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Abstract: Groundwater contamination with sub-lethal dissolved contaminants poses significant
health risks globally, especially in rural India, where access to safe drinking water remains a critical
challenge. This study explores the hydrogeochemical characterization and associated health risks
of groundwater from shallow aquifers in the Marginal Ganga Alluvial Plain (MGAP) of northern
India. The groundwater chemistry is dominated by Ca-Mg-CO3 and Ca-Mg-Cl types, where there
is dominance of silicate weathering and the ion-exchange processes are responsible for this solute
composition in the groundwater. All the ionic species are within the permissible limits of the
World Health Organization, except fluoride (F−) and nitrate (NO3

−). Geochemical analysis using
bivariate relationships and saturation plots attributes the occurrence of F− to geogenic sources,
primarily the chemical weathering of granite-granodiorite, while NO3

− contaminants are linked
to anthropogenic inputs, such as nitrogen-rich fertilizers, in the absence of a large-scale urban
environment. Multivariate statistical analyses, including hierarchical cluster analysis and factor
analysis, confirm the predominance of geogenic controls, with NO3

−-enriched samples derived
from anthropogenic factors. The spatial distribution and probability predictions of F− and NO3

−

were generated using a non-parametric co-kriging technique approach, aiding in the delineation of
contamination hotspots. The integration of the USEPA human health risk assessment methodology
with the urbanization index has revealed critical findings, identifying approximately 23% of the study
area as being at high risk. This comprehensive approach, which synergizes geospatial analysis and
statistical methods, proves to be highly effective in delineating priority zones for health intervention.
The results highlight the pressing need for targeted mitigation measures and the implementation of
sustainable groundwater management practices at regional, national, and global levels.

Keywords: fluoride and nitrate; Ganga Alluvial Plain; kriging; USEPA approach; mitigation and
adaptation
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1. Introduction

Groundwater constitutes about 30% of global freshwater resources and is vital for
agriculture, drinking water, and industry. India holds 4% of global freshwater but hosts
17% of the world’s population, thereby facing severe water scarcity [1]. Over 25% of global
groundwater use occurs in India, but excessive extraction has led to issues like depletion,
pollution, and saltwater intrusion [2,3]. Per capita water availability, currently at 1486 m3,
is expected to drop below 1140 m3 by 2050, exacerbating the crisis. Climate change further
intensifies this challenge, with groundwater depletion rates projected to triple by 2041–2080,
due to rising irrigation demands [4–6]. The contamination of groundwater with fluoride is
one of the primary global issues. It has been previously estimated that in 25 nations, a huge
percentage of the population, numbering around 200 million people, suffers from fluorosis
globally, and the causes behind it have been attributed to the contamination of groundwater
with fluoride, including in India [7,8]. All countries are more prone to fluoride exposure
due to the consumption of fluoride-rich groundwater. Fluoride is the most electronegative
element, which occurs as fluoride ions (F−), and is commonly associated with natural
processes for its release in the groundwater system [9–11]. Fluoride is a basic element in
the growth of teeth and bones; the presence of fluoride ensures strength, but in excess, it
causes serious health issues.

Fluoride enters the human body through both anthropogenic and geogenic methods,
with geogenic contributions being more prominent in India [1,7]. Geogenic sources include
the weathering process, leaching, fluoride-bearing mineral dissolution, the exchange of
ions, rock–water interactions, and evaporative enrichment [10,11]. The anthropogenic
sources, namely, industrial activities, coal burning, and phosphate fertilizers, increase the
concentrations of fluoride in groundwater. Sulfate and nitrate are two other potentially
hazardous ions found in fertilizer products. Fluoride keeps teeth healthy (the prevention of
dental caries, dental enamel construction, and the establishment of bone minerals). Fluoride
concentrations below 0.5 mg/L in drinking water can lead to dental issues such as cavities,
diminished bone mineralization, and a lack of dental enamel production.

Conversely, concentrations exceeding 1.5 mg/L pose significant health risks, includ-
ing dental fluorosis and skeletal fluorosis, which can severely impair bone and joint
health [12–14]. The fluoride content greatly depends on the mineralogy of the host lithology,
which dictates the level of its concentration in groundwater [2,5,15–23]. Fluoride contam-
ination in aquifers arises due to rock erosion and exposure to minerals rich in fluoride.
High fluoride concentrations in groundwater are expected in calcium-deficient sodium
bicarbonate-type water. The alkaline etiquette of water promotes the conversion of fluorite
(CaF2) to fluoride. The main sources of Fluoride include rock minerals, namely, calcium
fluoride [CaF2], fluorapatite [Ca5(PO4)3F], and cryolite [Na3AlF6], whereas anthropogenic
sources contain coal fly ash, petrol refinery waste, enhanced brick kilns dust, and extreme
use of chemical fertilizers [23,24].

Fluoride and nitrate are significant ionic constituents in groundwater that influence
its suitability for drinking. Fluoride primarily originates from geogenic sources, such
as the dissolution of fluoride-rich minerals, while nitrate is often introduced through
anthropogenic activities, including the use of agricultural fertilizers, domestic effluents,
dairy operations, and nearby waste treatment plants [8,25–28]. According to USEPA, the
recommended limit for nitrate in drinking water is 10 mg/L, while the BIS allows up to
45 mg/L, and the WHO sets the maximum at 50 mg/L. Recently, nitrate contamination
has become a global issue, affecting most of those Asian and African countries where the
uncontrolled use of fertilizers has been observed [29]. Nitrate contamination reduces the
pH of water, making it acidic. Its hazardous effects cause methemoglobinemia and the
creation of nitrosamine compounds in the human body. Methemoglobinemia disease is
a critical condition that may sometimes prove carcinogenic and otherwise hazardous to
health; it can be connected to cardiac dysrhythmias, circulatory failure, oxygen deprivation
with cyanosis, and central nervous system (CNS)-related effects [27].
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The Mahoba district in the Bundelkhand gneissic complex is characterized by granite
rock geology, meaning that the weathering of granite rocks leads to the contamination of
groundwater with fluoride. In this region, fluoride and nitrate are identified as the primary
contaminants, posing substantial risks to human health. The human health risk assessment
(HRA) model, as outlined by the USEPA (2014) [30], was employed to evaluate the health
impacts of these contaminants via multiple exposure pathways. Geographic information
systems (GIS), supported by statistics-based techniques like interpolation and regression
analysis, were used to predict contaminant concentrations at unsampled locations. These
methods draw upon established techniques [31–37] to generate spatially explicit risk maps.
By integrating the predicted contaminant distribution with human census data, the study
effectively visualized the spatial extent of health risks [12,13,38,39]. These vivid risk
maps highlight hotspots, aiding in targeted mitigation and management strategies for
groundwater quality improvement in the region. One tool of Arc GIS, named ‘geostatistical
analyst’, is an extension module that has been used for exploratory data analysis, cross-
validation purposes, the semivariogram model, and establishing the distribution pattern of
groundwater contaminant concentrations. Kriging is a prediction tool based on statistical
analysis that defines the stochastic theory for evaluating the spatial behavior of geographic
data [22]. Ordinary kriging (OK) is used to create the spatial distribution of water quality
and contaminants in the study area, whereas indicator kriging (IK) is used to calculate the
probability of contaminants. The sub-lethal elements occurring at the local and/or regional
scales put human health “at risk”. HRA evaluates the potential exposure and adverse
effects of toxic substances on the population through risk evaluation, exposure assessment,
and hazard characterization (IPCS 2004). The globally adopted USEPA (2014) HRA model
serves as a framework to assess the impact of contaminants on human health. Researchers
worldwide have utilized these policies and guidelines to highlight the human health risks
posed by environmental contaminants [40–48].

