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Mathematical Modelling of Non-Linear Transient Long Waves 
by using Finite Element Method in an Irregular Shaped 
Harbour
Sukhwinder Kaura, Prashant Kumar a and  Rajnib

aDepartment of Applied Sciences (Mathematics), National Institute of Technology, Delhi, India; bJindal 
Global Business School, O. P. Jindal Global University, Sonipat, Haryana, India

ABSTRACT
Extreme waves significantly affect the coastal structures, activities, 
and population. Therefore, investigation of extreme wave impact 
on coastal regions is essential. In this study, a mathematical model 
is presented to analyse the impact of transient long waves on 
coastal structures. The mathematical model is constructed based 
on the Boussinesq equation (BE) with variable water depth includ
ing dispersion properties. The numerical solution of BE is con
structed by using FEM. The present numerical model is validated 
through the existing study of Lepelletier (1981) and convergence 
analysis is also conducted to determine the convergence rate. The 
present FEM model is implemented on realistic Paradip port, 
Odisha, India to determine the wave amplitude at various record 
stations. In addition, the impact of incident waves with angular 
variation is analysed in the Paradip port. The causes and counter
measures have been proposed based on the simulation results to 
improve the resonance in the port.
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1. Introduction

The non-linear transient long waves propagating towards the coastal region from various 
directions induce harbour resonance as they interact with the coastal boundaries of the 
harbour wall. This resonance aggravates/perturbed wave motion inside the harbour due to 
the impact of diffraction, reflection, and refraction of waves with the coastal boundaries and 
causes severe damage to the coastal boundaries, structures, moored ship, mooring ropes, 
and fender in the harbour. Although it is hard to measure the long waves and their effect on 
the coastal region, as they propagate in the ocean, their wave amplitude is small and wave 
period is large (i.e., 10 ~ 102 minutes), but they build up their amplitude when approaching 
the coastal region. Thus, it is imperative to develop an efficient and reliable numerical 
model for studying the impact of long waves in the time domain.

To have a better comprehension of wave effects in the coastal region, enormous work has 
been carried out in the past decades to develop both linear and non-linear models. Linear 
models usually rely on the Helmholtz equation [1–3] or Mild Slope equation [4–6] whilst the 

CONTACT Prashant Kumar prashantkumar@nitdelhi.ac.in Department of Applied Sciences (Mathematics), 
National Institute of Technology, Delhi 110040, India

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 
2021, VOL. 27, NO. 1, 411–428 
https://doi.org/10.1080/13873954.2021.1973510

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http:// 
creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

http://orcid.org/0000-0001-8480-7490
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/13873954.2021.1973510&domain=pdf&date_stamp=2021-09-07


non-linear models on the Boussinesq equation (BE) [7–9]. The depth-averaged Boussinesq 
model of variable bathymetry was first introduced by Peregrine [10] to determine the non
linear transformation of multi-directional surface waves in shallow water. Several researchers 
developed the numerical model based on the Peregrine [10] equation to examine the wavefield 
inside the harbour due to non-linear transient long waves. Initially, BE was solved by the finite 
difference method (FDM) using a rectangular grid [11,12]. However, if the wave field is 
computed inside a 2-dimensional (2-D) domain with complex geometry by using a uniform 
finite-difference grid, there may be a loss of computational accuracy.

To overcome this problem, researchers emphasize more on unstructured FEM for 
approximating the BEs. Firstly, many FEM models were constructed for conventional 
Boussinesq equations (CBEs) [13,14]. Recently, FEM has been applied to Modified 
Boussinesq equations (MBE) [15–17]. Woo and Liu [18] developed a new FEM technique 
depending on Petrov–Galerkin weighted residual method, with cubic B-splines as the 
weighting function for one-dimensional, fully non-linear, and weakly dispersive wave 
propagation without using auxiliary variables. This method is difficult to apply to the 
complex geometry in the 2-D domain as the cubic spline functions cannot be easily 
extended to the 2-D irregular/unstructured grid system. Lepelletier [7] proposed a finite 
element model using Wu’s equations [19] to examine the excitation of the harbour by 
non-linear transient long waves.

