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A B S T R A C T   

Amid the epidemic outbreaks such as COVID-19, a large number of patients occupy inpatient and intensive care 
unit (ICU) beds, thereby making the availability of beds uncertain and scarce. Thus, elective surgery scheduling 
not only needs to deal with the uncertainty of the surgery duration and length of stay in the ward, but also the 
uncertainty in demand for ICU and inpatient beds. We model this surgery scheduling problem with uncertainty 
and propose an effective algorithm that minimizes the operating room overtime cost, bed shortage cost, and 
patient waiting cost. Our model is developed using fuzzy sets whereas the proposed algorithm is based on the 
differential evolution algorithm and heuristic rules. We set up experiments based on data and expert experience 
respectively. A comparison between the fuzzy model and the crisp (non-fuzzy) model proves the usefulness of the 
fuzzy model when the data is not sufficient or available. We further compare the proposed model and algorithm 
with several extant models and algorithms, and demonstrate the computational efficacy, robustness, and 
adaptability of the proposed framework.   

1. Introduction 

Elective surgeries contribute to a substantial portion of hospital 
revenue and healthcare systems have faced an unprecedented financial 
crisis by delaying elective surgeries due to the COVID-19 pandemic (Best 
et al., 2020; Kliff, 2020). Uncertainty is one of the most critical factors 
leading to the delay of elective surgery, and the COVID-19 pandemic 
aggravates this uncertainty. For example, surgery duration has increased 
significantly and become more unpredictable in the COVID-19 era as 
surgical teams have to wear additional personal protective equipment 
before surgery and there is a postoperative disinfection procedure in 
operating rooms. In addition, the deterioration of the patient’s condi
tion, caused by a delay in surgery, increases the uncertainty of surgery 
duration (SD), length of the stay in the ward (LOSW), length of the stay 

in the intensive care unit (LOSI), and intensive care unit demand (ICD) 
of elective patients (Dai, Wang, & Shi, 2022). In addition to demand, the 
supply of beds for elective patients became uncertain because they can 
be preempted by non-elective patients at any time. For example, COVID- 
19 patients occupy most intensive care unit (ICU) beds and nursing staff, 
and their daily demand is uncertain, resulting in the shortage and un
certainty of ICU bed capacity available to elective patients (ICC).1 

There are many methods to deal with uncertainty, and stochastic 
optimization is considered to be one of the widely used methods. Sto
chastic optimization assumes that uncertain parameters follow a known 
distribution or fitted distribution of actual data (Bovim, Christiansen, 
Gullhav, Range, & Hellemo, 2020; Zhang, Dridi, & El Moudni, 2019). 
However, it is difficult to accurately know the distribution in practice 
(Shehadeh, 2022). In addition, based on our interviews,2 sometimes the 
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hospital administrators do not have sufficient data. In particular, the 
historical data cannot reflect the increase in SD, LOSW, and LOSI caused 
by the COVID-19 pandemic, and there is no data about ICC and ICD. 
Fuzzy optimization can reduce the dependence on data by making use of 
expert knowledge. At present, it has been widely used in various fields, 
including project selection (Singh, Rathi, Antony, & Garza-Reyes, 2022) 
and supply chain management (Cao, Liu, Tang, & Gao, 2021; Gabriel, 
Marcelloni, Cecílio, Cesar, & Carpinetti, 2021). Considering these sce
narios with inadequate data, we propose a fuzzy scheduling method 
based on expert estimation. The surgeon team estimate SD, LOSW, LOSI, 
ICD, and ICC based on their experience and the patient’s condition. 

As far as we know, there is no accurate method to solve a fuzzy model 
directly. Most studies first transform the fuzzy model into a non-fuzzy 
model and then use solvers or heuristic algorithms to solve the prob
lem as shown in Fig. 1 (Abdullah & Abdolrazzagh-Nezhad, 2014; 
Gonzalez-Rodriguez, Puente, Vela, & Varela, 2008). However, the 
transformation process may lead to the loss of decision information. 
Therefore, we propose a transformation process to reduce the loss of 
decision information and improve the performance of the fuzzy model. 
On the other hand, for large-scale problems, accurate methods are often 
difficult to solve the model in an acceptable time because surgical 
scheduling is a complex combinatorial optimization problem. Therefore, 
we propose a hybrid heuristic algorithm to solve the transformation 
model for large-scale problems. 