Fluoride and nitrate contamination in groundwater is a global concern, and the Bun-
delkhand region faces this issue, along with significant water depletion [33–35,49–51].
The majority of the population relies on shallow, unconfined aquifers for drinking wa-
ter, exacerbating their vulnerability due to widespread poverty [14,52,53]. Exposure to
nitrate and fluoride and their impacts on human health is important to understand in the
present context. This research explores the hydrogeochemical evolution of the groundwater
samples collected, with special reference to fluoride and nitrate contaminants. Different
statistical approaches have been used to decipher the inter-correlation of hydrogeochemical
parameters spatially, and a human health risk assessment was carried out using the USEPA
approach. Research gaps on the Marginal Ganga Alluvial Plain include inadequate spatial
and temporal assessments of groundwater contamination by fluoride and nitrate, particu-
larly under the influence of agricultural and industrial activities. Yet, there has been limited
exploration of contamination from combined geogenic and anthropogenic factors. The
proper isotopic studies have not been carried out to understand source-related issues in
further detail. Additionally, health risk assessments that consider local socio-economic and
demographic conditions are scarce, hindering effective mitigation strategies. The present
study seeks to develop a comprehensive framework by integrating hydrogeochemical anal-
ysis, multivariate statistical techniques, and the urbanization index to address groundwater
contamination challenges in the sparsely populated regions of Bundelkhand. Furthermore,
the application of non-parametric co-kriging for the spatial prediction of fluoride (F−)
and nitrate (NO3

−) contamination represents a significant methodological advancement,
enabling the precise delineation of high-risk hotspots and enhancing the effectiveness of
targeted mitigation strategies. The research objectives are to: (i) investigate the chemical
processes influencing groundwater quality, focusing on fluoride and nitrate pollution,
(ii) elucidate the patterns of fluoride and nitrate distribution using multivariate statistical
approaches and geostatistical modeling, and (iii) quantify exposure risks to the population
through the Human Health Risk Assessment framework, applying probabilistic models to
predict contaminant impacts effectively.
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2. Materials and Methods
2.1. Study Area

Mahoba, a district of Bundelkhand region, Uttar Pradesh, is a part of the Marginal
Ganga Alluvial Plain (MGAP), situated between the Indo-Gangetic Plain to the north and
the Vindhyan Range to the south (Figure 1). The total geographic area of this district is
about 2884 sq. km. Mahoba lies in the geographic location of N 25◦ 01′ 30′′ to N 25◦ 39′

40′′ and E 79◦ 15′ 00′′ to E 80◦ 10′ 30′′. The normal decadal average rainfall in the monsoon
season for Mahoba is 753 mm, whereas decadal non-monsoon rainfall has been recorded at
76 mm [52]. The four area blocks (Panwari, Charkhari, Kabrai, and Jaitpur) are drained
by certain rivers, namely, the Dhasan, Urmil, Birma, and Arjun. May has the highest
temperatures, shooting up to 50 ◦C, and January is the coldest month, with a temperature
of less than 4 ◦C [54].
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The Mahoba district in the Bundelkhand consists of granite, granodiorite, granitic
gneisses, and dolerite, due to the presence of the Bundelkhand Massif Terrain (Figure 2).
Granite rocks are a type of intrusive igneous rock composed mostly of quartz, mica,
and alkali feldspar. The depth-to-water level in the Mahoba command area for the pre-
monsoon season is 8.75 mbgl, while for the post-monsoon season, it is 6.29 mbgl [52]. The
groundwater level is low in the Mahoba district because the district mainly comprises the
hard rock formation of the Bundelkhand Massif. The rocks are massive; therefore, rainfall
does not percolate the rocks [55]. However, some water can percolate through the cracks in
the rocks, which helps to keep the water level stable. The occurrence of groundwater in this
terrain is extremely uncertain, due to its hilly and rugged terrain. Fluoride, nitrate, sulfate,
and calcium are the primary contaminants in the groundwater. Agriculture is the main
source of economic activity because a large percentage of the population lives in rural areas.
Irrigation practice depends on groundwater (60%) and surface water (40%) [54]. The land
use/land cover (LULC) regulates the infiltration behavior of any region, and the LULC
map of the study area shows the major cover of agriculture in the region (Figure 3). The
shortage of water bodies and streams results in an insufficient amount of water for irrigation
throughout the year. Water scarcity, the ingestion of contaminated water, unhygienic
sanitation, and several health issues are common problems facing the people of the district.
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Additionally, improper solid waste management and landfilling lead to the contamination
of groundwater.
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2.2. Groundwater Sample Collection

Groundwater sampling (n = 60) was planned to be one sample from every 60 grids
divided equally, but, in the field, this pattern was modified based on groundwater source
availability (see the Supplementary Materials (SM: Table S1)). Two sets of groundwater
samples taken from the India Mark-II samples after filtering (with 0.20 µm Millipore
membrane syringe filters) were collected in pre-washed HDPE bottles for major ions and
trace metals, respectively. To each 100 mL of collected samples, ultra-pure HNO3 was
added for the preservation of heavy metals. On-site parameters such as coordinates,
electrical conductivity (µS/cm), and pH (Consort C831) were measured through portable
meters [1]. The main cations (Ca2+, K+, Mg2+, Na+) and anions (NO3

−, F−, Cl−, SO4
2−)

in the laboratory samples were evaluated in an ion chromatograph (model: Dual channel
930 Compact IC Flex ChS/PP) and via ICP-MS for heavy metals (Fe, Cr, Cu, As, Bi, Co, Al,
and Pb). The instruments were verified for correct calibration, and the results were then
cross-checked using the charge balance error (CBE) within ± 5%. The results showed that
many samples exceeded the permissible limits prescribed by the WHO [56] and BIS [57].

2.3. Bivariate and Ternary Plots

To analyze the hydrogeochemical evolution of groundwater and the mechanisms
driving the release of ionic species, various molar ratios and bivariate plots were utilized.
Classical hydrogeochemical tools, such as Gibbs plots [58], were employed to identify
the dominant processes controlling water chemistry, including evaporation, rock–water
interactions, and precipitation. Chadha’s (1999) [59] rectangular diagram was also applied
to classify groundwater types and elucidate the prevailing weathering processes shaping
the ionic composition in the study area. These analytical approaches provide insights into
the geochemical behavior of groundwater and the factors influencing its quality.

