
Review

Turning trash into treasure: Exploring the potential of AI in municipal 
waste management - An in-depth review and future prospects

Asmae El jaouhari a, Ashutosh Samadhiya b, Anil Kumar c,d,*, Eyob Mulat-weldemeskel e,  
Sunil Luthra f, Rajesh Kumar g

a Laboratory of Technologies and Industrial Services, Sidi Mohamed Ben Abdellah University, Higher School of Technology, Fez, Morocco
b Jindal Global Business School, OP Jindal Global University, Sonipat, India
c Guildhall School of Business and Law, London Metropolitan University, London, N7 8DB, UK
d Department of Management Studies, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
e Guildhall School of Business and Law, London Metropolitan University, London, UK
f ATAL Cell, All India Council for Technical Education (AICTE), Delhi, India
g Amity School of Business, Amity University, Patna, India

A R T I C L E  I N F O

Keywords:
Artificial intelligence
Conceptual framework
Municipal waste
Optimization
Performance metrics
Systematic literature review

A B S T R A C T

Rapid urbanization, economic expansion, and population growth have increased waste generation in many 
nations worldwide. Research on municipal waste management (MWM) is moving towards new frontiers in ef-
ficiency and applicability due to the growing amount of data being collected in these systems and the conver-
gence of various technological applications; artificial intelligence (AI) techniques present novel and creative 
alternatives for MWM. Even though much research has been conducted in this field, relatively few review studies 
assess how advancements in AI techniques can contribute to the sustainable advancement of MWM systems. 
Furthermore, there are discrepancies and a dearth of knowledge regarding the operation of AI-based techniques 
in MWM. To close this gap, this study conducts a thorough review of the relevant literature with an application of 
preferred reporting items for systematic reviews and meta-analyses-based methods, examining 229 peer- 
reviewed publications to explore the role of AI in different MWM areas, such as waste characteristics fore-
casting, waste bin level monitoring, process parameter prediction, vehicle routing, and MWM planning. The main 
AI techniques and models used in MWM optimization, as well as the application areas and stated performance 
metrics, are all thoroughly analyzed in this review. A conceptual framework is proposed to guide research and 
practice to take a holistic approach to MWM, along with areas of future study that need to be explored. Re-
searchers, policymakers, municipalities, governments, and other waste management organizations will benefit 
from this study to minimize costs, maximize efficiency, eliminate the need for manual labor, and change the 
approach to MWM.

1. Introduction

Rapid urbanization and population growth have led to an explosion 
in the worldwide population with the resulting generation of enormous 
amounts of waste (Zhang et al., 2024). A report published by the World 
Bank1 projects an annual waste generation of 3.88 billion tonnes by 
2050, an increase from 2.24 billion tonnes in 2020. Worldwide, 
approximately 43% of mismanaged solid waste is disposed of by incin-
eration, open burning, illegal waste dumps, and unmonitored landfills 

(Andeobu et al., 2022a; Ihsanullah et al., 2022). The increased genera-
tion and composition complexity in MWM is widely acknowledged to 
have caused significant deterioration in public health, water quality, and 
air quality (Bhattacharya et al., 2024). These are also linked to climate 
change (e.g. methane gas release). Thus, one of the most significant and 
difficult problems facing the world today is effective and efficient MWM 
(Albizzati et al., 2024).

As a vital component of a contemporary city, MWM works to protect 
the entire ecological environment and prevent resource waste in 
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addition to enhancing the quality of life for urban residents 
(Naveenkumar et al., 2023). The rapid growth in resource consumption 
and the increasing severity of environmental issues make it imperative 
to classify waste and apply appropriate treatments (such as composting, 
incineration, landfilling, recycling, and so on) for different types of 
waste (Pinhal Luqueci Thomaz et al., 2023). Waste should be sorted as 
soon as possible to maximize the amount of recycled materials and lower 
the likelihood of contamination from other waste materials (Qiang et al., 
2024). Under the conventional MWM system, residents are in charge of 
sorting the garbage generated in their own homes. To ensure that waste 
is separated correctly at source, it is difficult to rely only on public 
awareness and publicity (Yoon and Lee, 2024). The entire MWM system 
may be rendered ineffective if citizens do not sort their waste following 
the source separation plan (Rafiquee and Shabbiruddin, 2024). 
Furthermore, the majority of conventional waste processing techniques, 
such as incineration and landfilling, are growing more costly and are 
energy-inefficient (Albizzati et al., 2024; Yoon and Lee, 2024). Ac-
cording to Wang et al. (2021), improper waste sorting can have a big 
financial impact on society. This expenditure is about 1.25 million USD 
annually for a medium-sized Swedish city like Borås. Even worse, an 
ineffective MWM system might lead to environmental contamination 
and harmful effects on future generations (Imran et al., 2024). 
Furthermore, the ability of conventional research methods, such as 
questionnaire surveys and simulation methods, to analyze 
waste-dumping behavior is limited due to the size of the population and 
the intricate nature of individual behaviors (Mor and Ravindra, 2023). 
This poses a difficult question in deciding how best to allocate funds for 
waste collection operations and the enhancement of regulations (Pinhal 
Luqueci Thomaz et al., 2023).

Considerable recent efforts have been made to shift the waste man-
agement industry toward sustainability and profitability through the 
application of innovative technologies and smart systems (Gupta et al., 
2023; Naghibalsadati et al., 2024; Wang et al., 2024). It is anticipated 
that recently developed AI techniques will prove to be highly appro-
priate for application in the MWM field (Seyyedi et al., 2024). AI tech-
nology involves creating computer systems and programs that can 
emulate human characteristics, including problem-solving, learning, 

perception, comprehension, reasoning, and environmental awareness 
(Arashpour, 2023). AI techniques, including fuzzy logic (FL), genetic 
algorithms (GA), expert systems, and artificial neural networks (ANN), 
can configure complex mapping, solve poorly defined problems, and 
forecast outcomes (Wang et al., 2024). Every AI technique or algorithm 
has a distinct purpose; ANN models, for instance, can train data for 
prediction and classification (Ibrahim et al., 2024). Geographical anal-
ysis and big data handling in urban geography are also possible with 
ANNs (Tehrani et al., 2024). Expert systems, like FL, are not only 
knowledge-based but also capable of acquiring human cognitive abili-
ties and reasoning (Siqueira et al., 2024). These systems are adept at 
handling complicated operations and qualitative characteristics thanks 
to their straightforward linguistic syntax (Mounadel et al., 2023). 
However, evolutionary algorithms, like GA, use natural selection as a 
model to choose the best-fitting data to deal with unforeseen circum-
stances and produce optimal results (Pourreza Movahed et al., 2020).

AI is gaining traction in the field of waste management, including 
predicting patterns of waste generation and optimizing waste collection 
routes, as well as locating and simulating waste management facilities 
(Ihsanullah et al., 2022; Behera et al., 2024). Review articles on AI 
research about particular waste-related application areas, like biogas 
production, waste combustion processes, petroleum waste management 
simulation and optimization, are scarce (Adeleke et al., 2021; Hu et al., 
2024; Singh et al., 2024). To identify the gaps in existing literature, 
Table 1 gives a summary of earlier research reviews that investigate the 
application of AI in MWM settings. It also illustrates how this study’s 
focus and outcomes differ from those of previous studies.

It is evident from Table 1 that no review article has been written that 
compiles all of the research on AI applications in the various areas of 
MWM. Thus, the application of AI techniques to MWM necessitates a 
thorough discussion about the current research and reported results to 
drive further advancements. To close this gap, this study conducts a 
thorough review of all literature to explore the role of AI techniques in 
different MWM areas (generation, collection, sorting, treatment, energy 
recovery, disposal, and waste management planning) based on the 
following research questions (RQs). 

Table 1 
Synopsis of reviews of research on using AI techniques in MWM.

Reference AI techniques Number of 
articles

Period of 
study

Focus of study Outcomes

Hoy et al. 
(2024a)

AI, ML, ANN, SVM, DT, GA 32 2013–2023 A systematic review of the use of artificial 
neural networks in municipal solid waste 
management to support low-carbon transition.

Artificial Neural Networks (ANNs) are 
widely used but unreliable in municipal 
solid waste management trend 
prediction.

Naveenkumar 
et al. (2023)

Multi-Layer Perceptron (MLP), 
DCNN, ANN, SVM, DT, GA, LR

N/A N/A A strategic review of AI, economic stability and 
life cycle assessment in municipal solid waste 
management and energy recovery.

AI-driven optimization promotes 
sustainable waste management practices 
and circular bioeconomy initiatives.

Ihsanullah et al. 
(2022)

SVM, DT, GA, RF, Multi-Layer 
Perceptron, ANN, CNN, RNN, 
Back Propagation, KNN, DNN, 
Particle Swarm Optimization

N/A N/A An overview of the literature on the most 
recent developments in AI applications for 
solid waste management.

AI techniques are increasingly used to 
enhance solid waste management 
processes, including generation, 
segregation, and treatment.

Andeobu et al. 
(2022a)

ANN, GA, DT, SVM, LR 197 2005–2021 A systematic review of applications of AI for 
sustainable solid waste management in 
Australia.

AI-based models outperform 
conventional methods in predicting waste 
generation and recycling, highlighting 
the need for upgraded recovery 
infrastructure.

Abdallah et al. 
(2020)

ANN, GA, LR, SVM, DT 85 2000–2020 A thorough review of the literature on the use 
of AI in solid waste management.

AI techniques exceed conventional 
methods in effectively modelling 
nonlinear processes and handling 
uncertainty in complicated solid waste 
management scenarios.

Our Study ANN, SVM, GA, LR, DT, hybrid 
techniques

224 2010–June 
2024

Although the aforementioned studies 
emphasize particular uses and challenges of AI 
in waste management, our research offers a 
thorough evaluation and a strategic framework 
for the broader integration of AI into MWM 
practices, addressing gaps and fostering 
sustainable development.

