity, which puts pressure on suppliers
to follow circular practices at both the local and global levels (Nikolakis et al., 2018; Parmentola
et al., 2022). The establishment of CSCs poses additional challenges, such as inadequate coor-
dination, limited information sharing, unpredictability, planning of material flow, transportation,
and supplier selection, which impact the performance of the network and decarbonization efforts
(Ali et al., 2022). Organizations need to address these challenges to establish efficient CSCs.

7 Implications of the study

The adoption of Al in the decarbonization of CSCs entails several crucial managerial implica-
tions that must be considered. The use of Al can significantly aid CSCs in achieving decarbon-
ization objectives. One of the foremost managerial implications of incorporating Al in CSCs is
the need for effective data management. Managers must collect, process, and administer data
from various sources, including suppliers, customers, and the supply chain itself. The data col-
lected must be precise, up-to-date, and relevant if Al is to generate meaningful insights. Conse-
quently, managers must invest in sturdy data management systems that can manage large data
volumes, process them rapidly, and deliver accurate insights (Chidepatil et al., 2020).

Another important implication is the need for coordination. Al implementation requires syn-
chronization between different stakeholders, including suppliers, customers, technology pro-
viders, and regulatory bodies (Angstrdm et al., 2023). Managers need to identify and engage
with the right partners to develop an effective Al-driven decarbonization strategy. Coordination
will also help in sharing data and insights, thus enhancing the decarbonization efforts (Son et
al., 2021). Investment in Al technology is also crucial for the success of CSCs. For instance,
Al-powered predictive maintenance tools can help optimize resource use and minimize carbon
emissions (Nikolakis et al., 2018). Furthermore, waste management can be improved by using
Al-powered tools to identify and reduce waste, thus increasing sustainability and circularity in
the supply chain. Furthermore, incorporating Al-based technology can boost the efficiency of
supply chain processes and help manage decarbonization initiatives (Chowdhury et al., 2021).

The current study can be used in practice to encourage the transformation of applicable busi-
ness models into CSCs. The latest study’s considerable contribution of findings is valuable for
manufacturing businesses seeking to achieve sustainability by implementing circular practices
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in their supply chains. This study’s findings on Al enablers for decarbonization can encourage
business model innovation to progress toward circular practices in various manufacturing enter-
prises (Mubarik et al., 2025; Yang et al., 2018). The implications of the study assist in securing
the fulfillment of SDG 12 related to responsible production and consumption (Roy et al., 2022).
The proposed findings from the study result in social, economic, and environmental advantages
that concentrate on waste reduction, transparency, and improved operations in supply chains.

Transitioning to CSCs requires a comprehensive approach that integrates forward and reverse
logistics, optimizing resource use throughout the product lifecycle. Managers should leverage
advanced technologies like AL, IoT, and blockchain to enhance real-time monitoring, data analyt-
ics, and decision-making. Additionally, fostering a strong organizational commitment to sustain-
ability is essential. Managers must align corporate strategies with sustainability goals, engage
employees at all levels, and ensure top management support to drive the adoption of circular
practices and improve overall effectiveness in decarbonization efforts.

Based on the study’s findings, the Government should focus on investing in digital infrastruc-
ture and incentivizing the development and implementation of Al-enabled technologies, such as
energy management systems and predictive analytics, to optimize resource use and reduce emis-
sions. Policymakers should also introduce regulations mandating circular practices, including the
use of recyclable materials, lifecycle emission tracking, and waste reduction strategies. Engaging
with policymakers and stakeholders is vital for creating an enabling environment for CSCs.
Managers should advocate for supportive policies, collaborate with industry partners, and estab-
lish standards for sustainable practices. Continuous innovation and adaptation are necessary to
stay informed about emerging technologies and best practices. These actions, aligned with mul-
tilateral frameworks like the Paris Agreement, can significantly enhance global decarbonization
efforts while promoting sustainable economic growth (Gota et al., 2019). By addressing these
managerial implications, organizations can successfully transition to CSCs, optimize resource
use, and significantly lessen carbon emissions, contributing to environmental sustainability.

8 Conclusions, limitations, and future research directions

This study investigates how Al technology can be integrated with CSC practices to achieve
decarbonization. This study assessed the enablers of Al for decarbonization in CSCs by analyz-
ing the literature and prioritizing influential enablers using G-OPA. The results demonstrate that
environmental and technological categories are the most influential for Al-enabled CSCs, with
adopting recyclable materials to enhance the efficiency of supply chains being the most influ-
ential for decarbonization. However, challenges in terms of a lack of data, standardization, and
understanding of AI’s benefits and risks need to be addressed.

Organizations must grasp how Al might assist their operations while also acknowledging its
limitations. While the present study provided insights into enablers of Al for decarbonization,
it has some limitations. First, within a particular industrial and regional context, the factors that
facilitate Al-enabled decarbonization in CSCs were determined and ranked using a literature-
driven and expert-oriented methodology. As a result, the findings may not fully capture industry-
specific or country-specific differences, especially in sectors with unique supply chain structures
or regulatory frameworks. Furthermore, a thorough analysis of the socio-cultural factors affect-
ing Al adoption and circular practices, such as workforce preparedness, policy awareness,
and consumer behavior, was lacking. The dynamic and rapidly evolving nature of Al technolo-
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gies also poses a challenge, as the relevance and applicability of some enablers may shift over
time due to technological advancements or policy changes.

Longitudinal and cross-industry studies should be considered for future research to validate
and improve the enablers in various settings. By combining qualitative and quantitative tech-
niques such as case studies, structural equation modeling, and system dynamics, it will be possible
to better understand the interdependencies and causal relationships among enablers. Further-
more, a more comprehensive perspective might be obtained by broadening the focus to encom-
pass behavioral and socio-cultural factors, such as stakeholder perceptions, workforce digital
literacy, and consumer willingness. Future inquiries may also explore the relationship between
Al governance, ethical concerns, and data privacy in the context of CSCs. Lastly, how collabora-
tion with policymakers and international organizations helps decode the technical findings into
actionable policy guidelines, ensuring the broader scalability and impact of Al-driven CSCs for
global decarbonization, can be explored.
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