2.4. Multivariate Statistical Approach

The study addresses the complexity of analyzing groundwater quality across multiple
sampling sites with numerous hydrochemical parameters, which constitutes a multivariate
problem [9,10,35,60]. To simplify this complexity, factor analysis (FA), which is a dimension
reduction technique, and hierarchical cluster analysis (HCA) were employed to group
those sampling sites with similar underlying hydrochemical characteristics, enabling the
classification of groundwater samples based on shared underlying processes. These sta-
tistical approaches facilitate the systematic interpretation of hydrogeochemical data and
the identification of dominant contamination sources [48,61,62]. Both FA and HCA were
normalized and standardized to a z-score [11]. Barlett’s test of sphericity and KMO were
applied, followed by a varimax rotation for FA, which yielded 5 PCs (eigenvalues > 1).
HCA is a very good correlation technique for understanding the factors affecting the hydro-
geochemistry seen in this study area. In HCA, multivariate similarity or dissimilarity has
been performed using Ward’s (1963) [63] method. This technique helps in the clustering of
samples, showing interrelation between all the samples using the variance approach [2].

2.5. Geostatistical Modeling Using ‘Indication Kriging’

The dissolved elemental concentration of F− and NO3
− has been considered herein as a

random variable [Z (x_i); iε {1. . .n}] for spatial interpolation. Each random variable has been
used to prepare a regional database transformed into a smooth continuous surface using
‘kriging’. The output is in the form of a thematic map, showing the spatial distribution of F−

and NO3
−. Kriging, a geostatistical prediction model, explains the distribution of a random

variable (z) in a geographical space (reference). Kriging adopts the regionalized variable
theory to determine the spatial continuity of the random variable (z) in a framework of
linear model expressed by the function of (a) the structural component spatial trend or
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mean, [m(xi)], (b) a spatially autocorrelated random variable (regionalized, [ε’(x_i)]), and
(c) random noise (stochastic variation, independent of a location, (ϵ) (Equation (1)).

z(xi) = m(xi) + ε′xi + ϵ (1)

The spatial autocorrelation [ε′(xi)] is the random variable dependency, based on their
spatial arrangement [z(xi)], using semivariance [γ i(h)]. Semivariance is half the variance
between all the possible random variables (average square difference between the variables,
i.e.,[z(xi) ] and [z(xi + h)], in a space separated by a lag distance (h) (Equation (2)):

γ(h) =
1

2n(h)∑
n(h)
i=1 {z(xi)− z(xi + h)}2 (2)

where γ(h) is semivariance, [z(xi)] is the value at the location (xi) of a known variable, n is
the number of pairs of sample point z(xi), and “h” represents the distance (lag distance)
between a pair of points (xi) and (x i + h).

Semivariance transforms the random variable into a continuous raster surface by
exploring its spatial behavior when distributed in a regional space, using the parameters
derived from the semivariogram plot. These parameters, i.e., nugget (Co), sill (Co + C1),
and range (C2), were estimated from the best-fitting semivariogram model. Nugget defines
the highest degree of autocorrelation; sill is the point where the best-fit curves level off,
and range is the lag distance over which random variables are spatially dependent. The
semivariance [γ(h)] derived from the best-suited semivariogram model is later substituted
into Equation (3) to derive the weights ( λi).

∑n
i=1 λiγ(xi) + ε = γ(xi) (3)

Finally, spatial prediction (z’) at an unknown location is estimated from the known
variable [ z(xi)] by introducing a weight (λ i) derived from Equations (3) and (4).

z′(x0) = ∑n
i=1 λiz(xi) (4)

However, to obtain probability-based predictions from continuous or categorical data,
a more advanced approach called indicator kriging (IK) is used. It transforms the data into
binary indicator codes based on the desirable thresholds, thereby minimizing the influence
of outliers in the data. Indicator kriging uses a desirable threshold to transform the random
variables [z(xi)] into the indicator codes [I(xi) = 0 or 1] for spatial autocorrelation. The
indicator codes were considered to be 0 if the concentration of the random variable was
below the desirable threshold: [z(xi) ≥ zth], otherwise 1. Later, spatial autocorrelation
between the indicator codes used semivariance [γ i(h)], derived from the best-fitting
semivariogram plot (Equation (5)).

γi(h) =
1

2n(h)∑
n(h)
i=1

{
x(xi; zth)− I(xi + h; zth)}2 (5)

Finally, the derived semivariance [γi(h)] is integrated with a Lagrange multiplier to
derive the weights ( λi), which are later used to generate predicted probability estimates
varying in class from 0 to 1, using Equation (6).

I′( x0; zth) = ∑n
i=1 λi I( x0; zth) (6)

The suitability of the selected semivariogram model is tested using a cross-validation
plot generated between the predicted and measured probability values. In addition, the
maximum percentage of indicator values is modeled by the semivariogram, which is
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calculated by Equation (7); here, γi(h) is the total semivariance or sill, and ε(xi) is an error
related to the nugget.

Maximum Semivariance % =
[ γi(h)]− [ε(xi )]

[γi (h)]
× 100 (7)

2.6. Human Health Risk Assessment Using the USEPA Approach

The study area, which has been identified as water-deficient, faces challenges such
as irregular monsoonal rainfall, reduced recharge capacity, declining water levels, and
intensified water–rock interactions, leading to elevated contaminant levels in aquifers.
Inadequate sanitation and water treatment render the available water unsuitable for drink-
ing, necessitating an assessment of the health risks from exposure to dissolved ions. The
human health risk assessment (HRA) evaluates the population risks associated with such
exposures. To observe human health at risk, a widely known empirical model defined
by USEPA has been used in this article. The empirical model explains the relationship
between dose response and human exposure in a contaminated environment. Humans can
be exposed to a particular contaminant via three different routes, i.e., the direct ingestion of
contaminated drinking water, absorption via the skin, and inhalation. Since the present
approach involves the assessment of human health at risk from exposure to dissolved ionic
concentrations in the drinking groundwater resources of the Mahoba area, a risk assess-
ment for the direct intake (ingestion) of drinking water has been considered here. As the
observed nitrate and fluoride levels are above the prescribed permissible limit, only these
two substances have been considered in this USEPA-based empirical model. The derived
estimates of potential health risks from exposure to fluoride and nitrate were combined
with the human population dataset to determine the spatial extent of the exposure risk
in a geographical space. The sequential formulation for USEPA-based human health risk
assessment is as follows (Equation (8)):

CDIw =
Cw .IR.EF.ED

BW.AT
(8)

where CDI is the exposure dose (mg/kg/day) of the contaminants, Cw is the contamination
of groundwater in mg/L, IR is the ingestion groundwater ratio (L/day), EF is the exposure
frequency (365 days per year), ED is the exposure length (30 years), BW is a body weight
(in kg) of approximately 60 kg, and AT denotes the average period of exposure (365 days).

To calculate the hazard quotient (HQ) using Equation (9), the estimated CDIs for
individual components have been combined with the reference dose of a particular con-
taminant (RD). The values for fluoride were collected from the integrated risk information
system, USEPA 2012, and are 0.007 mg/kg/day. When the HQ value is greater than 1, it
means that the non-carcinogenic risk is greater than is permissible.

HQw =
CDIw

R f Dw
(9)

The hazard index (HI) is used to assess the risk of a specific diversity of interest after
exposure to a mixture of chemicals. The HI values of fluoride and nitrate were calculated
using Equation (10).