AI techniques offer innovative and 
sustainable solutions for MWM, 
improving efficiency in waste forecasting, 
monitoring, and planning.
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RQ1. What are the main AI techniques applied in MWM areas?

RQ2. In what ways does AI apply to the management of municipal waste?

RQ3. What opportunities and challenges exist for applying AI to the 
management of municipal waste?

The study addresses the abovementioned research questions by 
conducting a systematic literature review along with a thorough analysis 
of AI techniques that can improve and revolutionize MWM systems. In 
taking such an approach, the purpose of this paper is threefold. Firstly, 
we seek to provide a thorough analysis of AI techniques that could 
improve and revolutionize MWM systems. Secondly, we examine the 
benefits and challenges of AI applications and suggest best practices to 
improve MWM system outcomes. Thirdly, we propose an integrative 
conceptual framework to guide research and practice to take a holistic 
approach to MWM. Lastly, areas of future study that need to be explored 
are discussed.

2. Review methodology

The objective of the present study is to examine the use of AI tech-
niques in MWM by carefully examining previous research at the inter-
section of AI and MWM. This study aims to rectify the recognized 
shortcomings of the traditional narrative review approach (Tranfield 
et al., 2003). To achieve this, we implement an evidence-based (Mengist 
et al., 2020; Thomé et al., 2016) systematic literature review method 
(SLRM). This approach is becoming increasingly popular since it follows 
an extensive and exacting set of guidelines that make it easier to eval-
uate pertinent research that is easily accessible and applicable to a 
particular subject (Okoli and Schabram, 2010). Further, this approach 
makes it easier to identify research gaps in existing literature, opening 
up possibilities for additional research (Snyder, 2019).

Our contributions to the research phenomenon at the intersection of 
AI and MWM include finding, synthesizing, analyzing, interpreting, and 
reporting the distributed literature (into research flows). We develop a 
comprehensive framework that classifies the various types of AI tech-
niques and the performance results of applying these techniques in 
MWM areas.

2.1. Locating studies

Finding a comprehensive list of essential contributions that minimize 

bias around the review questions is the goal of the journal article search 
and collection process (Tranfield et al., 2003). In line with earlier sys-
tematic reviews on waste management and AI (Soni et al., 2019; 
Abdallah et al., 2020; Andeobu et al., 2022a; Mounadel et al., 2023), 
four essential criteria are used to recognize pertinent studies that ensure 
the highest quality for the systematic literature review. 

• Database selection: The search is conducted using the Web of Science 
(WoS) and Scopus databases. The Scopus electronic database in-
cludes a wide range of journals published by prominent publishers, 
including Elsevier, Taylor and Francis, IEEE, Emerald, and Springer 
(Kipper et al., 2020; Oliveira et al., 2018). The Scopus database is the 
most extensive and frequently updated searchable abstract and 
citation source for literature searches (Kipper et al., 2020). Scopus is 
selected over other databases for automated peer-reviewed article 
searching due to its wider coverage of peer-reviewed scientific 
publications (Oliveira et al., 2018; Vieira and Gomes, 2009) and 
notable overlaps with other databases such as WoS (Vieira and 
Gomes, 2009).

• Time horizon: Time horizon is used from a start date of 2010 based on 
the findings of the pilot search. While research on the convergence of 
AI and MWM predates 2010 (e.g. Al-Jarrah and Abu-Qdais, 2006), 
the period since marks a notable transition towards the use of 
advanced AI techniques, including machine learning and neural 
networks (Abu Qdais et al., 2010), which have subsequently evolved 
into vital components for improving waste management practices. As 
such, starting our study in 2010 allows us to focus on the most 
relevant and crucial breakthroughs that have shaped the current 
landscape of AI in MWM, thereby offering a more accurate portrayal 
of the continuous growth in this area.

• Journal selection: We only include scientific papers in the English 
language in the subject area that are published in peer-reviewed 
scholarly journals to guarantee the calibre of our systematic litera-
ture review (SLR). Peer review is a quality indicator that makes it 
possible to evaluate the conceptual and methodological rigor of 
studies, improving the technical product. Scholarly publications that 
undergo peer review are seen to be of a higher calibre than those that 
do not.

• Keywords selection: Authors then agree on a selection of search key-
words based on a combination of conversations with academics and a 
review of the relevant literature. The search string is designed using 

Fig. 1. Funnel diagram of SLRM using PRISMA guidelines.
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Boolean operators as a combination of two-word groups. The first 
group of keywords is associated with AI; this consists of “Artificial 
intelligence,” “AI,” “machine learning,” “deep learning,” “neural 
networks,” intelligent systems,” “data analytics,” “big data,” and 
“simulation”; the other group of keywords related to MWM includes 
“municipal waste management,” “municipal solid waste,” “waste 
disposal,” “waste treatment,” “landfill management,” “waste gener-
ation,” “waste collection,” “waste sorting,” “resource recovery,” 
“waste minimization,” and “waste management planning”. The 
Boolean operator “OR” is used to combine the keywords within the 
same group; “AND” is used to combine the two main groups of 
keywords related to both AI and MWM. The initial search yields 1771 
results in Scopus and 937 in WoS.

2.2. PRISMA flow diagram

The SLRM is used in this study as a methodological framework to 
examine and compile previous research on the application of AI in 
MWM, focusing on advancements in AI techniques in MWM systems 
performance. The SLRM follows the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines (see Fig. 1), 
acclaimed for their comprehensive reviewing process (Page et al., 2021). 
The PRISMA-based method for SLRM helps to guarantee the review’s 
quality. It enables readers to evaluate its advantages and disadvantages, 
allows review methods, the structure and format of the review to be 
replicated using PRISMA; it serves as a resource for other experts in the 
field. The PRISMA method provides accurate data for future research 
because it makes sure even obscure details cannot be overlooked; it also 
outlines the information flow through the different steps of the sys-
tematic literature review (i.e. identification, screening, eligibility, in-
clusion) (Moher et al., 2009).

The final sample is developed by identifying, screening, and evalu-
ating articles for eligibility after inclusion and exclusion criteria are 
established (see Section 2.1). An overview of the PRISMA-based sys-
tematic review approach is presented in Fig. 1. Following the identifi-
cation process, a total of 3260 articles are identified from selected 
electronic database searches. After duplicates are removed, 1714 papers 
remain. During the screening stage, two researchers independently 
examine the studies acquired in the previous stage to ensure robustness. 
Subsequently, articles are excluded based on their titles, abstract con-
tent, and duplication. To do so, we first read the article titles, thus 
screening 514 articles unsuitable for the study, considering the research 
aim and questions. As a result, 1200 papers are forwarded for abstract 
review, checked for compatibility with the study’s objective and 
research questions, with those deemed unsuitable, manually evaluated 
and screened. As a result, 512 articles are eliminated. In the eligibility 
phase, a full-text analysis of 688 articles is conducted considering 
several criteria (i.e. Are AI techniques and MWM addressed together in 
the article? Does the article have a management focus? Are AI tech-
niques or MWM the main topic of the article?). Finally, a full-text quality 
assessment screening is carried out, taking into account the publica-
tion’s scientific rigor in addition to its topical relevance. While several 
publications that do not fit our topic requirements are detected during 
this phase, the main reason for rejecting the articles at this stage is the 
critical evaluation of the validity of the methodology of the authors 
alongside the degree of generalizability and confidence in the claims. 
Thus, 229 articles with the required qualification criteria remain for 
further analysis. All 229 articles selected in the previous step of SLR are 
thoroughly evaluated using content analysis to yield results in line with 
the proposed research questions. The results of the content analysis 
serve to address the research questions and the development of a 
framework to map the role of AI techniques in different MWM areas.

2.3. Data analysis

Analyzing and synthesizing the research requires selecting the best 

method and definitions. A variety of methods are considered for the 
research synthesis, including thematic analysis/synthesis with meta-
cognitive mind maps, qualitative comparative analysis, meta- 
summaries, and content analysis (Vaismoradi et al., 2013; Bengtsson, 
2016; Mengist et al., 2020). A descriptive analysis is chosen for this 
study as it does not infer the effect of human beings and allows a variety 
of research data and statistics to be elaborated and demonstrated, thus 
giving the study a more quantitative character (Vaismoradi et al., 2013). 
An Excel database is used to analyze the following data for each article: 
authors, title, journal, publication year, document source, findings, AI 
techniques addressed and used, and MWM applications area. At this 
stage, structures have to be pre-defined to collect the required infor-
mation needed to explore each article’s essential and relevant details 
(Thomé et al., 2016; Tranfield et al., 2003). Following this, we conduct a 
content analysis to uncover the major spectrums and themes found in all 
of the articles reviewed. As such, with the help of descriptive and con-
tent analysis, we are able to produce a comprehensive review by 
combining our ideas and exploring any unresolved but crucial topics.

2.3.1. Coding strategy
Using a hybrid coding strategy, both deductive and inductive 

methods are used to analyze the data (Azungah, 2018). In deductive 
coding, predefined codes are applied based on prior research and 
existing theories regarding AI and MWM. As a result of these predefined 
codes, it is possible to identify patterns and themes within the literature 
in a structured manner. Simultaneously, inductive coding is utilized to 
enable new themes and patterns to emerge directly from the data itself, 
ensuring that the analysis captures novel perspectives beyond what is 
expected from previous studies (Pacheco-Romero et al., 2021).

