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Altered dynamic functional connectivity
and reduced higher order information
interaction in Parkinson’s patients with
hyposmia
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Hyposmia, a common non-motor symptom in Parkinson’s disease (PD) linked to reduced odor
sensitivity, is associated with brain structural and functional changes, but dynamic brain activity and
altered regional information exchange remain underexplored, limiting insight into underlying brain
states. We selected 15 PD patients with severe hyposmia (PD-SH), 15 PD patients with normal
cognition (PD-CN), and 15 healthy controls (HC). Using functional MRI, we assessed the brain’s
spatiotemporal connectivity (brain-state) alterations, and the brain’s capacity for higher-order
information exchange (synergy and redundancy). A dynamic brain state with complex-long-range
connections was significantly reduced in PD-SH and PD-CN, compared to HC. Brain-states
consisting of modular-clusters in sensorimotor and frontal areas occurred more frequently in PD-SH
than in PD-CN and HC. Higher-order information flow was reduced in PD patients, with PD-SH
showing a greater reduction in synergetic information flow in frontal, insula, and left sensory-motor.
These findings suggest potential discriminative biomarkers for PD-SH.

Parkinson’s disease (PD) is the second most common neurodegenerative
disease, clinically identified by the presence of motor and non-motor
symptoms. In early PD, a manifestation of loss of olfactory sensation called
“hyposmia” has been reported as a common non-motor symptom.
Hyposmia is characterized by reduced odor discrimination, perturbation in
odor identification, elevated odor detection threshold, and impaired odor
recognition memory1. Bohnen and colleagues (2008) postulated that hip-
pocampal dopaminergic denervation and/or dysfunction could lead to
olfactory dysfunction in early PD2. Alternatively, Lewy body depositions
were also associated with hyposmia3. Morley and colleagues (2011)
demonstrated that hyposmia is linked to executive function deficits,
working memory impairment, and psychotic symptoms in PD patients4.
These studies suggest that olfactory dysfunction in PD is associated with
cognitive impairment involving pathological protein aggregations and
could be used as a natural lesion model to assess the underlying neural
dynamics while considering cognitively normal PD patients as control4,5.

Resting state functionalmagnetic resonance imaging (rs-fMRI) studies
have revealed distinct functional connectivity (FC) alterations associated

with olfactory processing in healthy individuals6. In PD patients with
hyposmia (PD-SH), static FC analysis highlighted disruptions in thalamo-
cortical and associative networks7 and reduced FC limbic and multimodal
cortical regions linked to olfactory processing8. Also, data-driven analyses,
including ICA and functional covariance mapping, further point to altered
connectivity in the precuneus, visual, and olfactory cortices in PD-SH8,9.
These findings are accompanied by topological alterations that demon-
strated reduced small worldness and clustering coefficient suggesting an
aberrant reorganization of brain network architecture of PD-SH8. However,
the majority of these investigations have relied on classical, static FC ana-
lyses (i.e., time-averaged) techniques and do not provide information on
how the severely decreased brain activity and connectivity alter the spa-
tiotemporal functional repertoire of the brain network and information
processing. Furthermore, these static approaches do not fully demonstrate
the dynamic and integrative nature of olfactory processing10,11.

The dynamic functional connectivity (DFC) approach can capture
fluctuations in FC over time, thus enabling us to understand how brain
regions interact and communicate at different points in time12. A recent
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study using the DFC approach highlighted the multisensory integration
mechanisms associated with olfactory loss13. These dynamic fluctuations
could further be characterized as different brain states recurring over the
time capturing the spatiotemporal dynamics at rest. Integration of various
brain states (spatiotemporal brain connectivity fluctuations) has been sug-
gested to be associated with higher-order cognitive processes related to
multisensory integration14. Such multivariate interactions extend beyond
simple pairwise correlations and can bemore effectively characterizedusing
higher-order information-theoretic measures such as mutual information,
transfer entropy, and higher-order information flow15–17. In particular,
measures of higher-order information flow, i.e., synergy and redundancy
can provide valuable insights into the complementary and overlapping
information conveyed by different brain regions18. These aforementioned
dynamic measures may help elucidate the neural substrates underlying
multisensory integration,which are often disrupted in olfactory dysfunction
associated with PD-SH.

Hence, this study aims to investigate the functional changes in brain
dynamics and information flow underlying olfactory dysfunction in PD by
comparing PD-SH to those cognitively normal PD (PD-CN) and healthy
controls (HC).We implemented theDFC19, Brain states (pattern)20 analysis,
and higher order information processing using synergy and redundancy15.
We hypothesize that patients with PD-SH will exhibit distinct brain state
dynamics and altered spatiotemporal functional connectivity compared to
those without hyposmia (PD-CN). These differences will be reflected in
disrupted dynamic functional connectivity patterns and changes in spon-
taneous higher-order information flow, such as synergy and redundancy.
These computational signatures may serve as biomarkers to discriminate
PD-SH from PD-CN. We were also interested in associations between the
above spatiotemporal dynamic changes and odor identification ability.
Finally, we endeavored to determine the optimal features that are potential
measures to classify PD-SH from PD-CN.

Results
Due to vast head movements (>2mm on rotational and/or translational),
three healthy subjects had to be excluded. These three subjects’ ICA also
showed a higher number of noise components (more than 70% ICs), which
led to excluding the subjects from post-processing. Hence, finally, we
included 42 subjects (12 HC, 15 PD-CN, and 15 PD-SH) for the post-

processing. All the below results were obtained by analyzing this sample.
The demographic and behavioral results could be found in the original
work8. However, an adapted demographic table is provided for further
inferences in Table 1.

Phase based brain dynamic functional connectivity
Both patient groups, the PD-CN (Fig. 1b) and the PD-SH (Fig. 1c), had
lower DFC as compared to healthy subjects (Fig. 1a). The groupmeanDFC
was as follows: HC (0.669 ± 0.009), PD-CN (0.662 ± 0.005) and PD-SH
(0.661 ± 0.002), with differences in the PD-SH vs HC comparison
(p = 0.003; t = 2.94; Bonferroni-uncorrected) and the PD-CN vs HC;
comparison (p = 0.019; t = 2.17; Bonferroni-uncorrected). There was no
difference in the mean DFC between PD-CN vs PD-SH.

Brain States (Patterns)
We examined the spatio-temporal brain network fluctuation known as
brain state (i.e., patterns), which characterizes how brain regions form
spatially coordinated functional networks and provide temporal weightage.
We found that six brain states are the optimal number for our data based on
the iteration approach as proposed by Martínez and colleagues21. The six
brain states presented in Fig. 2a and b, fromwhich three brain states (Brain
State A, Brain State C and Brain State F) have temporal fluctuation (i.e.,
probability of occurrence) differences between the groups (Fig. 2c).