Recently, models have been constructed to study the wave-induced oscillations caused 
by incoming long or short waves propagating from the open sea towards the realistic 
harbours using different numerical techniques. For example, a mathematical model 
based on the boundary element method (BEM) is applied to estimate the wave response 
inside the Pohang New Harbour in South Korea [20] and Paradip port in India [21–23]. 
FEM and Hybrid FEM are utilized to analyse the wave response inside the Marina di 
Carrara harbour in Italy [24] and the Pohang New Harbour in South Korea [25], 
respectively. Higher-order FEM is used to analyse the propagation of waves excited by 
internal elements [26]. Such studies were predominantly concerned with linear models. 
However, excitation of realistic harbour due to non-linear transient long waves remains 
limited except for a few studies such as FEM is applied to investigate the wave response 
inside the Hilo Bay, Hawaii [27].

In this study, a sensitivity analysis based on the direction of the incident waves has 
been performed to estimate/determine the influence of resonant waves in the realistic 
harbour. The BE is used to investigate the transient long waves response on the irregular- 
shaped harbour. The BE is solved in the domain of interest (bounded region of the port) 
by using FEM with non-uniform mesh elements. The effects of dispersion properties 
including the variable bathymetry are incorporated in the present numerical model. The 
current numerical scheme is validated with the existing studies of Lee (1971) [28] and 
Ippen and Goda (1963) [29], and Lepelletier (1981) [7]. Further, the convergence analysis 
is also carried out for the rectangular domain to determine the order of convergence. 
Based on the validation, the present numerical model is implemented on the realistic port 
such as Paradip port, Odisha, India to determine the wave amplitude at various key 
locations. The angular variation of the incident waves inside the Paradip port is also 
determined to understand the possible influence of different directional waves. In 
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addition, the wave amplitude in the interior of Paradip port under the different resonance 
modes is also estimated for directional incident waves to identify the safe location for 
moored vessels.

The paper is arranged as follows. Section 2 describes the mathematical formulation of 
the BE obtained using FEM. The validation of the present numerical model with the 
existing study along with convergence analysis is provided in section 3. The implementa
tion of the current numerical model on the complex geometry such as Paradip port is 
given in section 4. Section 5 contains the discussion and conclusion.

2. Mathematical Formulation

2.1. Governing Equations

In order to investigate the long wave-induced oscillation in a harbour, the Cartesian 
coordinate system O-xyz is located at the harbour entrance with the y-axis being taken 
along the shoreline, the x-axis is directed towards the open sea, and the z-axis vertically 
upward. For simplicity, it is assumed that the fluid is inviscid, incompressible, and fluid 
flow is irrotational. The governing equations (i.e., the continuity and momentum equa
tions) for long waves after using the dimensionless variable and boundary conditions are 
expressed as 

@η
@t
þ Ñ dÑϕ½ � ¼ μÑ

d
2

Ñ dÑϕð Þ �
d2

3
Ñ2ϕ

� �

Ñd
� �

þ O μ2� �
(2:1) 

@ϕ
@t
þ η � μ

@

@t
d
2

Ñ dÑϕð Þ �
d2

6
Ñ2ϕ

� �

¼ O μ2� �
(2:2) 

where,ϕ ¼ ϕ x; y; tð Þ represents the velocity potential function, η ¼ η x; y; tð Þ is the wave 
elevation, d ¼ d x; yð Þ is the variable water depth, μ ¼ d0=λð Þ

2 is the dispersive parameter, 
where λ is the wavelength, d0 is the constant water depth. Further, on combining 
equations (2.1) and (2.2), we get. 

ϕtt � Ñ dÑϕð Þ � μ
d
2

Ñ dÑϕttð Þ �
d2

6
Ñ2ϕtt

� �

þ μÑ
d
2

Ñ dÑϕð Þ �
d2

3
Ñ2ϕ

� �

Ñd
� �

¼ O μ2� �

(2:3) 

2.2. Model geometry

The domain of interest is divided into two regions as bounded region (Ω1 or harbour 
region) and unbounded region (Ω2 or open sea region) (see Figure 1). It is assumed that 
the scattering and energy dissipation are contained within the region L with partially 
reflective boundary @L. The bounded region Ω1 with variable water depth d is enclosed 
by the partially reflecting solid boundary @L and pseudo boundary @Ω1 and unbounded 
region Ω2 with constant water depth d0 is the open sea region with boundary @Ω2 lying at 
some finite distance (see Figure 1). In bounded region Ω1, the velocity potential function 
ϕ1 satisfies the BE Eq. (2.3).