The coding process is conducted as follows. Firstly, we begin by 
reviewing the selected studies and applying the predefined codes 
derived from relevant literature on AI and MWM. During this deductive 
phase, the established themes - AI techniques and MWM application 
areas - are categorized. Secondly, we conduct a thorough examination of 
the data independently of the predefined codes. Throughout this phase, 
we identify emerging themes that had not been previously considered, 
such as the role of AI in addressing MWM challenges and its applications 
to MWM. Finally, we combine these records with integrated deductive 
and inductive codes into a complementary framework. This step ensures 
a thorough analysis that includes both existing knowledge and new 
insights.

3. Results

This section presents the findings from the literature review. To 
produce new knowledge and perspectives regarding the research topic 
at the intersection of MWM and AI, the analysis process takes into 
consideration the research methodology outlined in Section 2 (Thomé 
et al., 2016; Tranfield et al., 2003) that was not evident from reading the 

Fig. 2. Number of publications per year.
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individual articles. The gaps from this extensive review are then used to 
propose future research directions.

3.1. Descriptive analysis

We find that 229 pertinent publications address our area of interest; 
83% of these were released in the last five years, indicating the recent 
increase in scholarly interest. Fig. 2 illustrates the increasing interest 
among academic researchers in examining the role of AI in MWM; this 
could be attributed to ongoing developments in AI applications and 
relevant techniques in MWM. The number of articles increases gradually 
from one in 2017 to five in 2018, then sharply to 77 from 2019 to 2023. 
The fact that there are only 35 relevant articles found in 2024 might 
suggest a drop, but as the year is only six months old, the number is 
likely to increase.

There are 149 peer-reviewed, multidisciplinary academic journals 
that publish the 229 articles on our shortlist. The outcome highlights the 
topic’s interdisciplinary nature. Fig. 3 shows the source relevancy: IEEE 
Access (16 articles; 7%); Environmental Science and Pollution Research 
(12 articles; 5%); Energies (10 articles; 4%); Expert Systems with Ap-
plications (6 articles; 3%); and Nature Environment and Pollution 
Technology (5 articles; 2%).

Artificial neural networks (ANN), support vector machines (SVM), 
linear regression (LR), decision trees (DT), and genetic algorithms (GA) 
are found to be the most widely used AI techniques for the modelling 
and optimization of MWM systems, as shown in Fig. 4 of the literature 
review. The literature uses a range of ANN algorithms, such as multi- 
layer perceptron (MLP), feed-forward, autoregressive, recurrent, and 
radial basis functions (RBF). ANNs are the most popular AI technique 
used in the realm of MWM (81 articles; 35%). GA is the second most AI 
technique used (46 articles; 20%), followed by LR (37 articles; 16%) 
incorporating multiple and multivariate LR and gradient-boosting 
regression. Several models are employed less frequently in individual 
studies, including logistic model tree, Q-type clustering, ant colony 
optimization (ACO), wavelet transform (WT), K-means, data mining, 
Naïve Bayes, rough sets, artificial immune system (AIS), random forest 
(RF), and adaptive neuro-fuzzy inference systems (ANFIS).

In addition, we create a graph showing the different MWM areas 
where AI-based techniques are applied to enhance MWM performance. 

Fig. 3. Journal-wise publications (n = 229).

Fig. 4. Publications distribution by the main AI techniques used.

Fig. 5. Number of studies according to MWM application areas.
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Waste management planning (78 articles; 35%), waste characteristics 
prediction (52 articles; 23%), waste treatment and recycling (42 articles; 
19%), waste collection and sorting (36 articles; 16%), bin level moni-
toring (18 articles; 8%), process output prediction (15 articles; 7%), and 
vehicle routing (12 articles; 5%) are the main application areas for AI- 
based MWM. While bin level monitoring is connected to tracking how 
full waste bins are, waste characteristics prediction encompasses waste 
material classification, waste compression rate, waste production 
trends, or patterns. Waste composition analysis and route optimization 
are included in the waste collection and sorting process. Waste-to- 
energy conversion and the oversight and management of landfill oper-
ations are included in the waste treatment and disposal process. Waste 
management planning includes the location of waste facilities, the po-
sitions of waste accumulation areas and illegal disposal sites, and the 
optimization of the financial and environmental effects of collection, 
transportation, treatment, and disposal. The objective of the vehicle 
routing problem is to optimize the routes and frequency of waste 
collection. Finally, the process output prediction includes leachate for-
mation and biogas generation simulation and optimization. The total 
number of publications carried out in each MWM application area over 
the assessment period is shown in Fig. 5.

4. Content analysis

In this study, secondary data from the systematic literature review of 
earlier studies is analyzed using content analysis. The goal of content 
analysis is to arrange and analyze the information gathered to make best 
decisions (Bengtsson, 2016; Vaismoradi et al., 2013). A content analysis 
of the articles reveals the themes and keywords in each relevant article. 
The following subsections define the AI techniques used in MWM areas 
to help with the discussion that follows.

4.1. AI techniques

Solid waste prediction and optimization are two areas in which re-
searchers employ AI-based techniques (Ihsanullah et al., 2022; Seyyedi 
et al., 2024). MWM seeks to maximize several processes involved, 
including waste identification, collection, best location for trash bins, 
shortest routes for transportation, and disposal.

In recent years, the increasing investment in AI solutions by gov-
ernments and organizations across diverse sectors has led to a surge in 
the adoption of AI techniques (Mounadel et al., 2023). The waste 
management and recycling industry, like many other industries world-
wide, is attempting to take advantage of the opportunities that AI 
techniques present to improve its waste management strategies 
(Andeobu et al., 2022a; Mounadel et al., 2023). After reviewing previous 
research, it can be seen that the following five AI techniques are the most 
commonly used for modelling and waste management process optimi-
zation: (a) ANNs (b) DT (c) SVM (d) GA and (e) LR. These AI techniques, 
along with their benefits and challenges, are covered in the following 
sections.

4.1.1. Artificial neural network
Multiple variables are involved in MWM processes, and because of 

their non-linear behavior, modelling these processes can be challenging. 
ANNs work well for modelling processes with partial or ambiguous data 
sets and for handling difficult and imprecise tasks that call for human 
judgment (Hoy et al., 2024a). Numerous ANN algorithms, including 
feed-forward autoregressive, multi-layer perception (MLP), radial basis 
function (RBF), backpropagation (BP), and recurrent ANNs, are applied 
to waste management (Abbasi and El Hanandeh, 2016; Ihsanullah et al., 
2022). Neural networks typically consist of three layers - an input layer, 
hidden layers, and output layers. Each layer consists of several nodes 
connected by directed weighted edges, and each layer node is linked to 
each sub-layer node (Ayeleru et al., 2021). Energy recovery, co-melting 
temperature of waste, leachate formation, biogas generation, waste 

classification, bin level status, heating value, and ideal waste collection 
routes are among the areas where ANNs have proven to be effective 
(Adamović et al., 2018; Liang et al., 2021; Shahbaz et al., 2019). Because 
of their resilience to failure, robustness, and the ability to represent the 
intricate relationships between variables in multivariate systems, ANNs 
are also extensively utilized to model a range of waste management 
processes (Abbasi and El Hanandeh, 2016). Furthermore, ANN systems 
are preferable in those scenarios because they typically require fewer 
parameters for calibration than deterministic models (Almomani, 2020; 
Cho et al., 2021). However, ANNs are prone to overfitting but are useful 
in solving high-accuracy arithmetic and logical problems (Ayeleru et al., 
2021). Furthermore, the relative importance of the various factors under 
analysis - that is, the input characteristic that has the largest influence on 
the output - cannot be ascertained by ANNs (Mounadel et al., 2023).

4.1.2. Support vector machines
Supervised non-parametric algorithms for statistical learning are 

called SVMs (Zhu et al., 2019). SVMs were first developed to address 
classification issues. Still, due to their superior performance over several 
traditional regression techniques, they have since been used to address 
regression issues as well (Zhang et al., 2023a). Unlike statistical tech-
niques like principal component analysis (PCA), which only deal with 
the model’s dimensionality, support vector regression algorithms are 
less likely to overfit and are adept at lowering error estimates and model 
dimensions at the same time (Dai et al., 2011). SVMs offer simple so-
lution analysis and are inexpensive in terms of computation and 
generalization errors (Ayeleru et al., 2021). SVMs are, nevertheless, 
extremely susceptible to tuning and kernel-selected variables (You et al., 
2017). However, it is shown that a SVM is especially useful for fore-
casting waste heating value, waste classification, waste generation, and 
energy recovery (Hata et al., 2015; Altin et al., 2023; Liu et al., 2020).

4.1.3. Genetic algorithm
Genetic algorithms are a class of metaheuristic search algorithms 

that imitate spontaneous evolution (Pourreza Movahed et al., 2020). 
Natural selection and genetics are used by genetic algorithms to solve 
problems (Buenrostro-Delgado et al., 2015). These algorithms are more 
intelligent than random search algorithms because they use past data to 
focus the search on the highest-performing area of the solution space 
(Yılmaz et al., 2022). Fittest selection, crossover, and mutation are the 
three primary elements of genetic algorithms (Xue et al., 2021). Cross-
over is the process of moving data between two strings, each of which 
represents a binary or decimal solution, as opposed to mutation, which 
involves flipping specific string digits to produce new solutions (Alsulaili 
et al., 2024). By contrasting each generated solution with the optimi-
zation problem’s objective, the overall fitness of each solution is eval-
uated. The best answers are then chosen for the ensuing optimization 
procedure (Kuo et al., 2012; Xi et al., 2013). GAs have been widely used 
to solve waste management issues, such as waste classification, fore-
casting of waste generation, prediction of waste accumulation and fa-
cility siting, and estimation of the value of waste heating and biogas 
generation (Biglarijoo et al., 2017; Jacob and Banerjee, 2016; Rabbani 
et al., 2018). They are also helpful in minimizing the effects of waste 
handling on the environment, management expenses, and collection 
routes (Pourreza Movahed et al., 2020). However, GAs require careful 
construction and are not useful for solving simple problems since an 
incorrect choice of operators could negatively impact the model’s out-
puts (Liang et al., 2021; Pinhal Luqueci Thomaz et al., 2023).