Concisely, this paper considers the scheduling of elective surgeries 
with uncertainty. We capture the uncertainty in SD, LOSW, LOSI, ICC, 
and ICD using fuzzy numbers and sets. We develop a fuzzy model to deal 
with the uncertainty and insufficient data caused by the COVID-19 
pandemic. To solve the fuzzy model, we first transform the fuzzy 
model into a tractable mixed-integer programming (MIP) model, and 
then propose a hybrid heuristic algorithm for the large-scale problems to 
reduce the solving time. The experiment shows that the fuzzy model 
based on expert experience can effectively deal with scheduling prob
lems with insufficient data. In addition, the proposed model has excel
lent adaptability to the uncertainty caused by the COVID-19 pandemic. 
Finally, the experience also proves that the transformation model that is 
easy to solve can provide an accurate solution for small-scale problems. 
At the same time, the proposed hybrid heuristic algorithm can obtain a 
satisfactory solution in a reasonable time for large-scale problems. 

In summary, our contributions are as follows. First, we use expert 
knowledge to deal with insufficient data on SD, LOSW, LOSI, ICC, and 
ICD by using fuzzy numbers and fuzzy sets. Second, we model a surgery 
scheduling problem with uncertainty incorporating the challenges 
brought by COVID-19. Third, we present an approach to solve the pro
posed fuzzy model. Specifically, we first transform the fuzzy model into 
a tractable mixed-integer programming (MIP) model and then propose a 
hybrid heuristic algorithm for the large-scale problems to reduce the 
solving time. 

The remainder of this paper is organized as follows. Following the 
literature review in Section 2, we developed a fuzzy model in Section 3 
and solve it in Section 4. Computational experiments are provided in 
Section 5. Section 6 concludes the paper with discussions and remarks. 

2. Related literature 

We review the related literature on elective surgery scheduling in 
this section. Our thorough survey3 clearly indicated that there are only a 
handful of studies that focus on surgery ‘scheduling’ problems within a 
framework that facilitates uncertainty and scarcity driven by epidemic 
outbreaks such as COVID-19. Nevertheless, many researchers focus on 
the impact of the COVID-19 epidemic on elective surgeries (cf. Best 
et al., 2020, Beninato et al., 2022; Nguyen et al., 2022; Norris et al., 
2021) and demonstrate the impact of the COVID-19 epidemic on sur
gical scheduling, in general, and elective surgeries, in particular. The 
COVID-19 pandemic has impacted the scheduling of elective surgeries in 
the following ways: First, historical data is simply unavailable to pro
duce reasonable forecasts for scheduling; for example, complicated 
preoperative preparation procedures, postoperative disinfection, and 
reduction in the number of staff have led to changes in the distribution of 
surgery duration, and/or the mean and variance of the surgery duration. 
Secondly, the availability of ICU and inpatient beds has become uncer
tain and scarce due to increased and highly volatile emergency COVID- 
19 demand. While the extant literature mainly identifies these charac
teristics, we focus on modeling and solving the resulting problems. The 
following subsections respectively discuss the surgery scheduling liter
ature and uncertainty therein. 

2.1. Surgery scheduling 

Surgical suites typically operate following either an open or block 
scheduling policy (Freeman, Melouk, & Mittenthal, 2016; Miao & Wang, 
2021). The open scheduling policy means that a surgeon can choose any 
working day to process a case. In addition, for the block scheduling 
policy, surgeon or surgeon groups are assigned to a period during which 
they can schedule their surgical cases. These time blocks are owned by 
surgeons and reserved in advance. Even if some time blocks are not used, 
they cannot be released during the planning period. Since patients in the 
same block must be scheduled for surgery on the same day, this may not 
be conducive to the flexible allocation and full utilization of ICU beds 
and inpatient beds, so we adopted an open scheduling policy. 