The brain state A comprises bilateral fronto-parieto-temporal areas,
and middle / anterior cingulate areas. The pattern has a higher integrated,
long-range (global) association (i.e., frontal with parietal) and a higher rate
of occurrence (probability) in healthy individuals compared to PD-CN and
PD-SH. The mean occurrence of brain state A in PD-CN (0.20 ± 0.14) was
significantly lower compared to HC (0.40 ± 0.22, p and t value = 0.001 and
3.4; Bonferroni corrected). PD-SH (0.20 ± 0.14) had a lower trend of mean
occurrences than HC (p and t value = 0.004 and 2.82; Bonferroni-uncor-
rected). There was no difference between PD-CN vs PD-SH [p = 0.77 and
t =−0.77] in the brain state A (Fig. 2c; Table 2).

Thebrain stateC consists of bilateral sensorimotor and frontal areas. In
this state, the pattern has higher modular (segregated) and short-range
(local) associations (i.e., sensorimotor-frontal areas). This pattern showed a
trend towards a higher probability of occurrence in the patient group
compared to healthy individuals, although this trend did not survive Bon-
ferroni correction for multiple comparisons. The PD-CN group exhibited a
higher probability of occurrence compared toHC[HC: 0.10 ± 0.07, PD-CN:
0.15 ± 0.04, p = 0.019, t = 2.15; Bonferroni uncorrected]; The PD-SH group
showed an even greater increase in occurrence relative to HC [HC:
0.10 ± 0.07, PD-SH: 0.20 ± 0.10, p = 0.005, t = 2.74; Bonferroni uncorrected]
and also compared to PD-CN [PD-CN: 0.15 ± 0.04, PD-SH: 0.20 ± 0.10,
p = 0.043, t = 1.77; Bonferroni uncorrected] (Fig. 2c; Table 2).

The brain states F consists of bilateral sensorimotor-insula-occipital-
hippocampal areas. This pattern has a higher rate of occurrence (probability)
in PD-CN patients compared to PD-SH and healthy individuals. The PD-
CN was significantly higher than HC [HC: 0.07 ± 0.05, PD-CN: 0.17 ± 0.06,
p= 0.00008, t= 4.42; Bonferroni corrected] and PD-SH [PD-CN: 0.17 ± 0.06,
PD-SH: 0.09 ± 0.047, p= 0.0002, t = 3.93; Bonferroni corrected]. There was
no difference between PD-SH and HC groups (Fig. 2c; Table 2).

There was no difference in pattern occurrence between any of the
groups (HC, PD-CN, PD-SH) for brain states (pattern) in B, D and E
(Fig. 2c; Table 2).

Although there was a non-significant trend toward reduced brain state
transitions in healthy controls compared to PD patients (p > 0.05), overall
transitions between brain states did not show prominent group differences.
However, two specific transitions were significantly altered (Bonferroni
corrected): the transition frombrain stateC to state Fwas significantly lower
(p = 0.0004, t = 3.71, cohen’s d = 1.35) in the PD-SH group compared to the
PD-CN group, and the transition from Brain State E to State A was sig-
nificantly lower (p = 0.0004, t = 3.80, cohen’s d = 1.40) in the PD-SH group
compared to HC.

Table 1 | Participant demographics

Healthy
controls
(12)

PD with no/
mild
hyposmia (15)

PD with
severe
hyposmia (15)

P values

Male/Female 6/6 6/9 7/8 0.865

Age 63.3 (5.16) 64.4(7.2) 70.7(4.8) 0.002*

Duration NA 6.1(3.2) 5.9(3.7) 0.8753

ACE-R 97.3(2.9) 96.1(3.1) 94.3(3.4) 0.043*

OSIT-J 10.5(1.2) 7.5(1.5) 1.7(1.1) <
0.001**

Laterality(L/
R/B)

NA 4/11/0 7/7/1 0.432

MMSE 29.3(0.6) 29.0(1.3) 29.1(1.1) 0.990

LEDD NA 394.7(277.0) 455.9(377.8) 0.616

Hoehn and Yahr
stages

NA 2.0(0.5) 2.0(0.4) 1.00

MDSUPDRS-III NA 21.2(9.4) 19.3(7.9) 0.553
*Represent significant differences while ** showed highly significant differences. Data are means ±
standard deviation (SD). PD Parkinson’s disease, ACE-R Addenbrooke’s Cognitive Examination-
Revised, OSIT-J Japanese Odor Stick Identification Test, R right side predominant, L left side
predominant, B bilateral,MMSEmini-mental state examination, LEDD levodopa equivalent dose,
MDS-UPDRSMovement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease
Rating Scale, NA not applicable.
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Finally, to characterize the topological patterns of the brain state
matrices, we applied graph-theoretical measures of network segre-
gation (modularity) and integration (participation coefficient). Brain
state A exhibited the highest network integration, followed by states
D, B, E, and F, while brain state C showed the lowest integration. In
contrast, brain states C and D demonstrated the highest network
segregation, whereas brain state A had the lowest network
segregation.

Information processing
Synergy.We investigated the synergy and redundancy that characterizes
higher-order spontaneous brain information interactions, reflecting
integrated, complementary information contributed by multiple regions
and capturing overlapping or shared information present across those
regions, respectively.We noted that whole brain synergy and redundancy
were significantly (Bonferroni corrected) lower in PD-CN and PD-SH
compared to HC (Fig. 3d). The whole brain mean synergy for HC

Fig. 1 | Representation of dynamic functional connectivity (DFC) matrix (upper
row) and glass brain visualization (bottom row) for each group. Group-averaged
DFCmatrix for a healthy controls (HC), b Parkinson’s with cognitive normal ability
(PD-CN), c Parkinson with severe hyposmia (PD-SH). The top row displays the
group-level average connectivity matrices. Corresponding prominent

functiRepresentation of dynamic functional connectivity (DFC)matrix (upper row)
and glass brain visualization (bottom row)onal connections (i.e., connections with a
strength greater than 0.3 r-values) are visualized in the glass brain representations
below each matrix in the bottom row.