4.1.4. Decision trees
Another well-used AI technique in MWM is the decision tree (Ding 

et al., 2023). DT is a well-performing supervised classification method 
that can extract rules from unidentified data (Kannangara et al., 2018). 
It is especially helpful for expert systems which can generate outcomes 
that are comparable to those of a human expert in a given field (Johnson 
et al., 2017). Aside from being able to handle data with missing values 
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and irrelevant features, DTs also have the advantage of producing easy 
to interpret results and having low computational costs (Deepnarain 
et al., 2019; Xia et al., 2022). Nevertheless, there is a risk of data 
overfitting with this technique (Mounadel et al., 2023; Pinhal Luqueci 
Thomaz et al., 2023). DTs have been used in MWM to predict waste 
generation, waste compression, and waste classification. They have also 
been used to identify areas where waste is illegally dumped and patterns 
in the generation of waste (Kannangara et al., 2018; Deepnarain et al., 
2019; Ding et al., 2023).

4.1.5. Linear regression
LR analysis is a supervised method that uses independent predictors 

to model a desired value (Ghinea et al., 2016). One variable (simple 
linear regression) or multiple variables (multiple linear regression) can 
be used to illustrate MWM models (Azadi and Karimi-Jashni, 2016). 
Since MWM models typically depend on multiple parameters, multiple 
(or multivariate) LR is a better fit for predicting these MWM processes 
(Chu et al., 2022). The key advantages of utilizing LR are its low 
computational costs and simple result interpretation (Ho Park et al., 
2021; Ezzahra Yatim et al., 2022). However, it is generally accepted that 
modelling non-linear data is inappropriate for this technique (Cho et al., 
2021; Wilts et al., 2021). LR is frequently used in the field of MWM to 
forecast leachate formation and waste generation (Ghinea et al., 2016). 
It has also been used to maximize the frequencies and routes of waste 
collection (Chu et al., 2022).

4.1.6. Hybrid techniques
Hybrid techniques aim to overcome the limitations of implementing 

those systems independently by combining various AI techniques with 
metaheuristic algorithms or each other. The goal of hybrid or ensemble 
techniques is to improve base regressor and classifier predictive per-
formance by merging intelligently weak learners (Abdallah et al., 2020; 
Cha et al., 2022). In comparison to individual AI techniques, hybrid 
techniques perform better (Ihsanullah et al., 2022; Lin et al., 2022). 
Researchers combine ANN with SCA, GA, MLP, and recurrent sparse 
memory (RSM) to improve the prediction accuracy of municipal waste 
generation (Kuo et al., 2012; Liang et al., 2021; Ayeleru et al., 2021). In a 
similar vein, SVM combines with deep learning-based segmentation 

(DLS), wavelet theory (WT), federated learning (FL), and computer 
vision for e-waste management (Lu et al., 2022; Majchrowska et al., 
2022; Selvakanmani et al., 2024). Lin et al. (2021) predict the produc-
tion of municipal solid waste using CNN with Long Short-Term Memory 
(LSTM), while Liang et al. (2021) predict municipal solid waste flow 
using ANN combined with sine cosine algorithm (SCA), the Archimedes 
optimization algorithm (AOA), the particle swarm optimization (PSO) 
technique, and GA. Fig. 6 illustrates the AI hybrid techniques used in 
forecasting and prediction of the generation of municipal waste.

4.2. AI application areas in municipal waste management

Municipal waste is currently managed through the use of landfills, 
incinerators, composting, and recycling. These MWM practices are 
currently thought to be a major contributor to the climate crisis, 
involving several environmental and health issues (Abdallah et al., 
2020; Tao, 2024). Furthermore, several categories of municipal waste 
are complicated, expensive to recycle, labor-intensive, and directly 
endanger the health of municipal waste workers who handle waste 
collection and disposal (Cha et al., 2022; Lin et al., 2021). In light of this, 
the use of AI techniques is altering the way that technological inter-
vention is used to manage municipal waste. The systems used in gen-
eration, collection, sorting, transportation, and recycling of solid waste 
are being impacted by AI-driven MWM initiatives (Lin et al., 2021, 
2022). With the application of AI techniques, conventional recycling 
and decomposition methods become more practical and efficient 
(Ihsanullah et al., 2022; Soni et al., 2019). Table 2 illustrates and dis-
cusses specific applications and key outcomes of AI techniques in 
different MWM areas.

4.2.1. Waste characteristics prediction
One of the essential components of an effective waste scheduling 

design and implementation is the estimation of municipal waste. As a 
result, forecasting municipal waste helps to design a strategy for 
collection, storage, and vehicle routing (Ghinea et al., 2016). It also 
helps to establish a waste treatment system and suggests opportunities 
for recycling and recovery (Soni et al., 2019). Accurately estimating the 
rates of municipal waste helps with site development, policy 

Fig. 6. Classification of AI hybrid techniques for forecasting and predicting the generation of municipal waste.
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Table 2 
Summary of AI techniques applications in MWM.

MWM 
Application Area

AI 
Technique

Pre-determined 
Parameters

Specific Application Key outcomes References

Waste 
Management 
Planning

ANN Spatial data (e.g. 
location, terrain)

Illegal dumpsite 
detection

Using geographic data to reduce environmental 
risks, enhance surveillance, and forecast the 
potential of illegal dumping.

(Azadi and Karimi-Jashni, 2016; 
Jacob and Banerjee, 2016; Chu et al., 
2022; Ezzahra Yatim et al., 2022)Population density

Historical waste 
records

DT Waste generation 
rates

Waste accumulation 
forecasting

Identifying waste accumulation patterns and 
offering practical advice for building future waste 
management infrastructure.

Ding et al. (2023)

Population growth
Collection frequency

LR Historical costs Cost management 
strategies

Developing linear models based on past data to 
forecast waste management expenses, helping to 
decrease costs associated with municipal services.

Dashti et al. (2021)
Population size
Waste volume

GA Waste processing 
capacity

Environmental 
impact optimization

Minimizing carbon emissions and environmental 
damage through the optimization of waste 
management decisions and the identification of the 
most environmentally friendly options.

Jacob and Banerjee (2016)

CO2 emission limits
Operational costs

SVM Waste types Environmental 
impact analysis

Locating high-impact zones and forecasting the 
environmental dangers of waste management 
systems.

(Hata et al., 2015; S. Zhang et al., 
2023a)Environmental 

impact data
Distance to disposal 
sites

Process Output ANN Organic waste input Biogas production 
prediction

Precisely predicting the amount of biogas generated 
during the breakdown of organic waste, increasing 
the effectiveness of renewable energy production.

(Almomani, 2020; Cho et al., 2021)
Environmental 
conditions (e.g. 
temperature)
Biogas output

DT Waste type Leachate generation 
categorization

Optimizing landfill management techniques by 
categorizing different waste types and conditions 
according to their ability to produce leachate.

(Yılmaz et al., 2022; Gaur et al., 2024)
Weather conditions
Leachate generation 
potential

LR Waste moisture 
content

Leachate generation 
estimation

Estimating the amount of leachate generated from 
various waste types using past data to support waste 
water treatment procedures.

(Ho Park et al., 2021; Chu et al., 2022)

Precipitation levels
Waste type

GA Organic waste type Optimizing biogas 
production

Optimizing waste-to-energy conversion systems 
and fine-tuning parameters to maximize biogas 
generation from waste materials.

Sun et al. (2024)
Decomposition rate
Biogas conversion 
efficiency

SVM Waste types Leachate production 
prediction

Enabling more precise management of landfill 
effluent through the classification of waste types 
according to their potential for leachate generation.

(Ayeleru et al., 2021; Gaur et al., 
2024)Leachate 

composition
Environmental 
factors

Waste Bin 
Management

ANN Bin usage patterns Bin level status 
prediction

Optimizing collection schedules by estimating the 
point at which bins will be filled using past usage 
data.

(Ayeleru et al., 2021; Hoy et al., 
2024b)Collection intervals

Bin capacity
SVM Bin location Bin status 

classification
Classifying bin fullness levels to improve garbage 
collection efficiency and lower overflow incidences.

Zhu et al. (2019)
Waste type
Fill level thresholds

Waste 
Characteristics

ANN Waste composition Waste generation 
forecasting

Improving long-term planning by forecasting future 
trash generation rates through the analysis of 
environmental and historical data.

Hoy et al. (2024a)
Environmental data
Historical waste 
generation

DT Waste type Waste categorization Sorting garbage more efficiently by dividing it into 
separate categories (e.g. organic, plastic) according 
to its physical characteristics.

Abu Qdais et al. (2010)
Physical properties
Hazard levels

LR Waste type Heating value 
estimation

Assisting in the decision-making process for waste- 
to-energy facilities by modelling correlations 
between waste type and heating value.

(Ding et al., 2023; Hoy et al., 2024a)
Moisture content
Calorific value

GA Compaction force Optimizing waste 
compaction

Reducing the amount of garbage dumped in 
landfills by fine-tuning compacting machine 
parameters to enhance waste density.

Nowakowski et al. (2018)
Waste type
Energy consumption

SVM Waste type Waste categorization Enhancing the effectiveness of waste sorting 
procedures by categorizing different types of waste 
according to their physical and chemical 
characteristics.

Zhu et al. (2019)
Physical properties
Sorting thresholds

Waste Collection 
and Sorting

ANN Waste composition Material recovery 
facility optimization

Enhancing facility capacity and efficiency by 
predicting the amount and quality of recyclables 
retrieved.