HI = HQF− + HQNO3− (10)

Since the health risk assessment, as derived from the USEPA approach, is closely
linked with the human population consuming drinking water, a close approximation of
health risk estimates that is integrated with accounts of urbanization would give a precise
distribution of human health at risk. The level of urbanization in the study area was
assessed by integrating the harmonized night-time light (NTL) data from DMSP-OLS and
VIIRS with a gridded population density dataset from CIESIN [19,64]. The NTL data
represent urban intensity through night-time light emissions, but features like streetlights,
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government workplaces, parks, etc., have no population during the night-time. To address
this issue, the population density dataset is adjusted by assigning > 1,000,000 administrative
unit counts to a unit pixel. However, this approach misrepresents low-population areas
near urban centers by equating them with highly populated regions [6]. Thus, a combined
analysis of NTL and CIESIN data using Equation (11) is employed for more accurate urban
population estimates.

UI =
(NTLrescale)× (PDrescale)

Total Area
(11)

To assess the human health risk in the studied region, the world gridded population
datasets from the University of Columbia (census) were integrated with calculated HI
values to create a risk map using Equation (12).

Human Health Risk Index (HHRI) =
(UI)× (HI)
Total Area

(12)

An overview of the methodology adopted in the present study is shown in Figure 4.
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3. Results and Discussion
3.1. Hydro-Geochemistry and Water Type

Most of the groundwater samples appeared to be moderately mineralized and did
not appear to vary much in terms of their major ion chemistry across spatial scales, as
reflected in their skewness values in Table 1. However, when compared with WHO
standard, it is evident that 5%, 26.7%, and 43.3% of the groundwater samples for pH,
F−, and NO3

− exceeded the recommended levels in water for drinking purposes. The
consumption of fluoride-rich groundwater in the long term may lead to various skeletal
health ailments, while NO3

− poisoning leads to blue baby syndrome, which has been
reported around the globe. Therefore, it is vital to understand the release mechanism of
these inorganic contaminants, which have proved to be fatal to human life and may lead to
socioeconomic instabilities. The hydrogeochemical facies analysis of groundwater is an
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important technique using Chadha’s (1999) rectangular plot, by which we understand the
groundwater facies as being in four zones. Zone 1 corresponds to Ca-Mg-HCO3 water types;
this type of water facies generally results in recently recharged groundwater water. The
most dominating water facies, as per the Chadha rectangular plot (Figure 5), is Ca-Mg-Cl,
which describes groundwater with a considerably long residence time, thereby facilitating
ion exchange processes in the aquifer system. The peculiar water type associated with the
high F− value is Na-HCO3, which shows the relationship between the release of F− and
Na+ under alkaline conditions from the silicate-bearing minerals found abundantly in the
study area [65].

Table 1. Descriptive statistics of the various hydrochemical parameters and their comparison with
the World Health Organization-recommended limit (WHO 2017).

Parameter Mean Min Max Std. Dev Skewness WHO (2017) % Exceeding

pH 7.7 6.7 8.9 0.5 0.2 6.5–8.5 5.0
EC (µS/cm) 907.3 628.0 1247.0 131.8 0.0

CO3
2− (mg/L) 14.6 0.0 41.0 7.3 1.3

HCO3
− (mg/L) 206.7 107.0 380.0 58.2 0.3

F− (mg/L) 1.4 0.5 3.0 0.5 1.0 1.5 26.7
Cl− (mg/L) 95.2 19.7 215.0 35.2 1.3

SO4
2− (mg/L) 59.7 10.0 131.0 15.6 1.0 200–400

NO3
− (mg/L) 55.6 20.1 118.1 27.2 0.9 50.0 43.3

Na+ (mg/L) 70.6 37.5 97.8 16.5 −0.1
K+ (mg/L) 1.2 0.0 2.8 0.6 0.3 12.0

Mg2+ (mg/L) 25.6 5.3 40.2 7.6 −0.5
Ca2+ (mg/L) 68.2 41.1 89.9 11.8 −0.1
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3.2. Solute Acquisition Processes

The source of solute in groundwater can generally be categorized as geogenic, an-
thropogenic, or natural-borne. The chemistry of groundwater evolves through various
processes, including an interaction between the groundwater and aquifer matrix, human
activities, or a combination of these factors [33]. When the alkalinity of groundwater is
high, the hydroxyl ion readily replaces the fluoride ion in minerals such as mica, elite, and
amphiboles, releasing F- into the groundwater [23]. Groundwater chemistry evolves due to
the continuous interactions of recharging water and soil in the aquifer matrix, chemicals
from anthropogenic activities, and other factors [33]. Furthermore, many sodium and
bicarbonate minerals increase the concentration of fluoride in the groundwater. When
calcium-rich groundwater transforms into sodium-rich groundwater, the probability of flu-
oride solubility increases [23]. Rock-dominant processes contribute the major ion contents
to the groundwater samples for the present study. An increase in Na+ + K+/Na+K+ + Ca2+

(Figure 6a,b) is the result of an increase in the concentration of monovalent cations due to
the presence of silicate minerals in the aquifer matrix (Equations (13) and (14)).
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The atmospheric input in the solute/salts dissolved in subsurface water can be under-
stood by their ionic ratio to Cl− [47]. In the present setting, the mean ratios of K+/Cl− and
Na+/Cl− of groundwater are 1.68 and 0.03, respectively, which are far higher than marine
aerosols (Na+/Cl− = 0.85 and K+/Cl− = 0.017), showing solute derived from host rock
rather than atmospheric direct input [1,3,46]. The Na+/Cl− level for 86% of the groundwa-
ter samples is greater than 1, clearly demonstrating the presence of other sources of Na+

than halite dissolution (Figure 7a). The molar ratio Ca2+/Mg2+ for 28% of the groundwater
samples of >2 depicts the importance of silicate weathering. However, the significant sam-
ples fall within the molar ratio (Ca2+/Mg2+) > 1 < 2, which might be due to the prevalence
of Ca-rich silicate minerals or the ion exchange process in the substratum. The contribution
of monovalent cations to the total cation can be understood through the Na+ + K+ vs. total
cation process (Figure 7b). A significant amount of the groundwater samples are clustered
around the Na+ + K+ = 0.5 × total cation (TZ+) calculation, identifying the source of these
ions (Na+ + K+) as silicate weathering [66].



Water 2024, 16, 3683 12 of 25

Water 2024, 16, 3683 13 of 27 
 

 

Ion exchange processes involve the interaction of groundwater with clay minerals, 
which involves either Na+ from the clay going into the groundwater or in a reverse ion 
exchange, with Na+ from groundwater replacing Ca2+ and Mg2+ from the aquifer matrix 
(Figure 7d). The present study area portrays the ion exchange reactions contributing metal 
cations to the groundwater. Furthermore, Figure 7d shows a negative alignment with a 
slope of −0.9, confirming the role of exchange reactions. The result also found that 43.3% 
of the groundwater samples exceeded the recommended value for nitrate (Table 1). Figure 
7e displays the groundwater samples rich in NO3− but usually low in HCO3− concentration, 
which might be due to being recently recharged through irrigation return. Furthermore, 
Figure 7f depicts elevated contents of NO3−/Cl− in groundwater samples that have resulted 
from the use of nitrogen-based fertilizers contaminating the shallow groundwater at the 
local scale, although less prominent at the regional scale [11]. The F-rich groundwater is 
associated with low to moderate Ca2+ + Mg2+/Na+ + K+ under alkaline conditions (Figure 
7g). The bivariate plot of the saturation index of calcite SIcalcite vs. SIfluorite (Figure 7h) shows 
most of the groundwater samples falling in the fourth quadrant of the calcite-saturated 
and fluorite-undersaturated zone. This explains the removal of Ca2+ through CaCO3 
precipitation and the further dissolution of CaF2 (fluorite) that is present in the aquifer 
matrix through the following reaction (Equation (16)). 