Fig. 2 | Spatial patterns of brain states matrices (top row), their corresponding
glass brain (middle row) and temporal differences between groups (bottom row).
a Brain States (patterns) for six different states matrix and b their spatial distribution
in the glass brain plot using BrainNet viewer. The brain state matrices are computed
by taking all the healthy controls (HC), Parkinson’s with cognitive normal ability
(PD-CN) and Parkinson’s with severe hyposmia (PD-SH) dynamic connectivity

matrices data. To characterize the different groups, we assess c brain state rate of
occurrences (probability) for HC, PD-CN & PD-SH. In the bar graph (c) star
represents between-group significant difference P < 0.05 Bonferroni-uncorrected,
and every dot represents the individual subject’smean brain state rate of occurrences
values for their corresponding groups.
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(0.016 ± 0.005), PD-CN (0.01 ± 0.004), and PD-SH (0.009 ± 0.002) [p
and t value of PD-SH vs HC = 0.00002 and 4.84; p and t value of PD-CN
vsHC = 0.0007 and 3.54] (Fig. 3D). There was no significant difference in
whole brain synergy between PD-CN vs PD-SH [p = 0.27 and t = 0.59].

We noted PD-SH to have many regions with decreased synergy
(Bonferroni corrected) as compared to HC, including bilateral frontal areas
(left middle and superior frontal gyrus, right inferior frontal gyrus (trian-
gular) and superior orbitofrontal), left sensorimotor cortex, bilateral
superior temporal gyrus, right supramarginal gyrus, bilateral insula, puta-
men, left parahippocampal and cerebellum (right cerebellum crus-1, 2, 45&
9, left cerebellum 3 and Vermis 8) (Fig. 3f; Table 3).

Compared to PD-SH, PD-CN has fewer brain regions with reduced
synergy compared to HC. The reduced synergy in PD-CN (Bonferroni
corrected) was noted at the bilateral superior temporal gyrus, left para-
hippocampal and cerebellum (right cerebellum crus-1 and bilateral cere-
bellum3 andVermis 45) (Fig. 3e; Table 3). The PD-SHgroup showed lower
mean synergy than PD-CN at the whole brain and brain regional level;
however, the difference was not statistically significant.

Redundancy
We noted significant reduction of (Bonferroni corrected) whole brain
redundancy inPDpatients (PD-CNandPD-SH) compared toHC (Fig. 4d).

Table 2 | Group difference p, t and cohens’ d values for brain state probability of occurrence and average duration

Features HCVSPD-CN (p value; t value; cohens’d) HC VS PD-SH (p value; t value;
cohens’ d)

PD-CN VS PD-SH (p value; t value;
cohens’ d)

Probability Occurrence of Brain State

Probability of Brain State A 0.0011; 3.42; 1.29* 0.0046; 2.82; 1.06# 0.4454; 0.77; 0.28

Probability of Brain State B 0.6381; 0.35; 0.13 0.5668; 0.16; 0.06 0.4304; 0.17; 0.06

Probability of Brain State C 0.0190; 2.15; 0.80# 0.0055; 2.75; 1.08# 0.0436; 1.77; 0.64

Probability of Brain State D 0.0100; 2.48; 0.96 0.8224; 0.94; 0.36 0.0342; 1.89; 0.69

Probability of Brain State E 0.4530; 0.11; 0.04 0.0760; 1.47; 0.56 0.0451; 1.75; 0.64

Probability of Brain State F >0.0001; 4.42; 1.74* 0.855; 1.08; 0.41 0.0002; 3.93; 1.43*

Average Duration of Brain State

Duration of Brain State A 0.0008; 3.53; 1.30* 0.0849; 1.41; 0.54 0.0487; 1.71; 0.62

Duration of Brain State B 0.4073; 0.23; 0.23 0.2682; 0.62; 0.09 0.2189; 0.78; 0.28

Duration of Brain State C 0.0139; 2.33; 0.48 0.0286; -1.98; 0.91 0.0286; 1.98; 0.72

Duration of Brain State D 0.1226; 1.19; 0.46 0.1003; 1.31; 0.51 0.4496; 0.12; 0.04

Duration of Brain State E 0.0288; 1.99; 0.78 0.1413; 1.09; 0.45 0.0052; 2.7; 1.005#

Duration of Brain State F 0.0907; 1.37; 0.52 0.3359; 0.42; 0.16 0.0261; 2.02; 0.74

* indicates p < 0.05, Bonferroni-corrected for every feature (probability of occurrence and average duration), accounting for 6 brain states and 3 group comparisons (HC vs PD-CN, HC vs PD-SH, and PD-
CN vs PD-SH); total comparisons N = 18. # indicates a trend of difference (i.e., p < 0.05, Bonferroni-uncorrected).

Fig. 3 | Glass brain representation of mean synergy of each group for each brain
region/ROIs (upper row) and between-group differences (bottom row). Glass
brain representation of regional (ROIs level) synergy aHC, b PD-CN, c PD-SH and
dwhole brain mean comparisons of HC, PD-CN and PD-SH, e group differences of

PD-CN vs HC and f group differences of PD-SH vs HC. The group difference for
ROI’s was computed using a two-sample t-test with Bonferroni corrections for
multiple comparisons. Negative t (blue to sky color) represents PD-NC and PD-SH
to have lower synergy in those regions than HC.
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The whole brain mean redundancy for HC (0.03 ± 0.014), PD-CN
(0.013 ± 0.006), and PD-SH (0.013 ± 0.005) [p and t value of PD-SH vs
HC = 0.0001 and 4.11; p and t value of PD-CN vs HC= 0.0003 and 3.89]
(Fig. 4d). There was no significant difference in whole brain synergy
between PD-CN vs PD-SH [p = 0.42 and t = 0.19].

We noted PD-SH to have many regions of decreased redundancy
compared to HC (Bonferroni corrected), including bilateral para-
hippocampal, right superior temporal gyrus and postcentral gyrus, and
cerebellum (right crus-1 and 9 and vermis 7) (Fig. 4f; Table 3). The PD-CN
shows similar brain region redundancy differences (Bonferroni corrected)
including bilateral parahippocampal, right superior temporal gyrus, and
cerebellum (right crus-1 and bilateral cerebellum 3) (Fig. 4e; Table 3). There
was no difference in whole brain redundancy as well as regional level
redundancy between PD-SH and PD-CN groups.

Feature Ranking and Classification
To identify potential neurophysiological biomarkers differentiating PD-SH
from PD-CN, we employed a two-step machine learning approach com-
bining supervised classification and feature ranking. The feature selection
algorithm retained the top 20% of features by ranking them and selecting
those whose scores were above the overall mean of all feature ranking F-test

scores, corresponding to eight key predictors. These included: probability of
brain stateC, transitionprobability fromstateC toF,meandurationof brain
state C, synergy of posterior cingulate gyrus, supramarginal gyrus, superior
temporal gyrus, and superior frontal gyrus, and a redundancymeasure from
parahippocampal gyrus (See Fig. 5).