In unbounded region Ω2, the dispersion effect is negligible, and Eq. (2.3) is given by 
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ϕ2;tt � Ñ2ϕ2 ¼ 0 (2:4) 

The velocity potential function ϕ2 is expressed as 

ϕ2 ¼ ϕI þ ϕR þ ϕS (2:5) 

where ϕI;ϕR; andϕS represents the incident, reflective, and radiated wave potential 
functions, respectively. In the Ω2 region, radiated waves propagate towards the open 
sea, and the solution of the radiated wave potential is obtained by using the Summerfield 
radiation boundary condition in the time domain along the boundary @Ω2, is 
expressed as 

ϕS ¼ Re
Xn¼1

n¼0
ò
1

0
ϕS;n kð ÞH1

n kRð Þe� iωt cos nαð Þdk (2:6) 

Figure 1. Model geometry with the bounded region and open sea region.
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where H1
n denotes the Hankel function of the first kind and nth order, α is the angular 

variation lie between 0 to π, and ϕS;n kð Þ is the function of k that depends on the geometry 
of the radiative disturbance. The Summerfield radiation boundary condition in the time 
domain along the boundary @Ω2is written as 

lim
R!1

@ϕS
@n
þ ϕS;t þ

1
2R

ϕS

� �

¼ 0 (2:7) 

For a semi-infinite domain with straight and perfectly reflective coastline, parallel to the y-axis 

@ϕ
@n
¼ 0alongα ¼

π
2
;
3π
2

(2:8) 

The sinusoidal wave is taken as the incident-reflective wave system and is expressed as 
follows 

ϕI þ ϕR ¼
XN¼1

N¼0
An sin n ωt � kx � βð Þ½ � þ

XN¼1

N¼0
An sin n ωt þ kx � βð Þ½ � (2:9) 

where β represents the incident wave angle and ω is the angular frequency which is 
related to the wave number k through the dispersion relation ω2 ¼ gk tanh kd0ð Þ, where 
g is the acceleration due to gravity. Finally, a matching boundary condition on the 
boundary @Ω1 is applied to connect the bounded and the unbounded region, which is 
done by equating the equation of continuity of flow rate and wave elevation across the 
boundary @Ω1, and is expressed as 

ϕ1 ¼ ϕ2along@Ω1 (2:10) 

@ϕ1
@n
¼ �

@ϕ2
@n

along@Ω1 (2:11) 

In FEM formulation, firstly the weak formulation over the computational domain as 
shown in Figure 1 is expressed as 

ðð

Ω1

½ϕ1;tt
~ϕ1 þ hÑϕ1 � Ñ

~ϕ1�dΩþ
ðð

Ω2

ϕ2;tt
~ϕ2dΩ

þ
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h2

3
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h
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dΩ

� μ
ðð

Ω1

h
6

ϕ1;ttÑ
~ϕ1 � Ñhþ

h
3

Ñh � Ñϕ1ð Þ Ñh � Ñ~ϕ1
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dΩ

� ò
@Ω2

~ϕ2
@ϕ2
@n

� �

d @Ωð Þ ¼ ò
@Ω1

~ϕ1
@ϕ1
@n

� �

d @Ωð Þ

(2:12) 

with initial condition 
ðð

Ωi

ϕi
~ϕidΩ ¼

ðð

Ωi

ϕi;t
~ϕidΩ ¼ 0att ¼ 0; i ¼ 1; 2 (2:13) 
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On solving integrals presented in Eq.(2.9) using FEM, the computational domain Ω1 is 
subdivided into non – overlapping linear triangular elements, and the functions 
ϕiand~ϕi; i ¼ 1; 2 are expressed in terms of basis function Hi and the unknown nodal 
value ϕe

i;jand~ϕe
i;j; i ¼ 1; 2atj ¼ 1; 2; 3 as 

ϕe
i ¼

X3

j¼1
Hj x; yð Þϕe

i;j tð Þ~ϕe
i ¼

X3

j¼1
Hj x; yð Þ~ϕe

i;j tð Þ (2:14) 