Since the upstream stage consists of more expensive resources of 
hospitals, most studies focus on improving the utilization of upstream 
resources. For example, Li et al. (2016) propose a rescheduling method 
to improve the utilization of related resources in the OR. Batun et al. 
(2011) consider OR as a bottleneck resource and propose a stochastic 
mixed-integer programming model to minimize the total expected cost. 
Similarly, Roshanaei et al. (2017) consider the scarcity of OR and sug
gest a joint operation scheduling method based on multiple hospitals. 
These studies usually treat different hospital units in isolation. In 

Fig. 1. Surgery scheduling problem and optimization framework.  

3 In our survey, we searched Web of Science databases for articles belonging 
to the area of operations research and management science from 2010 to 2021. 
The search term includes a combination of the following words: surgical 
scheduling, COVID-19, resource shortage, uncertainty. 
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contrast, our research treats surgery scheduling as a coordinated process 
between the upstream and downstream. Specifically, we consider the 
utilization efficiency of OR and the availability of ICU and ward. 

Surgery scheduling under limited downstream resources has also 
been investigated. For example, Min and Yih (2010) propose a stochastic 
mixed-integer programming model for the shortage of downstream 
surgical intensive care unit (SICU) beds. Zhang et al. (2019) study a two- 
level optimization model considering the capacity limitation of the 
downstream SICU for the problem of elective surgery planning in a 
single department. These studies attempt to address the adverse effects 
of ICU capacity constraints on upstream OR utilization, whereas our 
study also highlights the importance of wards. 

To compare the existing work on surgery scheduling and to highlight 
our contribution, we have summarized the relevant literature in Table 1. 
Generally, the focus of research has been on the OR unit, while only 
several researchers have incorporated the ICU and ward and studied all 
three at the same time. Moreover, the objectives of surgical scheduling 
have varied across operating room overtime, patient waiting for costs, 
and extra ICU beds. 

2.2. Uncertainty in surgery scheduling 

The uncertainty in the scheduling of elective surgery mainly includes 
the SD, LOSI, LOSW, ICD, and ICC. The upstream stage mainly involves 
surgery duration, which can be subdivided into a pre-operative holding 
unit (PHU) duration, surgery duration, and post-anesthesia care unit 
(PACU) duration. Most of the scheduling studies focus on the uncer
tainty of surgery duration, as shown in Table 2 below. For example, Eun 
et al. (2019) use a stochastic mixed-integer program to optimize the 
assignment of surgeries. Furthermore, Neyshabouri and Berg (2017), 
Schiele et al. (2021), and Zhang et al. (2019) consider the uncertainty of 
SD and LOSI. Only very few studies incorporate the uncertainty of LOSW 
(cf. Bovim et al. 2020; Schiele et al., 2021). As seen in Table 2, none of 
the existing studies consider the uncertainty of ICU demand and ca
pacity. This is because, under normal circumstances, hospitals have 
sufficient ICU beds reserved for elective surgeries, thereby the un
certainties therein do not play a major role in scheduling decisions. 
However, when a large number of ICU beds are occupied by emergency 
patients (due to unprecedented events such as the COVID-19 pandemic), 
the availability of ICU beds becomes limited and uncertain. Thus, the 
hospital can no longer reserve ICU beds for each elective surgery patient, 
and it has to carefully consider the need for ICU beds for elective pa
tients. In addition, since ICU beds are shared by elective and emergency 
patients, the uncertainty in available ICU capacity becomes very critical 
in this case. 

There exist other stochastic, robust, and fuzzy optimization models 
that deal with the uncertainty of surgery scheduling. For example, 
Kumar et al. (2018) propose a stochastic mixed-integer programming 
model to capture the uncertainty of LOSI when downstream capacity is 
limited. Min and Yih (2010) establish a stochastic compensation model 
and apply the sample average approximation algorithm to solve it. These 
authors apply stochastic optimization, and they need to assume that 
distributions of the parameters are known. In contrast, our model does 
not need to make such assumptions as we rely on expert opinion; thus, 
our model does not depend on historical data. 