Our different classifiers results highlight a well-balanced and robust
model performance (Table 4). The Gaussian Naive Bayes (GaussianNB)
model demonstrated strong discriminative performance, achieving anAUC
of 0.93% and an accuracy of 91%. Sensitivity was 86.6%, indicating effective
identification of PD-SH cases, while specificity was 88.4%, reflecting accu-
rate classification of PD-CN cases (see Fig. 6, Table 4).

Behavioral correlation
We noted significant positive correlations (i.e., partial Pearson correlation
controlling for age and cognitive score (ACE-R)) between Japanese Odor
Stick Identification with synergy of somatosensory area (r = 0.33, p = 0.04,
95%CI: [0.02, 0.58]), Parahippocampus (r = 0.30, p = 0.05, 95%CI: [−0.0,
0.57]), and redundancy in Parahippocampus gyrus (r = 0.46, p = 0.002, 95%
CI: [0.17, 0.68]). In contrast, the rate of occurrences of brain state C was
negatively correlated with odor identification performance (r =−0.32,
p = 0.04, 95%CI: [−0.58, −0.02]).

Table3 |Groupdifferencep, tandcohens’dvalues forbrain regions that showedsignificantdifference insynergyor redundancy
for any group (i.e., HC vs PD-CN, HC vs PD-SH and PD-CN vs PD-SH)

HC vs PD-CN HC vs PD-SH PD-CN vs PD-SH
Features t stat; p value; cohens’d t stat; p value; cohens’d t stat; p value; cohens’d

WB Synergy 3.56; 0.0015; 1.36 4.85; >0.0001; 1.80* 0.60; 0.5570; 0.21

WB Redundancy 3.89; 0.0006; 1.44 4.12; 0.0003; 1.52* 0.20; 0.8445; 0.07

Syn ROI -L MFG 1.89; 0.0706; 0.76 4.74; >0.0001; 1.81* 0.56; 0.5829; 0.20

Syn ROI -R IFG Triang 2.61; 0.0148; 0.10 4.71; >0.0001; 1.73* 1.87; 0.0715; 0.69

Syn ROI -L SMA 2.47; 0.0208; 0.95 4.94; >0.0001; 1.83* 1.75; 0.0905; 0.64

Syn ROI -L SFG Med 3.09; 0.0047; 1.19 4.93; >0.0001; 1.81* 0.90; 0.3750; 0.33

Syn ROI -R ORB Sup Med 3.19; 0.0037; 1.21 4.39; 0.0002; 1.63* 1.06; 0.2960; 0.39

Syn ROI -R REC 3.74; 0.0009; 1.41 4.12; 0.0003; 1.51* 0.26; 0.7933; 0.10

Syn ROI -L Insula 2.84; 0.0088; 1.08 4.41; 0.0001; 1.62* 1.10; 0.2797; 0.40

Syn ROI -R Insula 3.81; 0.0008; 1.43 4.88; >0.0001; 1.80* 1.21; 0.2372; 0.44

Syn ROI -R DCG 2.05; 0.0512; 0.81 4.86; >0.0001; 1.84* 1.54; 0.1332; 0.56

Syn ROI -R PCG 2.75; 0.0108; 1.08 4.40; 0.0001; 1.64* 0.15; 0.8811; 0.05

Syn ROI -L Parahippocampal 4.13; 0.0003; 1.55* 4.84; >0.0001; 1.79* 0.75; 0.4596; 0.27

Syn ROI -R SMG 2.02; 0.0544; 0.79 4.52; 0.0001; 1.70* 1.68; 0.1036; 0.61

Syn ROI -R Putamen 3.30; 0.0028; 1.26 4.71; >0.0001; 1.74* 0.10; 0.3272; 0.36

Syn ROI -L STG 5.37; >0.0001; 2.03* 5.76; >0.0001; 2.16* 0.01; 0.9955; 0.01

Syn ROI -R STG 5.01; >0.0001; 1.91* 5.60; >0.0001; 2.07* 0.70; 0.4905; 0.26

Syn ROI -R CRBL Crus1 4.05; 0.0004; 1.50* 4.25; 0.0002; 1.56* 0.10; 0.9222; 0.04

Syn ROI -R CRBL Crus2 3.54; 0.0016; 1.33 4.25; 0.0002; 1.56* 0.53; 0.5998; 0.19

Syn ROI -L CRBL3 5.03; >0.0001; 1.87* 4.50; 0.0001; 1.69* 0.33; 0.7474; 0.12

Syn ROI -R CRBL45 3.42; 0.0021; 1.33 4.40; 0.0001; 1.66* 0.05; 0.9572; 0.02

Syn ROI -R CRBL9 3.34; 0.0026; 1.25 4.40; 0.00017; 1.62* 1.10; 0.2816; 0.40

Syn ROI -R CRBL8 2.35; 0.0271; 0.90 4.40; 0.0001; 1.66* 1.50; 0.1434; 0.55

Red ROI - L Parahippocampal 4.79; >0.0001; 1.79* 6.49; >0.0001; 2.38* 2.13; 0.0418; 0.78

Red ROI -R PoCG 2.30; 0.0302; 0.87 4.10; 0.0003; 1.50* 2.03; 0.0516; 0.74

Red ROI -R STG 4.66; >0.0001; 1.77* 4.89; >0.0001; 1.82* 0.48; 0.6345; 0.18

Red ROI -R CRBL Crus1 4.17; 0.0003; 1.53* 4.26; 0.0002; 1.55* 0.02; 0.9825; 0.01

Red ROI -R CRBL9 3.98; 0.0005; 1.46 4.15; 0.0003; 1.51* 0.30; 0.7645; 0.11

Red ROI -Vermis7 3.89; 0.0007; 1.44 4.77; >0.0001; 1.74* 1.23; 0.2300; 0.45

* indicates p < 0.05, Bonferroni-corrected.
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Discussion
In this study, we implemented DFC based approaches to capture altered
brain states aswell as higher-order informationflow to reveal theunderlying
neural substrates of hyposmia in PD patients compared to PD-CN andHC.
The DFC and probability of appearance of a brain state A that consists of

complex, long range-global connections composed of frontal-parietal-
temporal and anterior cingulate areas was significantly decreased in the
patients’ group (both PD-SH and PD-CN) compared to HC. A notable
finding of our study is that the brain stateC,which has prominentmodular-
local clusters consisting of sensorimotor and frontal areas, had increased

Fig. 4 | Glass brain representation of mean redundancy of each group for each
brain region/ROIs (upper row) and between-group differences (bottom row).
Glass brain representation of regional (ROIs level) redundancy a Healthy Control
(HC), b PDwith cognitive normal ability (PD-CN), cPDwith severe hyposmia (PD-
SH and d whole brain mean comparisons of HC, PD-CN and PD-SH, e group

differences of HC > PD-CN and f group differences of HC > PD-SH. The between-
group difference for ROI’s was computed using a two-sample t-test with Bonferroni
corrections for multiple comparisons. Negative t (blue to sky color) represents PD-
CN and PD-SH to have lower redundancy in respective brain regions than HC.