The linear triangular shape functions are given as follows 

Hj ¼
dj þ ejxþ fjy

2Ae
(2:15) 

where di ¼ xjyk � yjxk; ei ¼ yj � yk; fi ¼ xk � xj; i; j; k, permutes in natural order and Ae 
denotes the area of the triangular element. The weak formulation is converted into matrix 
formulation and expressed as follows 

~ϕT M1ϕtt þM2ϕt þM3ϕ ¼ F tð Þ
� �

(2:16) 

with initial conditions 

~ϕTNϕ 0ð Þ ¼ ~ϕTNϕt 0ð Þ ¼ 0 (2:17) 

where ϕ ¼ ϕ1ϕ2½ �
T , M1;M2; andM3 are the positive symmetric matrices, and F tð Þ is the 

known vector consisting of an incident – reflected wave system. Since the Eqs. (2.16) and 
(2.17) holds for all vectors ~ϕ. So, the corresponding coefficients to vector ~ϕ vanishes and 
Eqs. (2.16) and (2.17) becomes 

M1ϕtt þM2ϕt þM3ϕ ¼ F tð Þ (2:18) 

With initial conditions 

Nϕ 0ð Þ ¼ Nϕt 0ð Þ ¼ 0 (2:19) 

Finally, the above obtained second order non-linear system is solved by using the 
implicit – explicit method. The Eq. (2.18) is discretized in the time domain using an 
implicit – explicit technique as follows [30]: 

M1aiþ1
nþ1 þM2viþ1

nþ1 þM3diþ1
nþ1 ¼ F tnþ1ð Þ (2:20) 

where 

diþ1
nþ1 ¼

~dnþ1 þ Δt2βaiþ1
nþ1

viþ1
nþ1 ¼ ~vnþ1 þ Δtγaiþ1

nþ1
~dnþ1 ¼ ~dn þ Δt~vn þ

Δt2

2 1 � 2βð Þan
~vnþ1 ¼ ~vn þ Δt 1 � γð Þan

9
>>=

>>;

(2:21) 

where, Δt represents the time step, β and γ represents the numerical parameters that 
govern the stability and accuracy of the linear scheme, and dn+1, vn+1, and an+1 are the 
discretized values at tn+1 of Φ, Φt, and Φtt, respectively. Substituting Eq. (2.21) in Eq. 
(2.20) yields 
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Miviþ1
nþ1 ¼ Gnþ1 (2:22) 

where 

Mi ¼ 1
γΔt M1 þM2 þ

βΔt
γ M3

Gnþ1 ¼ F tnþ1ð Þ þ M1
Δtγ ~vnþ1 � M3 ~dnþ1 �

Δtβ
γ ~vnþ1

� �

9
=

;
(2:23) 

Lastly, the wave elevation η x; y; tð Þ is derived from ϕ x; y; tð Þ as follows 

η ¼ � ϕt þ O μð Þ (2:24) 

3. Numerical Validation and Convergence

3.1 Validation of the current numerical technique

To validate the present numerical scheme on the rectangular domain, the rectangular domain 
is discretized using the non-uniform triangular mesh elements. A different finite element 
mesh configuration for each harbour length is required and consequently, only a few numer
ical runs were performed for comparison with the existing studies in the literature. The finite 
element mesh configuration for rectangular domain using unstructured triangular element 
where the coordinates are normalized with respect to wavelength (λ) is shown in Figure 2. The 
wave amplification factor is computed at the back wall of the rectangular domain correspond
ing to the non – dimensional wave number kl, where l represents the length of the rectangular 

Figure 2. The rectangular domain with non-uniform FEM mesh discretization.
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domain and is presented in Figure 3. The experimental data of Ippen and Goda (1963) [28] 
and Lee (1971) [29] study is collected at the centre of the back wall of the rectangular harbour 
and a good agreement between the present numerical results and existing experimental 
studies of Lee (1971) [28] and Ippen and Goda (1963) [29] is obtained. The results reveal 
that the first resonant mode occurs at kl = 1.32 and the second at kl = 4.2. Further, 
corresponding to the high amplification (i.e., corresponding to peak value), the wave elevation 
(η) profile is analysed for the rectangular domain, and results are validated with simulations of 
Lepelletier [7].