Shahbaz et al. (2019)
Recyclable materials
Recovery facility 
capacity

DT Waste stream Material 
classification in 
recovery facilities

Classifying various waste streams (e.g. plastics and 
metals) to increase the effectiveness of sorting in 
material recovery facilities (MRFs).

Pourreza Movahed et al. (2020)
Sorting cost
Recyclable value

(continued on next page)
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implementation, environmental degradation mitigation, and disposal 
technique selection (Singh et al., 2024). Before decision-makers take any 
further action, generating less waste can be achieved by using AI tech-
niques to predict municipal waste rates (Ayeleru et al., 2021). However, 
relying solely on conventional statistical forecasting methods will not 
allow for the efficient prediction of municipal waste and the full reali-
zation of the task’s benefits (Munir et al., 2023). Widespread in-
efficiencies in the management of municipal waste are primarily caused 
by imprecise and inaccurate forecasting (Cha et al., 2022; Majchrowska 
et al., 2022). Although there are a variety of approaches to forecasting 
the generation of solid waste, they can be broadly divided into five 
groups: AI methods, time series analysis, material flow methods, 
regression analysis, and descriptive statistical models (Ho Park et al., 
2021; Johnson et al., 2017). AI-based techniques are better predictors 
than other approaches regarding the generation of solid waste (Azadi 
and Karimi-Jashni, 2016; Zhu et al., 2019). For example, ANNs are 
extensively used as they can accurately anticipate waste generation, 
composition, and recycling potential by modelling complicated, 
nonlinear relationships in waste composition (Ibrahim et al., 2024). In 
contrast, SVMs provide excellent accuracy in classifying waste materials 
based on their chemical and physical characteristics, facilitating effec-
tive sorting and recycling operations (Zhang et al., 2023b). Further, LR is 
an effective technique for modelling linear correlations between waste 
generation and socioeconomic or demographic parameters; this helps in 
identifying the variables that affect waste production patterns (Ezzahra 
Yatim et al., 2022).

4.2.2. Bin-level monitoring
Effective bin-level monitoring is required because inappropriate 

municipal waste disposal puts public health and the environment at risk 
(Johnson et al., 2017). Large cities have a lot of trash bins that are 
overflowing due to outdated and typically ineffective waste disposal 
practices (Andeobu et al., 2022a). Nowadays, audits and observations 
are conducted on less than 1% of trash bins (Wang et al., 2021). This 
costly manual process has limited insights into effective MWM and is 
challenging to measure. In light of this, real-time solid waste flow 
analysis is provided by AI-based techniques which boost productivity 
and lower risks in recycling facilities (Yılmaz et al., 2022). A smart 
AI-based MWM monitoring system can maximize real-time information 
regarding bin level status and bin location/position based on their 
current state (Selvakanmani et al., 2024). For instance, Rahman et al. 
(2022) create and evaluate an autonomous Internet of Things system 
that uses an AI-based model from a central monitoring station to track 
waste bins’ empty levels. The developed system produces high-accuracy 
(98.5%) results and is successful in bin-level status prediction. Accord-
ing to Almomani (2020), collecting data from smart sensors in waste 
bins is a common application for ANNs; they can forecast fill levels based 

on past trends and real-time inputs. Using sensor data inputs, SVMs are 
used to classify waste bin status - full, half full, or empty - helping to 
improve the precision and efficiency of waste collection operations (Zhu 
et al., 2019). According to Ezzahra Yatim et al. (2022), LR models offer a 
simple method of estimating bin full levels by developing linear corre-
lations between waste generation rates and variables including location, 
density, and time of day. Further, DTs are used to create decision rules 
for real-time bin status monitoring, enabling waste management oper-
ators to see trends in waste production and adjust resource allocation 
appropriately (Meza et al., 2019).

4.2.3. Waste classification
The task of classifying waste is regarded as an efficient means of 

treating and disposing of waste. Sorting waste into different categories 
will help to decide on landfill or incinerate in addition to the recycling 
process (Ihsanullah et al., 2022). Furthermore, recycling waste is crucial 
for a sustainable society because it cuts down on waste production 
(Zhang et al., 2023a). Currently, several studies offer intelligent waste 
recognition and classification techniques that enable waste images to be 
automatically sorted. These techniques are meant to tackle the chal-
lenging issues that come with manually sorting waste, like high work-
loads, human error, and low sorting efficiency (Chen et al., 2021; Lin 
et al., 2022; Yılmaz et al., 2022). These methods can also help to lower 
labor costs, preserve human resources, and increase the rates at which 
resources are reused (Dai et al., 2011). The field of computer vision and 
AI has advanced at a rapid pace, making it possible to identify and 
recognize waste from images automatically (Lu et al., 2022). Eventually, 
this will take the place of manual sorting. Recently, CNNs have been 
positioned as the most widely used technique for image recognition (Lin 
et al., 2021). However, because CNN performance is dependent on the 
information extracted from the image, inadequate image features will 
negatively impact the classification outcomes (Liang and Gu, 2021). 
CNNs and an AutoEncoder structure are combined in a waste classifi-
cation method presented by Toğaçar et al. (2020). By utilizing a publicly 
available dataset divided into two categories (recyclable and organic 
waste), the accuracy of the model was tested and found to be 99.95%. A 
multilayer hybrid CNN-based vision transformer for waste classification 
is presented by Alrayes et al. (2023). This model separates waste into 
recyclables and non-recyclables to extract features from images. The 
outcomes showed that the hybrid system could achieve a maximum 
accuracy of 98.2%. Furthermore, the majority of research employing 
DL-based methods for waste classification improperly assumed that each 
image contains only one type of waste (Zhang et al., 2023b). To simul-
taneously identify and locate different waste items in the picture, Liang 
and Gu (2021) propose a deep CNN to simultaneously localize and 
recognize waste types in pictures. With an accuracy of 97.16%, the 
model performs remarkably well on all evaluation metrics.

Table 2 (continued )

MWM 
Application Area 

AI 
Technique 

Pre-determined 
Parameters 

Specific Application Key outcomes References

SVM Recyclable types Resource recovery 
classification

Reducing contamination in recovered materials, 
increasing sorting precision, and accurately 
identifying recyclables.

2015; Zhang et al. (2023)
Sorting thresholds
Recovery efficiency

Vehicle Routing ANN Collection route data Collection route 
optimization

Optimizing fleet efficiency by reducing fuel usage 
and recommending the best collection routes based 
on historical route data.

(Xi et al., 2013; Buenrostro-Delgado 
et al., 2015; Jacob and Banerjee, 
2016)

Traffic conditions
Fuel consumption 
rates

DT Waste volume Route selection for 
waste collection

Enhancing collection efficiency by categorizing 
routes according to garbage levels and traffic 
patterns.

Yang et al. (2018)
Traffic density
Collection points

GA Collection points Optimizing 
collection route 
planning

Identifying the best collection routes to reduce fuel 
usage and collection times, hence increasing fleet 
productivity.

Azadi and Karimi-Jashni (2016)
Fuel consumption
Traffic patterns

SVM Waste type Collection route 
classification

Organizing routes into distinct groups according to 
factors such as traffic, waste nature, and distance, 
offers valuable information for optimizing waste 
collection scheduling.

(Chu et al., 2022; Ezzahra Yatim et al., 
2022)Route distance

Traffic patterns
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4.2.4. Route planning, waste collection, and vehicle routing
An efficient solid waste collection procedure is necessary for an in-

tegrated MWM strategy to be successful (Lin et al., 2021). For many 
municipalities, waste collection usually makes up between 70 and 85% 
of all MWM costs (Kannangara et al., 2018). Inadequate truck allocation 
and disorganized collection schedules lead to unnecessary delays and 
traffic jams in addition to raising operating costs (Rahman et al., 2022). 
Hence, in addition to the continuous development of smart waste 
collection technology, new approaches for AI-based smart waste 
collection need to be created and put into practice (Liang and Gu, 2021; 
Toğaçar et al., 2020). A review of literature reveals that the use of 
AI-based methods for collecting solid waste has only been examined in a 
very small number of studies (see Table 2). Most of these studies 
concentrate on using ANN, GA, and LR to optimize waste collection 
frequency and route planning models (Liang and Gu, 2021; Selva-
kanmani et al., 2024). For instance, Vu et al. (2019) integrate a 
geographic information system (GIS) waste collection route optimiza-
tion tool with an ANN waste prediction model. The study demonstrates 
how the optimal truck route time, distance, and air emissions are 
influenced by the compositional features of waste materials. The travel 
distance in each of these scenarios varies by up to 19.9% when 
compared to the composition that remains unchanged. In their study, 
Nowakowski et al. (2018) use a hybrid GA to maximize location atten-
dance and waste collection while minimizing travel distance and vehicle 
usage.

Only a few previous researchers use ANN and LR techniques for 
vehicle routing related to waste collection. For example, Azadi and 
Karimi-Jashni (2016) predict the necessary frequency of collection at 
various locations using MLR and ANN models. The results show that a 
10% decrease in collection frequency occurs when socioeconomic and 
demographic factors are included in the model. By avoiding serving 
areas with empty bins, the models reduce collection costs and their 
negative environmental effects.

4.2.5. Waste treatment and recycling
Predicting process parameters and predicting process output are the 

two MWM classifications in this study that deal with the use of AI 
techniques for the recycling and treatment of municipal waste (Birgen 
et al., 2021; Guo et al., 2021).