Fig. 5 | Feature Ranking F-test scores, which shows dominate features. The top
20% ranked features: included: probability of brain state C, transition probability
from state C to F, mean duration of brain state C, synergy of posterior cingulate

gyrus, supramarginal gyrus, superior temporal gyrus, and superior frontal gyrus, and
a redundancy measure from Parahippocampus gyrus.
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rate of occurrence in the patient groups compared to HC, as well as in the
PD-SH group compared to the PD-CN group, suggesting increased segre-
gation. While looking at the transition, we observed that brain state C to F
transition significantly lower in the PD-SH compared to PD-CN. Feature
selection classification as well as behavioral correlation between the odor
identification scores shows brain state C as a prominentmeasure that could
discriminate the PD-SH from PD-CN. Additionally, the higher-order
information (i.e., synergy and redundancy) was significantly reduced in the
bilateral superior temporal cortex, parahippocampus, and cerebellum areas
in the PD patients (both PD-CN and PD-SH). Though no significant dif-
ferences were found between PD-SH and PD-CN globally, feature selection
and classification analysis showed synergy in posterior cingulate gyrus as an
important measure for discriminating PD-SH from PD-CN. In addition,
positive associations of synergy scores in somatosensory and para-
hippocampal regionswithodor identification scores suggest an involvement
of synergistic approach in olfactory processing in PD-SH.

Functional MRI studies have revealed that FC across brain regions
fluctuates with distinct spatial patterns across time, referred to as ‘brain
states’. These ‘brain states’ consist of predominantly two types of patterns,
one is complex-long-range pattern, the other short-range modular con-
nections, both globally as well as locally19,22. In healthy individuals, the

complex-long range brain state (denoted as brain state A), consisting of
many functional areas, has a higher appearance (dwell time) during awake
conscious states or while performing cognitive activities23. In our study, we
observed a significant decrease in brain state A in both PD-SH and PD-CN
compared to HC, suggesting a reduction in complex, long-range interac-
tions due to degenerative processes such as lewy body accumulation. In
contrast, the brain states which consist ofmodular/clusters with fewer brain
regions (i.e., simple pattern; denoted as brain states C) have less probability
of occurrence in HC. Fiorenzato et al. (2019) have shown an increase in
dwell time (rate of occurrence) in cognitively impaired PD patients23.
According to them, the cognitive decline in memory might be associated
with the existence of increased dwell time among the segregated brain states
in addition to reduced transition of brain states. Similar to this, the increased
dwell time of brain state C in our study involving sensorimotor modulation
deviated from the PD-CN. The local clusters could be representative of the
increased occurrence of segregation state in the sensorimotor and frontal
regions. Such increased segregation might affect the olfactory processes
which is known as an integrative process7,13. Overall, our findings of
decreased rate of occurrence for complex pattern (brain state A) and
increased rate of occurrence of simpler-modular brain state (brain state C)
in PD validate the observations of previous studies23–25. Here we have
demonstrated that the complex-long range interactions are decreased in
PD-SH and in PD-CN, however, the simpler pattern is dominant in PD-SH
compared to PD-CN, and associated with the degree of odor identification
measured through behavioral tests. Furthermore, we observed brain state C
as a prominent feature that discriminates PD-SH from PD-CN. Hence, the
duration of brain state C (i.e., simpler modular connectivity pattern) as well
as transition frombrain stateC toFpropertiesmayplay an important role in
early discrimination of PD-SHwhich need to be validated in a larger cohort
in early stages of PD.

In addition to the connectivity approach, information theory helps to
characterize the complexity of neural signals and how signals fromdifferent
brain regions influence each other. Recent advances have revealed that
spontaneous brain activity exhibits a unique spatiotemporal causal structure
of information flow across regions15–17,26,27. Some regions integrate infor-
mation synergistically, while others carry redundant information, often
similar to neighboring regions15–17,26,27. This balance between synergy and
redundancy ismaintained during resting and cognitive states. Olfaction has
been suggested as a multisensory integrative process which might need

Table 4 | Classification performance for PD-CN vs PD-SH (i.e.,
AUC, Accuracy, Sensitivity (true positive ration) and
Specificity (true negative ration)) for variousmodel - Gaussian
Naive Bayes (GaussianNB), Multi-Layer Perceptron (MLP),
Random Forest, Linear SVM, Logistic Regression

Classifier AUC Accuracy
(in %)

Sensitivity
(TPR) (in %)

Specificity
(TNR) (in %)

Gaussian NB 0.93 87.8 86.6 88.4

Multi-Layer
Perceptron
(MLP)

0.91 87.8 80.0 92.3

Random Forest 0.89 78.04 60.0 88.4

Linear SVM 0.88 87.8 73.3 96.1

Logistic
Regression

0.88 82.9 60.0 96.1

Fig. 6 | ROC curve for all the classifiers to distin-
guish PD-SH fromPD-CN.ROC curves for logistic
regression (blue), linear SVM (orange), random
forest (green), gaussian NB (red) andMLP (purple).
Where we observed logistic regression show high
sensitivity in discriminating PD-SH from PD-CN.
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higher synergy between regions to integrate the information13. Our cohort
withPDshowed reduced synergy aswell as redundancy thatmight be due to
a change in the balance of differentiation and integration towards more
desynchronized arrangements. Reduced synergy in both PD cohorts might
be due to morphological changes (i.e., pathological protein aggregation)
leading to altered synergy as well as reduced redundancy due to unavail-
ability of a certain network or circuit or receptors to transfer the informa-
tion. Although, higher order information processing (i.e., Synergy and
redundant informationflow) didnot discriminate between the PD-SH from
PD-CN, we noted PD-SH to have many regions with lower Synergetic
information flow, including bilateral frontal, insular, somatosensory, and
parahippocampal regions—areas integral to olfactory cognition28. This
suggests that not only disruption in brain connectivity and spatiotemporal
properties, but also alteration of information flow in the brain hub regions
could be associated with olfactory dysfunctions in PD. The synergetic
informationflow reductionswere not only spatially specific but behaviorally
relevant: synergy in the somatosensory and parahippocampal cortices
positively correlatedwith olfactory performance, indicating that diminished
integrative capacity in these regions contributes directly to perceptual
deficits.