To compute the wave elevation (η) profile near the first and second resonant mode (i.e., 
around kl = 1.32 and kl = 4.2), the computational domains are discretized into 1529 and 2289 
triangular elements using unstructured triangular mesh, respectively. The normalized con
figuration of the rectangular harbour around the first and second resonant mode with depth 
10 cm and 6 cm and harbour length 41 cm and 53 cm is presented in Figure 4a and 4c, 
respectively. Figure 4 compares the results of the present numerical scheme (blue) with 
Lepelletier [7] (pink) at the back wall (W) (see Figure 4) of the fully open rectangular harbour. 
The present numerical scheme results are obtained by using the Finite Element Method 
(FEM) and the results reveal good agreement with the previous well-defined study of 
Lepelletier [7]. Therefore, the present FEM model is validated and implemented on any 
complex domain or realistic harbour.

Figure 3. Comparison of the amplification factor at the centre of the back wall of the rectangular 
harbour corresponding to the dimensionless wave number (kl) for the present numerical scheme, 
Ippen and Goda (1963), and Lee (1971) study.
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Figure 4. The normalized configuration of the rectangular harbour corresponding to the (a) first and 
(c) second resonant mode is presented in the left panel of the figure and a comparison of the current 
numerical scheme (blue) with the Lepelletier [7] results (pink) around the (b) first and (d) second 
resonant mode at the back wall (W) is shown in the right panel of the figure.

Figure 5. The comparison of the logarithmic error norm with respect to the logarithmic value of 
segment division (log Mi) for the present numerical FEM scheme (a), and BEM (b).

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 419



3.2 Convergence analysis

The convergence analysis is carried out to determine the numerical accuracy of the 
present numerical scheme. The convergence analysis is performed separately on the 
rectangular domain for the current numerical technique and the BEM. For this, the 
rectangular domain is discretized into M1 = 2000, M2 = 4000, and M3 = 6000 discrete 
triangular elements. The order of convergence (a) is obtained from the following relation 

a ¼
log Er1=Er2ð Þ

log M2=M1ð Þ
(3:1) 

where Er1 ¼ ϕM1 � ϕM3
l2 andEr2 ¼ ϕM2 � ϕM3

l2 . The logarithmic error norm and the 
error norm are presented in Figure 5, and it is found in both BEM and FEM that as the 
number of segments increases, the error norm eventually decreases. This indicates that 
both numerical techniques are stable, whereas the current numerical technique demon
strates a better numerical accuracy as compared to the BEM. The order of convergence of 
the current numerical technique is 1.74 while 1.56 for BEM.

4. Simulation Results

4.1 Implementation on Paradip port

Paradip Port (20°‒15’‒55.14’’N and 20°‒14’‒27.34’’E), situated in the Jagatsinghpur district of 
Odisha, India, is the largest commercial port for coastal trade. Thus, it plays a vital role in the 
economic growth of India. The topographic view of the Paradip port is shown in Figure 6 and 

Figure 6. Bird view image of the Paradip port, Odisha, along with four record stations (W1 to W4) 
marked at the different key locations inside the port. The orange arrows represent the incident waves 
propagating towards the port’s entrance.
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Figure 7. The discretized image of the Paradip port using the non-uniform triangular mesh elements 
with semi-circular pseudo boundary centred at the entrance. Four record stations from W1 to W6 are 
placed at the various key locations in the Paradip port.