Denton et al. (2010) compare stochastic optimization (SO) and 
robust optimization (RO) models for the uncertainty of surgery duration. 
Their results show that RO performs better in situations where infor
mation about parameter distribution is limited. Neyshabouri and Berg 
(2017) employ a two-stage RO model to deal with the uncertainty in 
LOSI and LOSW. While we employ a fuzzy model to address the in
adequacy of data in this paper, robust optimization has also been 
employed in the literature (Denton et al., 2010; Neyshabouri and Berg, 
2017; Wang et al., 2019). However, for our surgery scheduling problem, 
since each surgery operation has a unique complexity and features, 
surgeons need to make a specific judgment and estimate for each patient 

Table 1 
Related literature on surgery scheduling.  

Paper Objective function Focused unit Planning 
horizon 

Denton et al., 
(2010) 

OR overtime cost, OR open cost OR Intra-day 

Lee and Yih 
(2014) 

Completion time, waiting time OR, Post- 
anesthesia 
CU 

Intra-day 

Min and Yih 
(2010) 

Patient costs, expected 
overtime costs 

OR, SICU Intra-day 

Gul et al. (2015) Expected OR overtime, waiting 
and cancellation costs 

OR week 

Jebali and 
Diabat (2015) 

Patient-related cost, expected 
OR Utilization cost, penalty cost 
for exceeding ICU capacity 

OR, ICU Intra-day 

Freeman et al. 
(2016) 

The surgery revenue, costs for 
overtime and tardiness 

OR Intra-day 

Neyshabouri and 
Berg (2017) 

Cost of patient priority and 
waiting time, overtime cost, 
cost of lack of SICU capacity 

OR, ICU week 

Kumar et al. 
(2018) 

The LOSI of scheduled patients, 
the LOSI of canceled patients 

OR, ICU week 

Eun et al. (2019) Patient health condition and 
total overtime 

OR Intra-day 

Behmanesh and 
Zandieh 
(2019) 

Makespan and the unscheduled 
surgical cases 

OR Intra-day 

Zhang et al. 
(2019) 

Waiting cost, surgery cost, 
overuse of ORs, inadequate 
SICU beds and OR open cost 

OR, ICU week 

Wang et al. 
(2019) 

Operational costs, including the 
fixed costs for Opening ORs and 
the expected penalty costs of 
overtime 

OR Intra-day 

Bovim et al. 
(2020) 

Number of patients scheduled, 
cancellations, and resting in 
wards not designated 

OR, Ward week 

Wang et al. 
(2020) 

The expected value of average 
recovery completion time for all 
patients 

OR Intra-day 

This paper Waiting cost, OR overtime cost, 
extra ICU bed, extra inpatient 
bed 

OR, ICU, 
Ward 

week 

Note: Different studies have used different terms for beds that exceed the ca
pacity of the ICU. Commonly used terms include the exceeding ICU capacity, 
lack of SICU capacity, the extra beds acquired in the ward, and inadequate SICU 
beds. We use the term ‘extra’ ICU bed and ‘extra’ inpatient bed. 

Table 2 
Related literature on surgery scheduling considering uncertain factors.  

Literature SD LOSI LOSW ICD ICC Method 

Denton et al. (2010) ✓ ✕ ✕ ✕ ✕ RO 
Min and Yih (2010) ✓ ✓ ✕ ✕ ✕ SO 
Lee and Yih (2014) ✓ ✕ ✕ ✕ ✕ FO 
Gul et al. (2015) ✓ ✕ ✕ ✕ ✕ SO 
Jebali and Diabat (2015) ✓ ✓ ✕ ✕ ✕ SO 
Freeman et al. (2016) ✓ ✕ ✕ ✕ ✕ SO 
Neyshabouri and Berg (2017) ✓ ✓ ✕ ✕ ✕ RO 
Kumar et al. (2018) ✕ ✓ ✕ ✕ ✕ SO 
Eun et al. (2019) ✓ ✕ ✕ ✕ ✕ SO 
Behmanesh and Zandieh (2019) ✓ ✕ ✕ ✕ ✕ FO 
Zhang et al. (2019) ✓ ✓ ✕ ✕ ✕ SO 
Wang et al. (2019) ✓ ✕ ✕ ✕ ✕ RO 
Bovim et al. (2020) ✓ ✕ ✓ ✕ ✕ SO 
Zhang et al. (2020) ✓ ✓ ✕ ✕ ✕ SO 
Wang et al. (2020) ✓ ✕ ✕ ✕ ✕ FO 
This paper ✓ ✓ ✓ ✓ ✓ FO 