CaF2 + 2HCO3− = CaCO3 (precipitate) + 2F− + H2O + CO2 (16)

 

Water 2024, 16, 3683 14 of 27 
 

 

 

Figure 7. (a–h): Bivariate plots demonstrating the solute acquisition process: (a) Na+ vs. Cl−; (b) TZ+ 
vs. Na+ + K+; (c) SO42− + HCO3−vs Mg2+ + Ca2+; (d) TZ+ vs. Na+ + K+; (e) Na+-Cl− vs. Ca2+ + Mg2+-HCO3−-
SO42−; (f) HCO3−vs NO3−; (f) Cl− vs. NO3−/Cl−; (g) F− vs. Ca2+ + Mg2+/Na+ + K+; (h) the saturation index 
(calcite) vs. the saturation index (fluorite). 

3.3. Multivariate Statistical Approach 

3.3.1. Factor Analysis 

The factor analysis extracted five principal components with an eigenvalue > 1 for 
retention (Figure 8a), after varimax rotation with a total variance of 74% in the dataset 
(Table 2). The Kaiser–Meyer–Olkin sampling adequacy value for this study was 0.58, and 
Bartlett’s test of sphericity test was < 0.05, which is well suited for the PCA. Factor 1 
accounted for 32.3% of the total variance and was positively loaded with Na+, Ca2+, HCO3−, 
and EC, signifying the control of these ions in mineralization, and, for this region, this can 
be attributed to the geogenic factor. However, a few of the samples were also loaded with 
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Groundwater samples falling below the 1:1 line in the bivariate plot of (Ca2+ + Mg2+) vs.
(HCO3

− + SO4
2−) indicate a contribution from sources of non-carbonate origin (Figure 7c),

with the excess HCO3
−/SO4

2− balanced by alkali cations (Na+ + K+). Similarly, samples
falling above the equi-line show an excess of cations that would be balanced out by Cl−

and other present anions. The molar ratio [(Ca2+ + Mg2+)/HCO3
−] value was found

to be less than 1, whereas the unbalanced HCO3
− (left unbalanced by Ca2+ + Mg2+) is

supposed to be balanced by Na+ + K+, which is derived from silicate weathering. The
lithology showing carbonate dominance has a higher Ca2+/Na+ ratio, Mg2+/Na+ ratio,
and HCO3-/Na+ ratio of 50, 10, and 120, respectively, but these ratios abruptly decrease in
the silicate end members [67]. In the study area, Ca2+/Na+ = 1.16, Mg2+/Na+ = 0.73, and
HCO3

−/Na+ = 1.14 show a high probability of silicate weathering. Few of the established
thermodynamics-equilibrated equations responsible for the elevated concentration of these
ions in the groundwater can be understood through Equations (13)–(15).

NaAlSi3O8 + 20H2O + 2CO2(g) → Na+ + 2HCO−
3 + 4H4SiO4 + Al2Si2O5(OH)4 (13)

KAlSi3O8 + 20H2O + 2CO2(g) → K+ + 2HCO−
3 + 4H4SiO4 + Al2Si2O5(OH)4 (14)

Ca2

(
Mg, Fe)4 Al2Si7O22

(
OH)2 + 20H2O + 2CO2(g) → 2Ca2+ + 4

(
Mg, Fe)2+ + 2HCO−

3 + 4H4SiO4 + Al2Si2O5(OH)4 (15)

Ion exchange processes involve the interaction of groundwater with clay minerals, which
involves either Na+ from the clay going into the groundwater or in a reverse ion exchange,
with Na+ from groundwater replacing Ca2+ and Mg2+ from the aquifer matrix (Figure 7d).
The present study area portrays the ion exchange reactions contributing metal cations to
the groundwater. Furthermore, Figure 7d shows a negative alignment with a slope of −0.9,
confirming the role of exchange reactions. The result also found that 43.3% of the ground-
water samples exceeded the recommended value for nitrate (Table 1). Figure 7e displays the
groundwater samples rich in NO3

− but usually low in HCO3
− concentration, which might

be due to being recently recharged through irrigation return. Furthermore, Figure 7f depicts
elevated contents of NO3

−/Cl− in groundwater samples that have resulted from the use
of nitrogen-based fertilizers contaminating the shallow groundwater at the local scale,
although less prominent at the regional scale [11]. The F-rich groundwater is associated
with low to moderate Ca2+ + Mg2+/Na+ + K+ under alkaline conditions (Figure 7g). The
bivariate plot of the saturation index of calcite SIcalcite vs. SIfluorite (Figure 7h) shows most
of the groundwater samples falling in the fourth quadrant of the calcite-saturated and
fluorite-undersaturated zone. This explains the removal of Ca2+ through CaCO3 precip-
itation and the further dissolution of CaF2 (fluorite) that is present in the aquifer matrix
through the following reaction (Equation (16)).

CaF2 + 2HCO3
− = CaCO3 (precipitate) + 2F− + H2O + CO2 (16)

3.3. Multivariate Statistical Approach
3.3.1. Factor Analysis

The factor analysis extracted five principal components with an eigenvalue > 1 for
retention (Figure 8a), after varimax rotation with a total variance of 74% in the dataset
(Table 2). The Kaiser–Meyer–Olkin sampling adequacy value for this study was 0.58,
and Bartlett’s test of sphericity test was < 0.05, which is well suited for the PCA. Factor
1 accounted for 32.3% of the total variance and was positively loaded with Na+, Ca2+,
HCO3

−, and EC, signifying the control of these ions in mineralization, and, for this region,
this can be attributed to the geogenic factor. However, a few of the samples were also loaded
with NO3

−, derived through human-induced activities. Factor 2 contributed to 12.3% of
the total variance and was in positive loading with Cl−, Ca2+, and K+; a few groundwater
samples were highly loaded with NO3

− concentration for this PC2 (Figure 8b). Factor 3
accounted for 11.5% of the variance, negatively loaded with pH and positively loaded with
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Ca2+ and SO4
2−, while factors 4 and 5 accounted for 9.4% and 8.5% of the total variance,

respectively. It has been noted that both geogenic and anthropogenic factors influence
groundwater chemistry; however, based on the factor scores, geogenic causes seem to
dominate in the present study area.
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Table 2. Principal components (PCs) extracted through FA, with an eigenvalue of >1.
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pH 0.0 −0.1 −0.7 0.2 0.0
EC (µS/cm) 0.7 0.4 0.4 −0.1 0.3