Figure 8. Wave elevation (m) profile corresponding to time (min) at four key locations W1 to W4 inside 
the Paradip Port for seven different incident wave angles from π=8 to 7π=8.
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the yellow semi-circular arc is the pseudo boundary at a distance of 4.8 km from the entrance 
and represents the interface between the unbounded (open sea) and bounded (harbour) 
region. Paradip port has experienced extreme waves oscillation due to seasonal variations [31] 
and consequently affects numerous activities/operations such as product loading and unload
ing, port boundary breakage, etc. Therefore, a better understanding of the ocean waves 
arriving towards the port at different incident angles is essential for the protection of moored 
vessels. The four record stations are selected inside the Paradip port and labelled as W1 to W4 
to determine the wave amplitude at different angular variations. The Paradip Port is dis
cretized into 4001 discrete irregular triangular mesh elements to perform the numerical 
simulation (see Figure 7).

4.1.1. Wave elevation profile for the Paradip port
The present numerical technique is used to investigate the variations in wave elevation 
due to incident waves reaching/striking the port at different angles. For this, seven 
different incident wave angles β = π/8, π/4, 3π/8, π/2, 5π/8, 6π/8, and 7π/8 are considered 
at selected key locations (W1 to W4) inside the Paradip port. In Figure 8, the wave 
elevation profile is shown at four record stations W1 to W4 of the Paradip port 
corresponding to time (min) with angular variation β = π/8, π/4, 3π/8, π/2, 5π/8, 6π/8, 
and 7π/8. It is evident that for all directional incident waves, the peak or maximum wave 
amplitude is obtained at the period t1 = 7.6 min, t2 = 19.6 min, t3 = 38 min, t4 = 50.1 min, 
t5 = 67.8 min, and t6 = 80.8 min, respectively, and the wave amplitude varies with the 
change in the direction of the incident wave over the four selected key locations.

The surface wave elevation (η) corresponding to the first peak period (i.e., t1 = 7.6) is 
higher at record stations W2 and W3 as compared to W1 and W4. For the second peak 
period (i.e., t2 = 19.6), the strong amplitude is generated near the record station W4. At 
the third (i.e., t3 = 38) and fifth (i.e., t5 = 67.8) peak period, the largest wave height is 
obtained around the W3 and W2 record stations, respectively. However, the maximum 
wave height is seen at the fourth (i.e., t4 = 50.1) and sixth (i.e., t6 = 80.8) peak period 
compared to other peak periods over all four record stations, yet strongest near the 
record station W3. Further, the incident wave with wave angle β = π/8 produces strong 
oscillations in the port and lower for wave angle β = 7π/8 at all the four key locations. 
Therefore, an incident wave arriving towards the port’s entrance from various directions 
at different peak periods generates strong elevation at different key locations inside the 
Paradip port. In addition, the surface wave amplitude is determined in the interior of the 
port with respect to different wave periods and wave direction in the next subsection.

4.1.2. Ocean surface wave height
As a significant increase in wave height is evident at the peak periods t1 = 7.6 min, t2 

= 19.6 min, t3 = 38 min, t4 = 50.1 min, t5 = 67.8 min, and t6 = 80.8 min, respectively, for all 
incoming waves with different incident angles over the four selected key locations in 
Paradip port. To get a deeper insight into the interrelation between the wave height (η), 
peak period and incident wave angle, the wave height contour plots corresponding to the 
first four peak periods at incident wave angles β = π/8, π/4, 3π/8, π/2, 5π/8, 6π/8, and 7π/8 
are estimated in Paradip Port and displayed in Figures 9–12. For the first peak wave period 
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(i.e., t1 = 7.6 min), the strongest waves are observed near the region enclosing the record 
stations W2 and W3 at all directional incident wave angles, which further decreases near 
the record stations W1 and W4 including the port’s entrance (see Figure 9).

In addition, the wave elevation at incident wave angles β = π/8, π/4, and 3π/8 has higher 
amplification in the interior of the Paradip port as compared to other directional incident 
waves. While the counter-responses are evident at the second peak period (i.e., t2 = 19.6 min) 
(i.e., wave height increases near the region enclosing record stations W1 and W4 and 
decreases near the record stations W2 and W3) (see Fig. 9 and 10). Further, the incident 
wave angles β = π/8, π/4, and 3π/8 produce strong oscillations inside the Paradip port. The 
wave height is significantly reduced at wave angle β = 7π/8 compared to other directional 
incident wave angles (see Fig. 9 and 10). It means that incident waves at angles β = 6π/8 and 
7π/8 are the safest for the second wave period inside the Paradip port for loading and 
unloading.