Iannilli et al. (2017) showed decreased EEG global field power in
frontoparietal and central electrodes in PD with olfactory dysfunction29.
Yoneyama et al. (2018) showed decreased FC in the frontal, amygdala,
inferior parietal lobule, lingual gyrus, and fusiform gyrus in PD-SH8.
Moreover, Wang et al. (2022) demonstrated decreased functional covar-
iance connectivity along with the gray and white matter in the insula and
olfactory-related brain regions in PD-SH9. Our findings provide a
mechanistic explanation for the previously reported reductions in fronto-
parietal connectivity, EEG power, and regional gray matter changes in PD-
SH, indicating that these alterations may result from disrupted spatio-
temporal brain dynamics and impaired higher-order information integra-
tion. Reduction synergy in limbic, frontal, insular, parahippocampus,
superior temporal, and cerebellum regions is in accordance with the above
evidence of disrupted olfactory and cognitive processing in PD. These
cortical andmesolimbic regions form key hubs of multisensory integration,
memory encoding, and executive control, and their diminished synergistic
information flow suggests impaired capacity for distributed, cooperative
computation. This network-level dysfunction surpasses localized structural
or static functional changes, indicating a breakdown in dynamic, higher-
order information integration. Such disruption is likely driven by region-
specific vulnerability to α-synuclein aggregation, contributing to hetero-
geneous cognitive phenotypes observed in PD. Additionally, network seg-
regation as observed inmodular state C or transition frombrain state C to F
could be used not only to classify PD-SH and PD-CN, but also to model
clinical prognosis and, potentially, treatment effects in larger cohorts in early
stages of PD.

Despite the demonstration of significant alterations in dynamic con-
nectivity and information theorymeasures, the study suffers a lack of power
andgeneralizability due to small sample size. Therefore, future studieswith a
larger sample are warranted for validation of the reported results. We have
to acknowledge as well that no GSR was performed, and this could poten-
tially lead to contamination of connectivity estimates in phase-based ana-
lyses, affecting the results. An ICA-baseddenoising approach, as used in our
study, is also capable of removing physiological noise. Five different algo-
rithms were used for feature selection and classification, reporting valuable
findings: however, due to the small sample size overfitting has to be con-
sidered as a possible source of bias. Finally, implementation of combined
functional (task-based or resting fMRI) and structural (gray matter or DTI
connectivity matrix) data to explore spatio-temporal dynamic alterations
could provide a more biologically informed understanding of olfactory
dysfunction in patients with PD.

In conclusion, this study shows reduced dynamic FC in different brain
states in PD compared to healthy individuals. Importantly, we report that

the brain states specific to bilateral sensorimotor-insula-occipital-
hippocampal areas are altered in PD-SH compared to PD-CN and HC.
Such disruption of spatiotemporal FC and higher-order information
exchange in PD patients, which further worsens in PD patients with
hyposmia, could help discriminate PD subgroups in early stages of the
disease. PD patients with hyposmia have a higher modular-local pattern
(brain state C) appearance and show a decrease of synergy in the frontal,
insula, and postcentral gyrus compared to PD-CN andHC. Thus indicating
overall perturbation of multisensory integration and could be used as
functional markers of hyposmia in PD. These data open new perspectives
for further studies on higher-order information exchange in larger early-
stage PD cohorts.

Methods
We extracted MRI data of PD-SH, PD-CN, and HC from the OpenfMRI
database, which is dedicated to developing biomarkers for Parkinson’s
disease in Japan (https://www.openfmri.org/dataset/ds000245/)8. The
accession number is ds000245.

Participants
Structural (i.e., T1 weighted) and resting state functional MRI data of
45 subjects were selected, including 15 (7 males and 8 females; 70.7 ± 4.8
years) PD-SH and 15 (6 males and 9 females; 64.4 ± 7.2 years) PD-CN. For
the comparison,wehave selected15 (7males and8 females; 63.3 ± 5.2 years)
HC from the same database. For detailed demographic information, please
refer to the original article8. The patients were diagnosed as per the United
Kingdom Brain Bank criteria and were between 55-75 years of age20 and
were in the Stages I–III according to Hoehn and Yahr (HY) scale30. The
patients did not report any history of other neurological or psychiatric
diseases and showed no family history of PD. Focal deep white matter
abnormalities >Grade 2 based on the Fazekas classification system were
excluded31. Also, PD patients with dominant tremors were excluded to
minimize the chance of motion artefacts. A written informed consent was
obtained from each participant after explaining the study design. The study
follows the Helsinki criteria and was approved by the ethical Committee of
Nagoya University Graduate School of Medicine.

Behavioral assessment
For assessing the odor identification ability of the participants, the Japanese
Odor Stick Identification Test (OSIT-J; Daiichi Yakuhin, Co., Ltd., Tokyo,
Japan)32 was conducted. The OSIT-J consists of 12 different odorants
familiar to the Japanese and is commonly used for assessing olfactory
function in PD patients. In addition, the cognitive functions were assessed
using Addenbrooke’s Cognitive Examination Scale (Addenbrooke’s Cog-
nitive Examination Revised, ACE-R)33. The ACE-R assesses six distinct
cognitive domains (orientation,memory, attention, language, verbalfluency
and visuospatial ability) and can be used to diagnose dementia subtype in
PDpatients34. Exclusion criteria wereOSIT-J scores > 4, ACE-R scores≤ 88,
and psychotic behavior, depressed mood, hallucinations, dopamine dysre-
gulation syndrome, anxiety, and apathy based on the Japanese version of the
UnifiedParkinson’sDisease Rating Scale (MDS-UPDRS)35 asmentioned by
Yoneyama et al.8

MRI data selection
MRI data were acquired using a 3.0 T MRI scanner (Siemens, Erlangen,
Germany) with a 32-channel head coil at the Brain and Mind Research
Center, University of Nagoya, Japan. The high-resolution anatomical (i.e.,
structural) T1-weighted 3D gradient echo sequences images were acquired
with a repetition time (TR) = 2500ms, echo time (TE) = 2.48ms, slice
thickness = 1mm, 192 sagittal slices, field of view (FOV) = 256 × 256 mm2,
and matrix dimension = 256 × 256. The total scan time of T1-weighted
images was 5.49minutes. The resting-state (task free) functional MRI data
was acquired using an EPI gradient echo sequence with the following
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parameters: TR = 2.5 s, TE = 30ms, layer spacing = 0.5 mm, 39 transverse
slices, 3 mm of thickness, FOV = 192mm, matrix size = 64 × 64, and flip
angle (FA) = 80 degrees. The total rs-fMRI image scanning time was
8minutes with the eye closed while awake. Patients were in the “ON”
medication state when MRI data were acquired.