Note: SO - Stochastic Optimization, RO - Robust Optimization. FO - Fuzzy 
Optimization. 
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based on their own experience, knowledge, and patient’s physical con
dition(Chung et al., 2022; Moreno & Blanco, 2018); for example, the SD 
for cataract surgery was significantly influenced by anesthesia type, 
surgeon grade, high case complexity, pupil size, pupil expander use/ 
type, CTR use, and intraoperative complications(Nderitu & Ursell, 
2019). Thus, each estimate by the surgeons is not an exact value but a 
fuzzy interval with some uncertainty, which is difficult to describe by 
the uncertain sets in robust optimization. These models apply RO, which 
is suitable for situations with limited parameter distribution informa
tion. In comparison, we obtain the uncertain parameters from expert 
estimates that reflect the heterogeneity of patients, thereby reducing the 
complexity of the model. Thus far, there is limited literature on surgery 
scheduling with fuzzy theory. For example, Lee and Yih (2014) study a 
fuzzy model with the uncertainty of PACU duration. Behmanesh and 
Zandieh (2019) use a fuzzy optimization model based on multi-objective 
for the uncertainty of PHU time, SD, and PACU time. These studies focus 
on the intra-day surgery scheduling and highlight the uncertainty of the 
upstream (i.e., SD). In contrast, we consider the uncertainty in SD, 
LOSW, and ICD, and use a multi-day scheduling scheme. 

3. Fuzzy surgery scheduling model with uncertain 

In order to clearly represent the modeling process, we first developed 
a crisp surgery scheduling model by assuming that the surgical sched
uling environment is certain. In Section 3.2, we further developed a 
fuzzy model considering the uncertainty of the scheduling environment, 
i.e., fuzziness. 

3.1. The crisp surgery scheduling model 

In this subsection, we present a crisp (non-fuzzy) model (CM) for our 
elective surgery scheduling problem. The goal is to schedule patients 
optimally for the surgery when the capacity of the OR, ICU, and ward are 
all limited. Before each planning horizon (week), all patients stay on a 
waiting list and the hospital needs to optimally4 select some patients 
from this list for treatment due to the capacity limit; the remaining 
patients will be considered during the next planning stage, i.e., in the 
subsequent week. Following the standard surgical practice, we assume 
that each patient is pre-assigned to a surgery team based on his/her 
primary surgeon and current needs, and this information is available at 
the time of the patient selection. Also, every patient has a latest surgery 
date before which his/her surgery must be completed. Therefore, pa
tients are heterogeneous in terms of the surgery time requirement. Note 
that, whenever the capacity is limited, some patients may decide to 
leave the waiting list and look for another hospital, if they can’t get a 
timely appointment. After surgery, some patients will be discharged 

directly, some patients will enter the ICU, and the remaining patients 
will enter the ward to recover until they are discharged. Fig. 2 below 
illustrates the flow of patients during the surgery procedure. It should be 
observed that ICU and ward can admit patients externally and thus, the 
ICU capacity is shared among the patients from the OR and the direct 
ICU inpatients whereas the ward capacity is shared among the patients 

Fig. 2. The flow of patients during the surgery procedure.  

Table 3 
Notation for indices, parameters, and decision variables.  

Indices 
i Patient index; i = 1,2,3, ...,N, where N indicates the number of elective 

surgeries on the waiting list. 
s Surgeon index; s = 1,2,3,...,S, where S indicates the number of surgeons. 
j OR index; j = 1,2,3, ...,J, where J indicates the number of ORs. 
d Surgery date index; d = 1,2,3, ...,D/D’, where D indicates the number of 

days in the current planning horizon, and D’ is a dummy day to 
accommodate excessive demand. 

e Date index of discharge from ward; e = 1,2,3, ...,D, ...,D + QW, where QW 

indicates the maximum LOSW of patients in Ward. 
r Date index of patient leave ICU; r = 1,2,3, ...,D, ...,D + QU, where QU 

indicates the maximum LOSI of patients in ICU. 
Parameters 
HA Index set of surgery date; HA = {1, 2,3, ...,D’}. 
HE Index set of discharge date; HE =

{
1,2, 3, ...,D, ...,D+QW}. 