4.2.5.1. Predicting process parameters. MWM can be used to produce 
sustainable energy through waste conversion techniques like pyrolysis, 
gasification, and combustion (Andeobu et al., 2022b; Zhang et al., 
2023a). The proper design and operation of waste-to-energy technolo-
gies require process variable modelling and optimization (Adamović 
et al., 2018). The application of AI to forecast high/low heating values 
and co-melting temperatures of solid waste has been the subject of a 
small number of studies for more than a decade (Alrayes et al., 2023; 
Ezzahra Yatim et al., 2022). Vyas et al. (2023) forecast the co-melting 
temperatures of fly ash and sewage sludge ash generated by an incin-
erator supplied with municipal waste using GA and ANNs. The study 
shows that GA and ANNs can still generate precise predictions in situ-
ations where there is insufficient data. Similarly, using single/double 
layer ANN models, Pandey et al. (2016) predict the low heating values 
and syngas yield in a fluidized bed reactor gasification process. The 
study suggests that double-layer ANN models need more computation 
time than single-layer ANN models. In a similar vein, Dashti et al. (2021)
use GA and SVM to predict that solid waste would have a high heating 
value. Their analysis shows a high rate of prediction accuracy.

4.2.5.2. Predicting the process output. MWM optimization requires 
quantifying energy and biogas as well as potentially hazardous and 
beneficial byproducts like leachate and other emissions (Guo et al., 
2021; Vyas et al., 2023). AI techniques have been developed by 
numerous research projects to predict the composition and quantity of 

different byproducts produced by MWM operations (see Table 2). 
Several ANN algorithms are compared by Behera et al. (2015) to forecast 
the amount of biogas that bioreactor landfills yield. Abu Qdais et al. 
(2010) investigate the use of ANNs and GA to optimize and simulate 
methane generation. After evaluation, the model shows a high degree of 
accuracy. Lawal et al. (2021) predict and optimize the energy generated 
from solid waste fractions using ANFIS, ANN, and MLR. Further, the 
study offers a method for selecting the most accurate predictive model. 
Established models are found to have satisfactory reliability based on a 
variety of prediction performance indicators. SVMs can also be used to 
categorize the results of waste processing, based on operational char-
acteristics, for example, assessing the quality of recovered materials or 
the effectiveness of energy recovery in waste-to-energy plants (Zhu 
et al., 2019). Likewise, LR is frequently used as a straightforward yet 
powerful prediction tool for process optimization in scenarios where 
linear relationships between input factors (such as waste composition, 
processing time) and output variables (i.e. energy yield, material re-
covery rates) are present (Ho Park et al., 2021).

4.2.6. Planning for waste management
Making decisions and optimizing management practices are essential 

components of MWM planning to achieve particular strategic goals 
(Nowakowski et al., 2018). Huang and Koroteev (2021) state that MWM 
planning encompasses a wide range of activities, including cutting waste 
management costs, creating waste collection strategies, building MWM 
facilities, preventing the illegal dumping of solid waste, and considering 
the environmental effects of solid waste collection, transportation, 
treatment, and disposal. AI techniques are used in many studies to plan 
waste management strategies. SVMs and satellite data are utilized by 
Lanorte et al. (2017) to locate agricultural plastic waste, assist in the 
siting of solid waste facilities, and make route planning easier. With a 
94.5% accuracy rate, SVM is effectively utilized to classify images and 
distinguish between plastic waste and crops. SVM is also successfully 
used to classify images and differentiate between crops and plastic 
waste, with an accuracy rate of 94.5% (Buenrostro-Delgado et al., 2015; 
Jacob and Banerjee, 2016) employ GA-based models for MWM planning. 
The higher parametric sensitivity of GA heuristics in comparison to the 
greedy randomized adaptive search procedure (GRASP) heuristics may 
affect the solution. Despite this, GRASP heuristics took roughly 29% 
longer to compute than GA. LR is used to examine how socioeconomic 
factors affect the rates at which waste is generated, providing informa-
tion to support specific waste reduction efforts (Ezzahra Yatim et al., 
2022). Urban planners can make data-driven decisions with the help of 
interpretable models made with DTs to identify those key factors 
influencing the performance of waste management (Meza et al., 2019).

4.3. Comparative analysis

The comparative analysis of different AI techniques - ANN, SVM, LR, 
GA, and DT - provides significant insights into their efficiency and 
performance in MWM. With its constant ability to handle intricate, non- 
linear interactions, ANN is a very successful tool for a variety of appli-
cations, including the prediction, classification, and forecasting of waste 
characteristics and process output (Almomani, 2020; Cho et al., 2021). 
However, real-time or resource-constrained situations face difficulties 
due to their dependency on huge datasets and substantial processing 
resources (Yang et al., 2018). On the other hand, SVM excels in classi-
fication tasks, especially those involving high-dimensional data, such as 
bin-level monitoring or waste classification (Altin et al., 2023; Liu et al., 
2020). Although it is resistant to overfitting, scaling problems in large 
datasets and the difficulty of parameter adjustment can make it difficult 
to apply (Zhang et al., 2023b). Besides, although GA has good optimi-
zation properties that make it useful for dynamic tasks such as waste 
collection and route planning, its applicability in real-time operations 
may be limited by its high computational cost and potential for local 
optima convergence (Pourreza Movahed et al., 2020). On the other 
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hand, LR, despite its simplicity, offers a dependable starting point for 
linear relationships under stable circumstances, including forecasting 
the results of waste treatment or first evaluations in planning scenarios 
(Ho Park et al., 2021; Ezzahra Yatim et al., 2022). However, LR is 
incapable of simulating the non-linearities present in more intricate 
waste management procedures (Cho et al., 2021; Wilts et al., 2021). 
Besides, DT is quite useful in applications that need to be interpretable, 
including waste planning and classification, given its clear and simple 
framework for making decisions (Deepnarain et al., 2019; Xia et al., 
2022). However, it is prone to overfitting, especially in noisy or highly 
variable datasets; this could impair its effectiveness in dynamic settings 
(Ding et al., 2023).

Hybrid models, such as ANN-SVM, take advantage of SVM’s resil-
ience in classification and ANN’s ability to recognize patterns (Abdallah 
et al., 2020; Cha et al., 2022). These models are especially useful for 
difficult tasks where accuracy and generalization are crucial, including 
waste classification and bin-level monitoring (Ayeleru et al., 2021; Liang 
et al., 2021). Conversely, GA-ANN hybrid models combine the evolu-
tionary search power of GA with the data-driven flexibility of ANN to 
perform exceptionally well in optimization tasks such as waste collect-
ing and route planning (Abu Qdais et al., 2010). This combination im-
proves the model’s prediction ability as well as the optimization process. 
However, hybrid models have a trade-off in terms of their computational 
complexity and fine-tuning; this can lead to higher resource consump-
tion and implementation difficulty (Liang et al., 2021). Despite these 
limitations, hybrid models are effective in meeting the complex re-
quirements of MWM since they frequently perform better than 
single-method techniques in scenarios that call for a balance among 
categorization, efficiency, and predictive accuracy (Kuo et al., 2012; G. 
Liang et al., 2021).

5. Discussion

This research employs a SLR to examine how AI techniques can 
improve different aspects of MWM. The study’s primary focus is on the 
application of AI techniques in MWM. It also compares the efficacy of 
these techniques, examines opportunities and challenges, and provides 
best practices for maximizing resource efficiencies to improve MWM 
system outcomes. The literature on AI techniques in MWM practices has 
been reviewed by considering secondary data from 2010 to 2024.

It is clear from the analysis in the previous sections that AI has risen 
to the top of the list of recent innovations that have the potential to be a 
game changer. AI is gaining traction across various sectors and is rapidly 
becoming a vital tool for governments, corporations, and other in-
stitutions to enhance financial performance and operational efficiency 
(Andeobu et al., 2022b). Many businesses now have the chance to sus-
tain their prosperity and global competitiveness because of AI.

The present study focuses on five AI techniques that are frequently 
employed for modelling and optimizing MWM processes, although a 
variety of technologies are applied in the management and recycling of 
municipal waste. These AI techniques include ANN, DT, SVM, GA, and 
LR. The results of this study show that, when it comes to estimating 
waste production, AI-based techniques are more accurate than tradi-
tional ones. Predicting the characteristics of waste is the main focus of 
the majority of early research on AI applications in MWM. Waste gen-
eration and forecasting is the application area that has been most 
extensively researched in these studies. In those applications, ANN 
techniques are most frequently employed, followed by SVM, LR, and GA. 
While DT and SVM are only employed in a small number of studies, 
ANN, GA, and LR are the most often utilized techniques for bin-level 
monitoring, waste collection, vehicle routing and planning, waste sort-
ing, and waste treatment and disposal.

The application of AI techniques in MWM is explored through the 
prediction of process parameters and output. Calculating beneficial 
byproducts, energy and biogas, as well as hazardous products, leachate 
and other pollutants, is essential (Azadi and Karimi-Jashni, 2016). 

Numerous studies document the use of AI techniques to predict the 
volume and composition of various byproducts from solid waste 
(Andeobu et al., 2022b). Recently, ANN has been used to optimize the 
conditions of the process for producing energy from landfill waste 
components. For example, temperature and pressure are optimized 
using an ANN model (Behera et al., 2015).

A recently published study offers great insight into the use of ANN, 
gradient-boosting trees (GBT), and random forest (RF) in the prediction 
of hydrothermal carbonization parameters. The composition of munic-
ipal sludge is examined to see if it improves its heating value, generates 
more energy, or recovers carbon (Zhu et al., 2023). Municipal sludge is 
determined in this study to be a viable option for producing energy. It is 
essential to investigate the application of AI techniques to mixed 
municipal waste. Before such AI techniques can be further expanded to 
consider alternative methods of treating municipal waste in conjunction 
with energy production, more research and analysis are required. This 
will lead to an improved system that will precisely direct MWM to 
address the amount of carbon emissions that can be reduced in the waste 
recycling industry in a manner that is both effective and sustainable. As 
a result, a suitable AI technique can be created to forecast energy pro-
duction and can also be used as a legitimate and trustworthy instrument 
to identify the parameter values required for successful variable 
modelling.