Data analysis
Preprocessing of resting fMRI data was performed using MELODIC
(Multivariate Exploratory Linear Optimized Decomposition into Inde-
pendentComponents) version 3.14,which is part of FSL (FMRIB’s Software
Library, http://fsl.fmrib.ox.ac.uk/fsl) with the following steps: the first two
functional imageswere discarded to reduce scanner inhomogeneity,motion
correction using MCFLIRT, non-brain tissue was removed using BET, the
intensity was normalized, temporal high pass filtering (100 s), spatial
smoothing was applied using a 5mm FWHMGaussian kernel, and finally
rigid-body registration and single-session ICA with automatic dimension-
ality reduction was applied. Data showing translation motion (>2mm)
between the volumes were excluded. After the ICA computation for each
subject’s data, noise components (e.g., head movement, metal, and phy-
siological noise artifacts) were manually regressed out for each subject.
FSLeyes in MELODIC mode was used to identify the Independent Com-
ponents (ICs) into “good” for cerebral signal, “bad” for noise artifacts, and
“unknown” for ambiguous components at the single-subject level. Each
component was evaluated based on the spatial map, spatial map time series
and the temporal power spectrum of time series36,37. Then, FIX was applied
with default parameters to remove bad and lesion-driven artifacts compo-
nents (FIX, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX)36. Hand classified data
driven ICA components robustly removes physiological and structured
noises from the rsfMRI data38, therefore, we did not implement global signal
regression, which might introduce spurious anticorrelations and further
reduce the sensitivity39. Moreover, GSR is clinically and topologically
relevant40,41. Subsequently, we used an Anatomical Automatic Labeling
(AAL2)42 atlas for parcellations to obtain the Blood Oxygenation Level
Dependent (BOLD) time series of the 116 cortical, subcortical, and cere-
bellum brain areas in each individual’s native EPI space43. The clean

functional data were co-registered to the T1-weighted structural image
using FLIRT. The T1-weighted image was co-registered to the standard
MNI space using FLIRT (12 DOF) and FNIRT44. This transformation
matrix was inverted and applied to warp the atlas from MNI space to the
single-subject functional data. Finally, the time series for each of the 116
brain areas was extracted using custom-made Matlab scripts45.

Dynamic functional connectivity
To assess brain spatiotemporal connectivity properties, we computed the
temporal fluctuations of FC over time using the DFC approach. This
approach has been used in many studies to understand the functional
alterations in the pathophysiology of PD23,46–48. However, there are no stu-
dies yet using DFC approaches on PD with hyposmia. We use these mea-
sures to evaluate the level of regional brain interaction (i.e., synchronicity)
and to quantify the spatiotemporal network dynamics.

We calculated the DFC matrices by applying instantaneous phase
synchronization to the signal at each time point. Prior to computing the
DFC, theBOLD time serieswerefilteredusing a band-passfilter in the range
of 0.03–0.08Hz. Then, we performed the Hilbert transform to estimate the
instantaneous phases, ϕjðtÞ for each region ‘j’, which obtain the analytic
representationof theBOLD time series49. The analytic signal, s(t), represents
a rotating vector with an instantaneous phase, ϕðtÞ, and an instantaneous
amplitude, A(t), represented as follows:

s tð Þ ¼ A tð Þ cos ϕ tð Þ� � ð1Þ

Synchronizationbetweenbrain regionswas characterized by the cosine
of the phase difference modulus. At each time point, the phase difference
PijðtÞ between two regions j and k was calculated50–52. First to understand
brain synchronization level, we computed themean functional connectivity
matrix by taking the average over all time point connectivity matrix and the
whole brain DFC was computed taking the average across all brain regions
connectivity.

Fig. 7 | Schematic diagram of dynamic functional connectivity and brain state
analysis. BOLD time series were first extracted for each region of interest. Phase-
based dynamic functional connectivity (DFC) was computed by generating
instantaneous connectivity matrices at each time point. The leading eigenvector of
eachmatrixwas then derived, representing the dominant connectivity pattern at that

moment. These eigenvectors were concatenated across all subjects to form a unified
dataset. K-means clustering using Manhattan (L1) distance and 50 iterations was
applied to identify recurring connectivity configurations, termed brain states.
Finally, the temporal characteristics of these brain states, including their probability
of occurrence, were quantified.
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Brain states
The brain state (i.e., patterns) represents the spatio-temporal brain network
fluctuation in a specific state (e.g., resting state), which characterizes how
brain regions form spatially coordinated functional networks and provide
temporal weightage. The three-dimensional phase-based DFC tensor with
sizeNxNxT (N=ROIs= 116, T=timepoint = 198) is used to assess the brain
state. To characterize the evolution of the DFC matrix over time, first, we
compute the leading eigenvector to reduce the dimensionality of each three-
dimensional phase-based DFC for each subject by employing a leading
Eigenvector Dynamicsmethod Analysis (LEiDA)21,53. The resulting leading
eigenvector V1(t) is a one-dimensional (i.e., Nx1; N=ROIs) vector for each
DFC tensor (i.e., NxN phase-locking matrix at time t) (see Fig. 7).

To identify recurrentphase-connectivity patterns (namedbrain states),
we used clustering analysis on all the leading eigenvectors V1(t) across time
points and all the subjects (i.e., 116 × 42 = 4872 leading eigenvectors). Then,
we use the k-means clustering algorithm that was applied to the con-
catenated matrix using the L1 distance (a.k.a. “Manhattan distance”) as
implemented in MATLAB (MathWorks Inc.)19,53,54. The clustering
approach was applied 50 times each to reduce the local minima using a
random initialization of centroid positions. The resultant k-mean clustering
provides k number of patterns (VC; called brain states) and labels for each
time-points. Since the optimal number of functional networks to consider
remains an open question, we ran the k-means clustering algorithm with k
ranging from 3 to 10. We took the optimal k values by considering the
highest coverage of brain states53,54. Finally, we compute the probability of
occurrence for each brain state over whole time period of BOLD signal (see
Fig. 7). To characterize the topological patterns of the brain state matrices,
we applied graph-theoretical measures of network segregation commuted
using modularity approach and network integration using participation
coefficient55 as implemented in the Brain Connectivity (BCT)56 Toolbox.