HU Index set of the date that a patient leaves ICU; HU =
{

1, 2,3, ...,D, ...,D+QU}. 
HI Index set of patients; HI = {1, 2, 3, ...,N}.

BW Number of available inpatient beds at the beginning of the current 
planning horizon. 

BU Number of available ICU beds at the beginning of the current planning 
horizon. 

uO
j Unit overtime cost per operating room ORj. 

uW Unit cost per an optional extra inpatient bed. 
uU Unit cost per extra ICU bed. 
uT

i Unit waiting cost of patient i. 
MO Upper-bound for daily overtime hours of each OR. 
MB Upper-bound on extra inpatient beds for each day. 
MU Upper-bound on extra ICU beds for each day. 
{Yis}N×S Surgeon-patient matrix, Yis = 1, if the surgeon s is the attending surgeon 

of patient i; otherwise Yis = 0. 
Zi Type of patient; Zi= 1 if a patient is an inpatient; otherwise Zi = 0. 
{βsd}S×D Availability of surgical team; βsd= 1 if surgeon s is available on day d, and 

otherwise βsd = 0. 
Tdj Open duration of operation room ORj on day d. 
LS

i Surgery duration (SD) of patient i. 
LW

i Length of stay in the ward (LOSW) of patient i. 
LU

i Length of stay in ICU (LOSI) of patient i. 
DU

i Type of patient; DU
i = 1 if a patient is admitted to ICU after surgery; 

otherwise DU
i = 0. 

RU
d The number of released ICU beds on day d. 

RW
d Number of released inpatient beds on day d. 

Ksd Maximum working time of surgeons s on day d. 
Duei The latest date of the surgery of patient i. To keep the patient healthy, 

each patient has a due date by which the operation must be completed. 
The due date reflects the heterogeneity in the relative urgency and 
severity of the patient’s condition. 

WB
i Total waiting days of patient i before the beginning of the current 

planning horizon. 
θ Penalty coefficient of waiting time for patients deferred to the next 

planning horizon. 
Decision Variables 
Xs

idj Binary variable; Xs
idj= 1, if patient i is assigned to ORj, surgeon s, on day d; 

otherwise Xs
idj = 0. 

Nie Binary variable; Nie= 1, if patient i is discharged from the ward on day e; 
otherwise Nie = 0. 

NU
ir Binary variable; NU

ir = 1, if patient i is discharged from ICU on day r; 
otherwise NU

ir = 0. 
ΔO

dj Total overtime of the ORj on day d. 

ΔW
d The number of extra beds in the ward used on day d 

ΔU
d The number of extra ICU beds used on day d. 

ΔT
i Total waiting days of patient i. 

Note: The superscripts of all parameters are only used to distinguish symbols and 
have no specific meaning. 

4 It must be noted that the job selection, “patient selection” by the hospital 
decision-makers, will be done optimally in our setting. 
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from OR, ICU, and the direct inpatients. As we discussed earlier, during 
epidemic outbreaks such as COVID-19, the external demand for ICU and 
ward beds increases rapidly. Therefore, the analysis of the problem 
under stringent ICU and ward capacities would be of particular interest 
in this study. 

We now turn attention to the key determinants of our cost minimi
zation objective function in the formulation. Unlike emergency sur
geries, elective surgeries are less sensitive to the date of surgery. 
Nevertheless, due to health risks associated with waiting, elective sur
geries can’t be postponed indefinitely. Therefore, our objective function 
incorporates the patients’ waiting cost for surgery. Waiting costs refer to 
the health risks and loss of satisfaction caused by waiting, which can be 
described as a loss of patient and social productivity due to treatment 
delays (Gerchak et al., 1996; Ayvaz-Cavdaroglu and Huh, 2010). How
ever, choosing too many patients for surgery to reduce patient waiting 
times often results in OR overtime and overload of the ward which is 
costly. Thus, there exists an interesting tradeoff between the waiting cost 
and OR overtime and bed shortage costs. Consequently, our objective of 
this paper is to jointly reduce patient waiting costs, OR overtime costs, 
and both ICU and inpatient bed shortage costs by aptly scheduling 
elective surgeries. 