Concerning this study, there are opportunities and challenges asso-
ciated with adopting AI-based techniques. However, when used prop-
erly, AI techniques can be a source of business innovation. AI improves 
MWM processes, productivity, and efficiency while lowering operating 
costs and introducing new consistency, speed, and scalability levels 
(Ahmed et al., 2024; Bhattacharya et al., 2024). Further, AI-based 
techniques have the potential to help achieve Sustainable Develop-
ment Goals (SDGs). For instance, in the circular economy, AI can help 
achieve SDG 12 (responsible consumption and production) and SDG 9 
(industry, innovation, and infrastructure) (Andeobu et al., 2022b). AI 
can also be used to support and enhance ecosystem health to accomplish 
environmental goals that are in line with both SDG 7 (affordable and 
clean energy) and SDG 13 (climate action) (Naveenkumar et al., 2023; 
Zhang et al., 2023a).

Beyond aligning with the SDGs, the implementation of AI techniques 
can expedite the formulation of directives specific to waste manage-
ment; these include (a) optimizing administrative body control; (b) 
increasing producer commitments through product responsibility pro-
grams; (c) conserving natural resources dramatically; (d) lowering risks 
to human health and the environment; and (e) simplifying the moni-
toring and management of solid waste (Chu et al., 2022; Liang et al., 
2021). According to both Liang and Gu. (2021) as well as Lu et al. 
(2022), businesses and the waste management industry can put the right 
policies and procedures in place to help them better handle waste 
management systems thanks to AI techniques such as deep learning, 
machine learning, and natural language generation. Further, by 
lowering the cost of waste processing and developing environmentally 
friendly processing options, AI can assist in offering effective and effi-
cient waste management solutions, paving the way for a society with 
little waste production (Andeobu et al., 2022b).

The content results analysis reveals further barriers/challenges in 
implementing appropriate AI techniques in MWM. Most papers 
reviewed for this study directly apply AI techniques to address particular 
MWM issues. Few studies use customized AI techniques to address the 
unique traits and attributes of MWM systems. Robust collaborative 
research amongst multidisciplinary teams of computer scientists and 
waste management experts is needed to design specific AI applications 
with the unique properties of MWM systems; a strong emphasis is 
needed to have highly qualified technical AI teams. Meanwhile, it is 
extremely difficult to create and apply AI technologies and applications 
in the field of MWM since reliable and secure applications depend on 
good engineering practices (Xia et al., 2022). Organizations across a 
range of industries, including MWM companies, have expressed 
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concerns about the increasing prevalence and universality of AI appli-
cations and technologies (Pitakaso et al., 2024; Seyyedi et al., 2024). 
Thus, applications and technologies utilizing AI that are more thorough, 
moral, open, equitable, and responsible are becoming more and more 
necessary.

AI-enabled creative MWM applications and systems can be used to 
mitigate the health risks associated with the collection, sorting, treat-
ment, recycling, and disposal of municipal waste, as well as the time and 
energy expenditures involved. However, this study uncovers challenges 
that need to be addressed. Smart AI-based MWM is now necessary due to 
the mounting burden of population growth and landfill site exhaustion, 
as well as the requirement to be able to overcome the risks to the 
environment and public health posed by solid wastes (Ahmed et al., 
2024). In addition to addressing the climate crisis and contributing to 
the creation of a more sustainable and healthier environment, adopting 
an AI-enabled innovative MWM system will help properly confront and 
resolve issues related to inappropriate municipal waste dumping. 
Furthermore, we present a novel conceptual framework that has been 
carefully developed, using knowledge from our extensive descriptive 
and content analysis of academic literature. This framework, as illus-
trated in Fig. 7, consists of three fundamental pillars that capture the 
role of AI in the sustainable management of municipal waste. These 
three pillars cover a variety of key elements, such as AI techniques, 
MWM application areas, and the resulting sustainability outcomes.

5.1. Future research perspectives

MWM will alter due to AI-powered smart recycling equipment. This 
will have a major positive impact on preserving the environment for a 
more optimistic and sustainable future (Birgen et al., 2021). The ma-
jority of AI techniques are still in the research and development (R&D) 
phase, despite the rapid advancement of MWM-related AI research. 
Understanding the opportunities and challenges inherent in these sys-
tems and applications is fundamental to developing dependable 
AI-based MWM applications and systems in the future. The commer-
cialization of AI-based plans will aid the general objectives of environ-
mental preservation and sustainable development. To ensure the full 
application of these methods, more research is required, focusing on the 
creation of reasonably priced AI-based techniques. Future critical and 
straightforward sorting, affordable and effective transportation, planned 

resource recovery, and efficient municipal waste disposal will all be 
ensured by the implementation of AI-based MWM. To improve general 
health conditions in low-income countries, it is critical to strategically 
develop low-cost AI-based MWM systems that can be installed there. 
AI-driven innovations will pave the way for better environmental 
monitoring and management. Table 3 presents a SWOT analysis of the AI 
techniques used in this study along with proposals for further research.

5.2. Implications

Our research provides practical implications for policymakers, 
municipal managers, and AI developers working in the field of MWM. To 
increase adoption and maximize impact, AI developers should prioritize 
aligning their models with real-world MWM needs and validating their 
solutions across a variety of datasets.2 Our analysis identifies critical 
features that AI-based techniques should incorporate, including accurate 
waste bin level monitoring, reliable trash forecasting, and efficient 
vehicle routing. To facilitate interoperability among existing municipal 
systems, developers should provide user-friendly interfaces and ensure 
compliance with environmental and data regulations. As a result, poli-
cymakers and practitioners should adopt the proposed conceptual 
framework to address MWM challenges holistically, guiding the inte-
gration of AI into planning, operations, and long-term sustainability 
efforts.

Our research helps waste management stakeholders and municipal 
authorities understand that addressing internal and external enablers is 
necessary for the successful implementation of AI in municipal waste 
management (MWM). Stakeholders may need to prioritize developing 
internal strategies and/or external partnerships, depending on the 
particular MWM application area, such as waste characteristics fore-
casting, waste bin level monitoring, or process parameter prediction. 
Externally, collaborations with AI providers and interaction with regu-
latory agencies are necessary to promote the creation of customized 
technology solutions and provide guidelines that facilitate the 

Fig. 7. Conceptual framework.

2 https://www.weforum.org/stories/2021/04/how-ai-can-cut-waste-in-ma 
nufacturing/.

A. El jaouhari et al.                                                                                                                                                                                                                            Journal of Environmental Management 373 (2025) 123658 

12 

https://www.weforum.org/stories/2021/04/how-ai-can-cut-waste-in-manufacturing/
https://www.weforum.org/stories/2021/04/how-ai-can-cut-waste-in-manufacturing/


Table 3 
SWOT analysis of the frequently adopted AI techniques in MWM and research opportunities.

AI 
techniques

Strengths Weaknesses Opportunities Threats Future research opportunities References

ANN • Capacity to model 
intricate and non-linear 
relationships

• Fewer parameters are 
needed for calibration 
in multivariate systems 
than in deterministic 
models

• Fewer parameters are 
needed for calibration 
in multivariate systems 
when compared to 
deterministic models

• Fault tolerance

• Easily overfitted
• Unable to establish 

correlations 
between the many 
variables at play

• Inept at solving 
arithmetic and 
logical problems

• Source of business 
innovation, when 
properly applied

• Used in practically 
every industry to 
improve productivity, 
security, and quality of 
production processes

• Privacy concerns: 
AI-powered busi-
nesses have 
encountered mali-
cious attacks and 
privacy failures.

• Inadequate design 
of AI systems can 
lead to safety 
concerns

• How could ANNs be used to 
maximize energy recovery, 
reduce emissions and lower 
operating costs in waste-to- 
energy facilities and anaer-
obic digestion plants?

• In what ways can ANNs help 
in the creation of decision 
support systems that offer 
immediate insights into MWM 
operations, enabling 
municipalities to take 
preventative measures against 
problems such as illicit 
dumping or equipment 
malfunctions?

(Yang et al., 2018; 
Ezzahra Yatim 
et al., 2022; Chu 
et al., 2022; 
Seyyedi et al., 
2024)

DT • Minimal processing 
expenses

• Results are simple to 
grasp

• Capacity to handle 
missing values and 
pertinent features

• Overfitting of data 
and poor 
generalization of 
trained data sets

• Handle difficult issues 
in MWM, welfare, 
energy, safety, health, 
environment, 
infrastructure, 
transportation, and 
education.

• Privacy problems: 
AI-driven busi-
nesses have had 
malicious attacks 
and privacy 
failures

• Inadequate design 
of AI systems can 
lead to safety 
concerns

• How can DTs be integrated 
into MWM decision support 
systems to give real-time 
feedback and recommenda-
tions for maximizing opera-
tional effectiveness and 
reducing environmental 
impact?

• How can DTs be used to help 
MWM systems in risk 
assessment and contingency 
planning?

(Guo et al., 2021; 
Vyas et al., 2023; 
Hoy et al., 2024b)

SVM • Minimal mistakes in 
generalization

• Minimal computational 
expense

• Reduction in the 
vulnerability to 
overfitting

• Extremely 
sensitive to certain 
turning variables 
and kernel 
selection

• Robust business 
support that fosters 
competitive advantage 
and enables businesses 
to adjust quickly

• Privacy problems: 
AI-driven busi-
nesses have 
encountered mali-
cious attacks and 
privacy mistakes.

• Inadequate design 
of AI systems can 
lead to safety 
concerns

• What strategies can combine 
SVMs with public engagement 
and education programs such 
as creating outreach 
campaigns and targeted 
messaging to encourage 
recycling, waste 
minimization, and 
appropriate disposal 
practices?