We computed brain state using LEiDA because unlike classical
amplitude-based sliding-window correlation, which relies on arbitrary
window lengths and often suffers from limited temporal resolution, LEiDA
provides a windowless, data-driven approach that preserves fine-grained
phase relationships and allows the identification of recurring whole-brain
phase-locking states. This method has been successfully applied in several
clinical and healthy populations to characterize alterations in brain state
dynamics53,54. While non-negative tensor factorization methods offer
complementary insights, they typically require higher-dimensional data
representations (e.g., multi-subject tensors) and a priori spatial pattern57,58.
In contrast, the LEiDA framework allowed us to extract robust and inter-
pretable spatiotemporal brain state dynamics at the subject level53,54.

Information processing
The information processing measure was used to examine the degree to
which two or more variables encode information with another variable,
considering it a target variable59. FC analysis is limited to pairwise interac-
tions and higher-order interactions across more than two variables leading
to the concept of multivariate transfer entropy, synergy, and redundancy,
which are considered to be the key aspects of studying neural dynamics59.

Synergy and redundancy
The synergy and redundancy represent the higher-order interaction for
information flow across brain regions15–17. Synergy quantifies how brain
regions mutually influence each other’s activity over time: that is, the inte-
gration of information between those regions whereas redundancy quan-
tifies the common information shared between pairs or regions15–17.

We compute the synergy and redundancy from higher-order O-
Information as proposed by Gatica et al.15. O-Information represents for
higher-order information denoted asΩðXn) for interdependencies variables
(X) from a specific no of modules (M = 116; no of brain regions). The
O-Information “ΩðXn is a real value measure and it’s sign discriminate
between synergistic and redundant components (If ΩðXn) < 0 it corre-
sponds to synergy-dominated interdependencies; whereas ΩðXn) > 0,
represent the redundancy-dominated interdependencies values). The

O-Information we assessed by quantify the strength of multivariate corre-
lation for a set of n random variables for each ROIs as follows:

Ω Xn

� � ¼ TC Xn

� �� DTC Xn

� � ð2Þ

TC is the total correlation, and DTC corresponds to the dual total
correlation, which are basically non-negative generalizations of mutual
information15. Here, in this study the redundancy-and synergy-dominated
systems was computed with n = 3 (n= number of interaction order/triplets
that include to assess strength interdependencies)15.

Statistics and classification
Two-sample one-tailed t-tests were used to calculate the group difference
(i.e., PD-CNvsHC, PD-SHvsHC, PD-CNvs PD-SH) forDFC, brain states
rate of occurrences measures, synergy, and redundancy. To assess stronger
group differences, Bonferroni-corrected multiple comparisons were per-
formed separately for each feature (i.e., probability of occurrence, average
duration, and brain state transitions). For probability of occurrence and
average duration, multiple comparison correction was applied across 6
brain states and 3 group comparisons (HC vs PD-CN, HC vs PD-SH, and
PD-CN vs PD-SH), totaling 18 comparisons. The brain regional measures
for synergy and redundancy were assessed using two-sample one-tailed
t-tests with multiple comparisons with Bonferroni corrections < 0.05
accounting the number of brain regions (N = 116). Brain regions’ significant
changes are visualized using the BrainNet viewer.

The whole Brain dynamics (DFC, brain state, synergy, and redun-
dancy) and regional changes of synergy and redundancy that revealed sig-
nificant differences between patient groups and healthy individuals, were
correlated with behavioral assessments of cognitive and odor identification
abilities (OSIT-J score) using partial Pearson correlation controlling for age
and cognitive score (ACE-R).

To identify potential neurophysiological biomarkers distinguishing
PD-SH from PD-CN, we implemented a two-step machine learning pipe-
line combining supervised classification and feature ranking. Due to the
small sample size, we employed a leave-one-out cross-validation (LOOCV)
framework across five classifiers using Python Scikit-learn packages (scikit-
learn v1.4). The dataset included brain states and significant synergy and
redundancy features from individual patients (PD-CN and PD-SH). The
five classifiers used are: Logistic Regression (liblinear solver), linear Support
VectorMachine (SVM), Random Forest (100 trees), GaussianNaïve Bayes,
and a Multi-layer Perceptron (MLP; 100 hidden units, max_iter=1000).
Model performance was evaluated using LOOCV tomitigate small-sample
bias. At eachLOOCV iteration, classifierswere trainedonall but one sample
and tested on the held-out sample43. Prediction performance was evaluated
using accuracy, area under the ROC curve (AUC), sensitivity (true positive
rate), and specificity (true negative rate). Receiver operating characteristic
(ROC) and precision-recall curves were generated for each classifier to
visualize discriminative performance for PD-CN and PD-SH.

Feature selection was performed using MATLAB’s fsrftest algorithm,
which ranks features based on univariate F-test scores60. This analysis
included all DFC brain states and higher-order information-theoretic fea-
tures (synergy and redundancy). The top 20% of ranked features were
retained, and all feature values were z-score normalized prior to training.
This two-step pipeline classification followed by feature ranking allowed us
to assess both the overall discriminative capacity of the models and the
relative importance of individual biomarkers.

Data availability
The MRI and Behavioral data used in this study, along with the experi-
mental details are available in the OpenfMRI database, can be found here:
https://www.openfmri.org/dataset/ds000245/.

Code availability
All code used in this study is publicly available on GitHub. Scripts for
dynamic functional connectivity, brain state analysis, information-theoretic
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measures (synergy and redundancy), and classifier-based feature ranking
can be accessed at: https://github.com/SnehaRayPanda/PD_DFC_Brain_
State_Synergy.Glass brain visualizationswere generated using the BrainNet
Viewer toolbox (https://www.nitrc.org/projects/bnv).

Abbreviations
PD Parkinson’s disease
PD-SH PD patient with severe hyposmia
PD-CN PD patient with cognitive normal ability
HC Healthy controls
Rs-fMRI Resting state functional magnetic resonance imaging
FC Functional connectivity
ICA Independent component analysis
DFC Dynamic functional connectivity
ACE-R Addenbrooke’s Cognitive Examination Revised
OSIT Japanese Odour Stick Identification Test
MDS-
UPDRS

Movement Disorder Society sponsored revision of the
Unified Parkinson’s Disease Rating Scale

AAL Anatomical Automatic Labeling
LEiDA leading Eigenvector Dynamics method Analysis.
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