CO3
2− −0.4 −0.3 0.0 0.6 0.2

HCO3
− 0.8 −0.2 0.1 0.0 0.3

F− −0.1 −0.1 0.2 0.0 −0.7
Cl− 0.2 0.9 0.1 −0.2 0.1

SO4
2− 0.2 0.0 0.8 0.3 0.0

NO3
− −0.2 −0.1 0.1 −0.8 0.3

Na+ 0.8 0.3 0.1 0.1 −0.1
Ka+ 0.0 0.7 0.1 0.4 0.3

Mg2+ 0.1 0.2 0.3 −0.2 0.8
Ca2+ 0.4 0.5 0.6 −0.3 0.0

% Variance 32.3 12.3 11.5 9.4 8.5
Cumulative % 32.3 44.7 56.2 65.6 74.0

3.3.2. Hierarchical Cluster Analysis

Hierarchical clustering (HCA) was performed in both the row and column of the
computed data matrix, and the data values were transferred to the color scale, which dis-
plays how the magnitude of the physicochemical parameters vary across each groundwater
sample; HCA clustered them into two groups: cluster 1 and cluster 2. Since most of the
variance in the dataset is attributed to Factors 1 and 2, which were then plotted with the
samples to check the influence of these factors on the groundwater samples (Figure 8b),
two clusters were retained for this study. Apart from these two samples (WL_35 and
WL_36), the HCA result aligns with the result of the factor analysis (Figure 9). The row and
column of the dendrogram correspond to physicochemical parameters and water samples,
respectively. It is evident that the groundwater samples of cluster 1 are more mineralized
concerning the HCO3

−, Mg2+, and Na+ ions resulting from geogenic processes, as shown
in the heatmap (Figure 9). However, a few of the groundwater samples also show the
significant loading of NO3

−, Cl−, and SO4
2− for cluster 1, resulting from human-induced

activities. In the field study, the samples of cluster 1 mostly fall in village/agricultural
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lands that are affected by nitrate fertilizers. Cluster 2, on the other hand, is less mineralized
compared to cluster 1, in terms of the major ions except NO3

− (Table 3; Figure 9). The
sample locations of cluster 2 are further away from agricultural lands as they fall in or
around townships, so these groundwater samples reflect lower nitrate contamination than
those from cluster 1 locations. It is evident that most of the groundwater samples influenced
by Factor 1 (Figure 8b) fall into cluster 1 (Figure 9). Thus, cluster 1 groundwater samples
are comparatively more mineralized than those in cluster 2.
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Table 3. HCA resulted in two clusters, with their respective descriptive statistics.

Cluster 1 (n = 31) Cluster 2 (n = 29)

Parameter Min Max Mean Std Dev Min Max Mean Std Dev

CO3
2− 6.0 48.0 15.3 8.9 6.0 48.0 19.2 8.9

HCO3
− 97.0 386.0 249.2 60.8 113.0 289.0 187.2 38.2

F− 0.6 2.5 1.4 0.5 0.5 3.0 1.4 0.5
Cl− 60.0 195.0 94.3 35.1 0.3 82.9 54.8 21.1

SO4
2− 10.0 131.0 60.6 18.2 10.0 79.9 56.9 15.5

NO3
− 30.6 118.1 55.2 27.3 20.1 106.1 55.9 27.4

Na+ 37.5 97.8 81.1 13.6 42.3 89.2 59.4 11.2
K+ 0.1 2.8 1.3 0.6 0.0 2.0 1.1 0.5
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Table 3. Cont.

Cluster 1 (n = 31) Cluster 2 (n = 29)

Parameter Min Max Mean Std Dev Min Max Mean Std Dev

Mg2+ 5.3 40.2 27.9 7.4 11.1 36.4 23.2 7.3
Ca2+ 56.1 89.9 76.5 8.6 41.1 72.6 59.4 7.4
pH 6.7 8.4 7.6 0.4 6.9 8.9 7.8 0.5
TDS 559.0 802.0 666.9 53.8 415.0 638.0 523.6 54.9
EC

(µS/cm) 871.0 1247.0 1008.5 77.8 628.0 981.0 799.2 81.6

3.4. Spatial Distribution of F− and NO3
−

The concentrations of fluoride and nitrate have been spatially plotted, showing sig-
nificant variations within the current study area. In the spatial interpolation process, the
dissolved elemental concentrations of nitrate and fluoride were considered as random
variables, and, using ordinary kriging, the data were transformed into a continuous surface.
The thematic map shows the spatial distribution of fluoride, where the maximum and
minimum concentrations in groundwater are 2.57 and 0.29, respectively, with an average
value of 0.98 mg/L. The concentrations of fluoride in the various samples (~27%) exceed the
permissible limits of the WHO, as has been identified in the Charkhari region. The alkaline
nature of water is responsible for anionic exchanges, which may lead to the enhancement
of fluoride concentrations in groundwater. The fluoride may be geogenic in origin, because
of apatite weathering. The Bundelkhand gneissic complex has granitic rocks; the fluoride
comes from the fluorapatite in granitic rocks and from the chemical dissolution of fluoride
in groundwater by CaF2. The hydroxide ion can replace the fluoride ion due to its negative
charge and similarity in size. When the alkalinity of groundwater is high, hydroxyl ions
readily replace the fluoride ions. About 70% of the total study area contains fluoride at its
highest severity, which is in moderate concentrations (Figure 10a; Table 4). The Charkhari
block has a relatively higher concentration of fluoride than other blocks like Panwari,
Kabrai, and Jaitpur.
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Table 4. Spatial distribution of F− and NO−
3 from ordinary kriging.

Index
Class

F−

Class
NO−

3

Area (km2) Area (%) Area (km2) Area (%)

Very Low
Concentration 0–0.6 1.24 0.043 0–25 519.41 18.32

Low Concentration 0.6–1.2 161.86 5.613 25–50 793.07 27.97
Moderate

Concentration 1.2–1.8 1992.71 69.092 50–75 629.98 22.22

High Concentration 1.8–2.4 648.25 22.48 75–100 471.35 16.63
Very High

Concentration 2.4–3 79.94 2.772 100–125 421.22 14.86
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The nitrate in groundwater primarily originates from agricultural fertilizers, with
additional contributions from nearby waste, treatment plants, dairies, and domestic ef-
fluents. In the district, nitrate concentrations range from 20.08 to 118.09 mg/L, with an
average of 55.57 mg/L. Spatially, higher concentrations are observed in the central region,
following a north–south pattern, gradually decreasing towards the eastern and western
boundaries (Figure 10b; Table 4). The Kulpahar and some parts of the Charkhari blocks
are more affected by agricultural practices throughout the year. The fertilizer input is the
major factor of nitrate contamination, but spatial maps of fluoride and nitrate are somehow
oppositely correlated because fluoride is predominantly enhanced in an alkaline medium,
whereas nitrate creates an acidic medium. However, the correlation cannot be established
perfectly as fluoride is solely geogenically sourced, whereas nitrate is anthropogenically
sourced, and their dominance primarily depends on the respective source concentration
efficiency of contamination.