• How can SVMs be used to 
maximize efficiency and 
quality of outputs by 
analyzing process variables, 
equipment performance, and 
material flows in waste 
treatment facilities such as 
composting plants or material 
recovery facilities?

(Dai et al., 2011; 
Vu et al., 2019; 
Andeobu et al., 
2022b)

GA • Simple 
programmability

• High precision

• Demands 
meticulous design

• Results could be 
negatively 
impacted by an 
operator’s 
incorrect choice

• Can play a major role 
in enabling strategic 
priorities

• Utilized to increase the 
profitability and 
efficiency of businesses

• Privacy problems: 
AI-driven busi-
nesses have 
encountered mali-
cious attacks and 
privacy failures

• Inadequate design 
of AI systems can 
lead to safety 
concerns

• How can GAs help MWM with 
long-term strategic planning 
that takes into account vari-
ables such as urbanization, 
population growth, and tech-
nology improvements to fore-
see opportunities and 
challenges in the future?

• How can social, ethical, and 
legal issues surrounding the 
incorporation of GAs into 
MWM systems be resolved to 
guarantee openness, equity, 
and public acceptance?

(Jacob and 
Banerjee, 2016; 
Ibrahim et al., 
2024; 
Bhattacharya 
et al., 2024)

LR • Minimal computational 
expenses

• Simple results 
interpretation

• Unsuitable for 
modelling non- 
linear data

• Assists companies in 
thriving in a world 
where business 
disruption is constant

• Can play a major role 
in enabling strategic 
priorities.

• Privacy-related 
concerns

• How can geographic 
information systems (GIS) and 
LR be combined to map waste 
generation patterns 
geographically, locate high- 
waste-generation areas, and 
potentially identify service- 
density disparities?

• How can LR be applied to 
support sustainable decision- 
making by quantifying the 
environmental effects of 

(Liang and Gu, 
2021; Ezzahra 
Yatim et al., 2022; 
Chu et al., 2022)

(continued on next page)
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incorporation of AI into waste management systems.3 Internally, our 
findings emphasize the significance of organizational readiness, which 
includes having a clear plan for using AI-based techniques, encouraging 
innovation, identifying processes that can be automated, and making 
sure that IT infrastructure is reliable. New fields, including trash bin 
level monitoring, may place more emphasis on outside cooperation to 
improve AI technology and guarantee interoperability with current 
waste management systems. Achieving long-term sustainability in 
MWM processes and enabling smooth AI integration require strategic 
change management, process adaption, workforce training, and IT 
support.

Our analysis emphasizes how urgently governments and regulatory 
agencies must assist in accelerating the use of AI in MWM. We stress the 
significance of making investments in digital infrastructure at policy 
level to facilitate smooth AI integration, especially in developing 
countries where resource limitations may impede technical de-
velopments. AI-driven efficiencies can help emerging as well as devel-
oped countries tackle issues such as increasing urban trash volumes and 
a shortage of workers. Our findings also recommend government efforts 
to co-finance crucial research, including extensive pilot studies, to verify 
AI models in actual MWM settings and guarantee responsibility for AI- 
driven decisions. We also emphasize the necessity of defined rules for 
data collection and sharing to give AI developers efficient and moral 
access to high-quality datasets for testing and training models. Finally, 
we advocate public awareness campaigns and stakeholder engagement 
initiatives to foster acceptance of AI- based techniques among waste 
management professionals as well as communities, thereby ensuring 
sustainable development of waste management systems and broader 
societal benefits.

6. Conclusion

The primary goal of this study is to document the state of practice 
and research at present, as well as any potential applications of AI 
techniques for MWM system optimization. 229 pertinent articles pub-
lished at the intersection of MWM and AI between 2010 and 2024 are 
chosen and examined using a systematic literature review. In an attempt 
to optimize the performance of MWM systems, this study looks at the 
application of AI techniques in several MWM-related areas, including 
generation, sorting, collection, vehicle routing, treatment, disposal, and 
waste management planning. This research conducts a SWOT analysis 
and comparison of the five AI apps that are commonly used in MWM. 
The results show that the AI-based techniques (ANN, SVM, DT, GA, and 
LR) have good forecasting and prediction performance in the various 
MWM features covered in this study for optimizing MWM practices. 
Besides, the bulk of MWM problems are intrinsically complicated, 
ambiguous, and poorly defined, since waste management has histori-
cally been a manual procedure. Therefore, in many MWM scenarios, 
especially those affected by a lack of data, the traditional MWM prac-
tices - which are based on inflexible algorithms and mechanistic models - 
do not seem to offer a satisfactory solution. In the MWM sector, there is a 
lot of interest in AI-based techniques as possible alternatives. The 
research findings have several significant implications for future 

research into AI-driven MWM systems. Even while the application of AI 
techniques - ANN, SVM, DT, GA, and LR - has shown good prediction and 
optimization skills in a variety of waste management processes, there are 
still a few gaps that need to be filled. Firstly, the study emphasizes the 
necessity for a more thorough investigation into the use of AI in unex-
plored areas including waste management, biogas generation, and 
waste-to-energy operations. Although they need deeper examination, 
these areas hold great promise for improving MWM processes. Further 
research could focus on how AI could accelerate these processes to 
mitigate their negative effects on the environment and enhance resource 
recovery. Furthermore, more research is needed to determine how AI- 
driven MWM systems may affect the environment, particularly con-
cerning emissions from treatment and transportation processes. For 
instance, research could look into how AI techniques can be used to 
anticipate and reduce the environmental impact of waste management 
operations, in line with sustainable development goals.

Further study is required to address the issues of data scarcity and 
quality; these remain as barriers in preventing the broad adoption of AI 
in MWM. While large datasets are necessary for training and validation 
in many modern AI applications, MWM systems frequently function in 
settings with insufficient or missing data. Future research might 
concentrate on developing AI techniques that are more resistant to data 
constraints, including hybrid models that include many AI techniques 
for more precise predictions in situations with sparse data or transfer 
learning. This study also identifies important gaps in the social and 
ethical aspects of AI applications in MWM. While there are clear ad-
vantages to AI-driven developments, issues with data privacy, cyberse-
curity, and equitable distribution of AI-enabled technology need to be 
addressed. Future studies could focus on developing guidelines for the 
ethical and transparent application of AI in MWM, making sure that 
these tools help all stakeholders involved. Finally, future research 
should focus on integrating cutting-edge AI techniques, especially deep 
learning, generative artificial intelligence, and metaheuristics. Although 
these techniques have shown potential in other fields, they are still not 
widely used in MWM. As such, new levels of efficiency and adaptability, 
particularly in complex metropolitan areas, could be unlocked by 
examining the scalability and resilience of these techniques in the 
context of real-world MWM systems.

This study has certain limitations, but they may open doors for 
further investigation. Firstly, the review examines only articles and re-
views, resulting in fewer papers being examined. Therefore, researchers 
may consider more diverse papers in the future. Secondly, mapping all 
the dimensions of AI in MWM requires more than one qualitative review. 
Thirdly, this research is limited by the assumption of reality in the data 
and analyses from earlier investigations. While subjectivity is involved, 
unavoidably, in some of the analyses in this study, it serves as a foun-
dation for future investigations into integrating AI techniques in diverse 
MWM areas. Furthermore, other cutting-edge technologies are available 
to create and improve MWM systems besides AI. Thus, to attain the 
sustainable development of MWM systems, additional technologies such 
as blockchain, IoT, digital twins, etc. may be subjects for future research.
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Toğaçar, M., Ergen, B., Cömert, Z., 2020. Waste classification using AutoEncoder 
network with integrated feature selection method in convolutional neural network 
models. Measurement 153, 107459. https://doi.org/10.1016/j. 
measurement.2019.107459.

Tranfield, D., Denyer, D., Smart, P., 2003. Towards a methodology for developing 
evidence-informed management knowledge by means of systematic review. Br. J. 
Manag. 14 (3), 207–222. https://doi.org/10.1111/1467-8551.00375.

Vaismoradi, M., Turunen, H., Bondas, T., 2013. Content analysis and thematic analysis: 
implications for conducting a qualitative descriptive study. Nurs. Health Sci. 15 (3), 
398–405. https://doi.org/10.1111/nhs.12048.

Vieira, E., Gomes, J., 2009. A comparison of Scopus and Web of Science for a typical 
university. Scientometrics 81 (2), 587–600. https://doi.org/10.1007/s11192-009- 
2178-0.

Vu, H.L., Bolingbroke, D., Ng, K.T.W., Fallah, B., 2019. Assessment of waste 
characteristics and their impact on GIS vehicle collection route optimization using 
ANN waste forecasts. Waste Management 88, 118–130. https://doi.org/10.1016/j. 
wasman.2019.03.037.

Vyas, S., Dhakar, K., Varjani, S., Singhania, R.R., Bhargava, P.C., Sindhu, R., Binod, P., 
Wong, J.W.C., Bui, X.-T., 2023. Solid waste management techniques powered by in- 
silico approaches with a special focus on municipal solid waste management: 
research trends and challenges. Sci. Total Environ. 891, 164344. https://doi.org/ 
10.1016/j.scitotenv.2023.164344.

Wang, C., Qin, J., Qu, C., Ran, X., Liu, C., Chen, B., 2021. A smart municipal waste 
management system based on deep-learning and Internet of Things. Waste 
Management 135, 20–29. https://doi.org/10.1016/j.wasman.2021.08.028.

Wang, Y., Zhang, R., Yao, K., Ma, X., 2024. Does artificial intelligence affect the 
ecological footprint? –Evidence from 30 provinces in China. J. Environ. Manag. 370, 
122458. https://doi.org/10.1016/j.jenvman.2024.122458.

Wilts, H., Garcia, B.R., Garlito, R.G., Gómez, L.S., Prieto, E.G., 2021. Artificial 
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