As the peak wave period increases from 19.6 min to 38 or 50.1 min, the significant 
variations in wave elevation are evident in the Paradip port. The strongest wave height lies 
between 1.7 and 2.4 m is seen inside the port at t3 = 38 min compared to the peak period t1 

= 7.6 min and t2 = 19.6 min (see Figure 11). This suggests that the incident wave with a large 
wave period generates a strong wave oscillation inside the port. Further, the strongest waves 
are estimated at incident wave angles β = π/8 and π/4 at the record stations W3 and W2, and 
the safest location is identified near W1 and W4 at incident wave angles β = 6π/8 and 7π/8.

Figure 9. Wave height contour plots corresponding to the first peak period (i.e., t1 = 7.6 min) for the 
directional incident wave angle with from π=8 to 7π=8.
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Figure 10. Wave height contour plots corresponding to the second peak period (i.e., t2 = 19.6 min) for 
the directional incident wave angle from π=8 to 7π=8.

Figure 11. Wave height contour plots corresponding to third peak period (i.e., t3 = 38 min) for the 
directional incident wave angle with from π=8 to 7π=8.
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The strong wave elevation is obtained for the peak wave period at t4 = 50.1 min in the 
interior of Paradip port range approximately from 1.6 m to 3.2 m. The location W3 is the 
most sensitive location inside the Paradip port for the wave period t4 = 50.1 min at 
incident wave angles β = π/8 and π/4 (Figure 12). Overall, the wave elevation is consistent 
for different directional incident waves from angles β = π/8 and 7π/8. Overall, the key 
location W1 and W4 is proposed as the safer locations inside the Paradip port for all 
directional incident waves. The incident waves with less peak wave period t1 = 7.6 min 
produce lesser amplification as compared to high wave periods. Thus, both directions of 
the incident wave and peak wave period play an important role to estimate the wave 
height inside the Paradip port.

5. Discussion and Conclusion

In this study, a mathematical model based on BE with variable water depth is developed 
to examine the response of transient of long-wave inside the realistic port such as Paradip 
port, India under resonant conditions. The numerical solution of BE is obtained by using 
FEM with irregular mesh elements. The numerical accuracy is enhanced by utilizing the 
triangular non-uniform FEM mesh discretization. The present numerical scheme is 
validated with the previous studies of Lee (1971) [28] and Ippen and Goda (1963) [29], 
and Lepelletier (1981) [7] at the back wall of the fully open rectangular domain. The 

Figure 12. Wave height contour plots corresponding to the fourth peak period (i.e., t4 = 50.1 min) for 
the directional incident wave angle with from π=8 to 7π=8.
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convergence analysis of the present numerical scheme is also carried out through error 
analysis by utilizing the least square method and the result reveals that the present 
numerical model has a higher-order convergence (1.74) compared to BEM (1.56).

The surface wave elevation (η) is computed at the selected four key locations labelled as 
W1 to W4 inside the Paradip port for different incident wave angles (π/8 to 7π/8). The peak 
wave periods are obtained at the period t1 = 7.6 min, t2 = 19.6 min, t3 = 38 min, t4 

= 50.1 min, t5 = 67.8 min, and t6 = 80.8 min, respectively, in Paradip port. The wave 
amplitude is stronger for the incident wave with angles β = π/8 and π/4 as compared to 
other incident wave angles for all peak wave periods. In addition, W1 and W4 locations are 
the safest location in the Paradip port for the different peak wave periods and incident wave 
angles and W3 is the most sensitive location inside the port for all directional incident 
waves. The peak wave period (7.6 min) generates less amplification as compared to the high 
peak wave periods (19.6 min, 38 min, 50.1 min). The angular variation of the incident wave 
plays a crucial role to enhance/reduce the amplification inside the port. Overall, to prevent 
the damage of coastal structures and moored ship inside the Paradip port, the safe location 
with different wave periods and wave angles are identified to improve the resonance.
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