3.5. Semivariogram Models and the Predicted Probability Distribution of F− and NO3
−

As mentioned, of all the measured variables, the dissolved concentration of F− and
NO3 was found to be above the WHO 2017 permissible limit. The concentration of F− and
NO3

− have been considered as random variables and were used to determine the predicted
probability of risk-quantified estimates at unsampled locales using indicator kriging (IK).
IK is a non-parametric approach that uses a structural component (spatial trend), spatially
autocorrelated random variable (auto-correlation), and random noise (stochastic variation)
for interpolation. The random variables (F− and NO3

−) are transformed into indicator
codes, and the spatial structure of the codes is best fitted to the experimental semivariogram
model. The best-fit semivariogram model helps estimate the value of semivariogram pa-
rameters, i.e., nugget (Co), sill (C0 + C1), and range (C2, Lag distance), which later provides
the value of semivariance (γ(i)). Integrating the weights (λi) to the obtained semivariance
value resulted in thematic maps depicting the spatial distribution of the projected proba-
bility of NO3 and F. The predicted probability of F− and NO3

−, as determined from the
semivariogram model, shows variable classes ranging between 0 and 1.

The best-fitting experimental semivariogram model for F− and NO3
− is exponential

and indicates the nugget (C0) variance as 0. The zero-nugget variance suggests that
the random variables (F− and NO3

−) that have been transformed to the indicator codes
are significantly spatially auto-correlated within the range (C2) of 27.65 and 56.22 km,
respectively (Figure 11a,b; Table 5). In addition, a small nugget value also suggests that
the indicator kriging method chosen to determine the predicted probability of the random
variable performs well. However, the range variation (the lag distance upon which spatially
autocorrelated indicator codes are present) given by the exponential semivariogram models
of F− and NO3

− indicate various sources of F− and NO3
−. The maximum value of the

semivariance, i.e., the sill (C0 + C1), for a semivariogram model of F− and NO3
− are

24.58 and 20.74, respectively, which values are relatively higher than the nugget variance
(Figure 11a,b; Table 5). The exponential semivariogram successfully models the random
variables defined by the indicator codes, with no anisotropy seen. The prediction error
and cross-validation for IK were achieved through the predicted mean error (PMR), root
mean square predicted standardized error (RMS-PSE), root mean square error (RMS), and
average standard error (ASE) (Figure 12a,b and Table 6). The predicted probability of F−

and NO3
−, as determined from IK, have been classified into 0.0–0.2 (very low), 0.2–0.4

(low), 0.4–0.6 (moderate), 0.6–0.8 (high), and 0.8–1.0 (very high), based on their predicted
concentration spatial distribution (Figure 13a,b) and (Table 7). The results indicated that
most of the areas around Kulpahad and Charkhari, covering ~14–16% of central Mahoba
district, fall within the high to very high probability class. The areas occupied by the high to
very high probability classes of F− and NO3

− mostly fall within the rural sector and have
negligible human populations, suggesting that the high predicted probability of NO3

−

can be exclusively attributed to the use of fertilizers on farms. The regional groundwater
flow in the study area could be the cause of the probability distribution’s steady reduction
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from the southwest to the northeast directions. As discussed earlier, nitrate concentration
decreases gradually from the central to the eastern and western ends of the district.
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Figure 11. (a,b): Best-fitted experiential semivariogram plot F− and NO−
3 concentration.

Table 5. Semivariogram parameters (nugget, sill, and range) derived from the best-fitting
theoretical model.

Method Transformed
Variables

Semivariogram
Model Threshold

Semivariogram Parameters
Anisotropy

Nugget (C0) Sill (C0 + C1) Range (C2)

IK F Exponential 1.5 0 24.58 27.65 No
IK NO3 Exponential 50 0 20.74 56.22 No
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The hazard index (HI) denotes the sum fraction of the non-carcinogenic contaminants 
measured in drinking water and is used to estimate the risk of health effects [30,68]. 
Without any means of water treatment, people living in rural India are compelled to 
consume contaminated groundwater for potable use. HI from exposure to combined F− 
and NO3− in drinking water can be calculated using the USEPA approach. This approach 
is empirical and combines standard body mass and exposure time, as used in the present 
study. The USEPA recommends estimating the health risks individually for males, 
females, and infants [69]. However, as no record of demographic data is available for the 
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Table 6. Prediction error and cross-validation results for IK.

Method Transformed
Variables

Semivariogram
Model

Predicted
Mean Error

(PME)

Root Mean Square
Predicted

Standardized Error
(RMS-PSE)

Root Mean
Square Error

(RMS)

Average
Standard Error

(ASE)

IK F Exponential 0.004 0.97 0.38 0.39
IK NO3 Exponential 0.012 0.93 0.42 0.45
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Table 7. Predicted probability distribution of F− and NO−
3 from IK.

Index Class
F− NO−

3

Area (km2) Area (%) Area (km2) Area (%)

Very Low Probability 0–0.2 1811.38 63.89 1047.62 36.95
Low Probability 0.2–0.4 405.35 14.30 604.09 21.31

Moderate Probability 0.4–0.6 238.08 8.40 426.02 15.03
High Probability 0.6–0.8 184.7 6.51 304.38 10.74

Very High Probability 0.8–1.0 195.52 6.90 452.92 15.98

3.6. Health Risks from Exposure to F− and NO3
−

The hazard index (HI) denotes the sum fraction of the non-carcinogenic contaminants
measured in drinking water and is used to estimate the risk of health effects [30,68].
Without any means of water treatment, people living in rural India are compelled to
consume contaminated groundwater for potable use. HI from exposure to combined F−

and NO3
− in drinking water can be calculated using the USEPA approach. This approach

is empirical and combines standard body mass and exposure time, as used in the present
study. The USEPA recommends estimating the health risks individually for males, females,
and infants [69]. However, as no record of demographic data is available for the study area,
the urbanization index (UI) derived from the human population data from the CIESIN and
DSMP night-time light data has been used to estimate the human health risk from exposure
to F− and NO3

− in the drinking water (Figure 14).
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Figure 14. Urbanization index (UI) derived from the integration of DMSP-OLS, VIIRS, and the
gridded population density dataset from CIESIN.

The derived HI (Figure 15a) indicates the spatial distribution of risk due to the con-
sumption of F− and NO3

−-contaminated water. The HI is classified into five classes, from
very low to very high. The health risk is potentially alarming in the central parts around
Kulpahar and Charkhari, indicating that ~23% of the total area is above high health risk
(Figure 13; Table 8). The human health risk index classes correspond to the geographic
distribution of the probability of threats to human health. The regional distribution of
the HI, as predicted by Equation (10), has been associated with the urbanization index
(UI), yielding a composite health risk map (Figure 15b). The health risk map calculates
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the impacted area and the urban population affected due to contamination by F− and
NO3

− ions exceeding acceptable levels. The high fluoride and nitrate levels in groundwater
have a deleterious influence on human health. The human health risk map shows the
distribution of health risks to the human population from exposure to a prolonged intake
of water contaminated with F− and NO3

−. The derived human health risk map has been
classified into five classes from 0–15, representing very low to very high health risks, respec-
tively (Figure 15b; Table 9). The results indicated that the areas lying towards the east and
southeast show a high risk to human health from exposure to contaminated drinking water.
Since HHRI is closely linked with the spatial distribution of urbanization (high population
density in the east and southeast), the health risk from exposure to contaminated drinking
water is also high in the east and southeast of the study area. The gradual decrease in the
health risk from the south and southeast to the west is due to the negligible population
density in most of the populated area.
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Table 8. Integrated hazard index (HI), derived from the USEPA 2012 approach.

Class Index Area (km2) Area (%)

20–40 Very Low Risk 897.24 31.65
40–60 Low Risk 698.34 24.63
60–80 Moderate Risk 594.45 20.97

80–100 High Risk 486.18 17.15
100–120 Very High Risk 158.82 5.60

Table 9. Human health risk index (HHRI) distribution from exposure to F− and NO−
3 .

Class Risk Index Index Area (km2) Area (%)

0–3 I Very Low Health Risk 2168.43 76.49
3–6 II Low Health Risk 523.10 18.45
6–9 III Moderate Health Risk 74.65 2.63

9–12 IV High Heath Risk 44.32 1.56
12–15 V Very High Health Risk 24.51 0.86

The findings of this study have significant implications for regions facing similar
groundwater contamination challenges. Across India, especially in other parts of the
Indo-Gangetic Plain and peninsular regions, geogenic fluoride contamination and nitrate
pollution from agricultural runoff are pervasive (Kumar and Singh, 2022). Globally, rural
areas in arid and semi-arid zones, such as in Sub-Saharan Africa, parts of China, and
Latin America, also encounter groundwater contamination due to analogous geogenic and
anthropogenic factors [14,30]. This study’s integrated approach, employing geospatial,
statistical, and health risk assessment techniques, provides a replicable framework for
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identifying contamination hotspots and prioritizing areas for intervention. Policymakers
and water resource managers can leverage this methodology to design targeted mitigation
strategies, fostering sustainable groundwater use and public health safeguards worldwide.

4. Limitations and Constraints

The Mahoba district, representing the present study area, is characterized by gently
sloping terrain predominantly composed of granite, granodiorite, granitic gneisses, and
dolerite, due to its location within the Bundelkhand Massif Terrain. Consequently, the study
area primarily comprises impermeable hard rock formations, where groundwater occurs
mainly through fracture filling (secondary porosity), making it widely distributed across
the region [70]. Given the hard rock-dominated nature of the region, the groundwater
sampling strategy for this study was carefully designed, based on (a) the accessibility of the
region, (b) groundwater usage by the locals, and (c) avoiding oversampling and ensuring
maximum geological heterogeneity.

One of the primary objectives of this study was to identify the controlling factors
influencing groundwater chemistry and its spatial variability, using multivariate statistical
approaches and geostatistical modeling. Therefore, the samples were collected in a stratified
random sampling manner to minimize the uncertainty in the space. Thus, the total number
of samples collected (n = 60) through the random sample collection method not only
covered the maximum area (geology), as outlined in Figure 1 of this manuscript, but was
also uniformly distributed, making it an excellent choice for any interpolation techniques
to be adopted. Also, since the area has uniform aquifer conditions (as represented by rocky
aquifers in a granitic complex), the groundwater geochemistry in the study area is the same
throughout the subsurface region at different levels. This strengthens the idea of applying
the interpolation technique for use at a larger spatial extent.

For any interpolation method, the number of samples to be collected and their dis-
tribution in space are critical, as this controls the accuracy of the measurement. In the
present approach, the number of samples (n = 60) collected was subject to the availability
of India Mark-II hand pumps. However, we made sure that all the samples were collected
in a stratified random sampling method and so should have a uniform distribution (i.e.,
they were collected from all parts of the study area), which was a prerequisite of any
interpolation method to be performed.

Each sample was analyzed for fluoride (F−) and nitrate (NO3
−), which were later

considered random variables. To transform these random variables into a continuous raster
surface (spatial distribution), a technique called “Kriging”, which is a statistically based
“optimal” estimator of spatial variables, was adopted. Kriging uses regionalized variable
theory to explain the autocorrelation between random variables through a semivariogram
function. The best interpolation method depends on the character and assumptions of data
behavior. Therefore, in the present approach, several methods have been explored and
selected, based on semivariogram parameters and cross-validation estimates for different
kriging methods, showing the relationship between the measured and predicted indicator
values of F− and NO3

− concentrations. The optimal interpolator (indicator kriging (IK); a
co-kriging approach is found most applicable in the present case) was chosen, based on
a semivariogram parameter called “nugget” that indicates an initial semivariance when
autocorrelation is highest (intercept), or just no uncertainty where the distance is close to 0
(ε”). The best fit of experimental semivariogram model for F− and NO3

−) was exponential
and indicated a nugget variance of 0 (Figure 11a,b; Table 5). In addition, IK was used to
measure the uncertainty or random noise representing stochastic variation independent
of sample location. IK allowed the probability-based prediction of F− and NO3

−) by
transforming them into binary indicator codes, based on thresholds.

5. Conclusions and Ways Forward

The area of the study region, characterized by a semi-arid climate and a gneissic-
granitic geological complex, faces critical groundwater quality and quantity challenges.
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Groundwater depletion exacerbates strong rock–water interactions, leading to higher
concentrations of solutes such as fluoride and contributing to the deterioration of water
quality. Detailed hydrogeochemical analysis showed that the primary water types are
Na-HCO3, Ca-HCO3, Ca-Mg-HCO3, and Ca-Na-HCO3. These chemical signatures suggest
that processes such as silicate weathering and reverse ion exchange mainly drive geogenic
contamination. Agriculture dominates the regional economy, but the thin alluvium cover
limits productivity, prompting the frequent usage of chemical fertilizers. This practice
directly contributes to elevated nitrate contamination in the groundwater. Statistical analy-
sis through factor analysis extracted five principal components of contamination sources:
(1) geogenic mineralization (32.3% of the total variance), (2) anthropogenic sources (12.3%),
and (3–5) mixed sources. Hierarchical cluster analysis (HCA) corroborated these findings,
linking the high nitrate levels in cluster 1 to agricultural activities, while cluster 2, located
away from farmland, exhibited lower contamination. Notably, 30% of the samples had
high fluoride levels beyond the WHO-permitted limits. A human health risk assessment
was conducted to evaluate non-carcinogenic risks, using the hazard quotient of fluoride
and nitrate exposure through drinking water. The urban populations exhibited the highest
risk probability, due to higher groundwater reliance and population density. However, the
current risk assessment lacked a comprehensive analysis of demographic variables such as
age, sex, and rural–urban differences, which could provide a more detailed understanding
of the health impacts. Based on the above findings, the following mitigation strategies have
been proposed:

1. Implementing rooftop rainwater harvesting and recharge wells can dilute fluoride
concentrations, lowering them to permissible levels.

2. Affordable government-subsidized methods can help to mitigate fluoride and nitrate
contamination effectively.

3. Promoting hybrid crops, precision irrigation (e.g., sprinklers), and optimal groundwa-
ter use can reduce nitrate runoff and preserve groundwater quality.

4. Raising awareness about water quality and conservation can encourage better prac-
tices and informed decision-making.

By integrating geospatial and statistical approaches with sustainable practices, these
measures aim to address groundwater contamination and ensure long-term water security
in the studied region and can be implemented on a national scale.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16243683/s1, Table S1: Detailed geochemical analysis of the
groundwater samples (n = 60).
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