To present the formulation of our problem, we first introduce the 
following notations in Table 3. 

Some model parameters, such as the patient and attending surgeon 
team match {Yis}N×S, the surgeon’s working date {βsd}S×D, the latest 
operation date Duei for each patient, and the surgical patient’s demand 
for an inpatient bed Zi, are known. In addition, some parameters such as 
MO, MB, Ksd, WB

i , and θ are usually set by decision-makers. Finally, we 
refer to a bed in the ward as the inpatient bed, and a bed in the ICU as the 
ICU bed; the two are collectively called ‘bed’. 

With these notations, we can formulate our joint scheduling problem 
with cost minimizing objective as follows: 

Min
∑N

i=1
uT

i ΔT
i +

∑D

d=1

∑J

j=1
uO

j ΔO
dj +

∑D

d=1
uW ΔW

d +
∑D

d=1
uUΔU

d (1) 

The first term in the objective function (1) represents the patients’ 
waiting cost whereas the second, third, and fourth terms respectively 
represent the overtime cost of the OR, and the costs of the extra inpatient 
and ICU beds. As we have defined in Table 3, corresponding u in each 
cost term of the objective function represents the unit cost associated 
with the respective decision variable. 

Next, we introduce related sets of constraints and their in
terpretations. 

ΔT
i =

∑D

d=1

∑J

j=1

∑S

s=1
HA

d Xs
idj + WB

i

∑D

d=1

∑J

j=1

∑S

s=1
Xs

idj

+θ⋅D⋅

(

1 −
∑D

d=1

∑J

j=1

∑S

s=1
Xs

idj

)

, ∀i,

(2)  

ΔO
dj⩾
∑N

i=1

∑S

s=1
LS

i Xs
idj − Tdj, ∀j, ∀d, (3)  

ΔO
dj⩾0, ∀j, ∀d, (4)  

ΔO
dj⩽MO, ∀j, ∀d. (5) 

Equation (2) represents the waiting time of each patient. In partic
ular, this constraint includes the waiting time of the current planning 
horizon as well as the waiting time before the start of the planning ho
rizon. Among the patients with the same waiting unit cost, the patient 
with a long waiting time gets the priority. Due to the limited capacity of 
the hospital, not all patients on the waiting list can be served in the 
current planning horizon, and thus, the surgeries of some patients will 
be postponed to the next planning horizon; the third term on the right- 

hand side of Equation (2) captures the postponement penalty cost 
associated with these postponed patients. Since the total overtime of ORj 

on day d should be non-negative, bounded, and larger than or equal to 
the excessive usage of the OR over the regular opening duration, we 
need constraints (3)–(5). Observe that, in our objective function (1), the 
second term on OR overtime can be represented as 
∑D

d=1
∑J

j=1uO
j max

{∑N
i=1
∑S

s=1LS
i Xs

idj − Tdj,0
}

without the constraints (3)– 

(4). However, the introduction of an auxiliary variable ΔO
dj gives us a 

linear model. The same remark applies for ΔW
d and ΔU

d in the model. 
Nevertheless, in the fuzzy model in Section 3.2, we will use the original 
form with max(x,0) for convenience. 
[
∑D

d=1

∑J

j=1

∑S

s=1
HA

d Xs
idj + LU

i

∑D

d=1

∑J

j=1

∑S

s=1
Xs

idj

]

DU
i ⋅Zi =

∑D+QU

r=1
HE

e NU
ir , ∀i, (6)  

∑D+QU

r=1
NU

ir ⩽1, ∀i, (7)  

[
∑D

d=1

∑J

j=1

∑S

s=1
HA

d Xs
idj +

∑D

d=1

∑J

j=1

∑S

s=1
Xs

idj

(
LW

i ⋅
(
1 − DU

i

)
+ DU

i

)
]

Zi

=
∑D+QW

e=1
HE

e Nie, ∀i, (8)  

∑D+QW

e=1
Nie⩽1, ∀i. (9) 

The discharge day of an ICU patient can be calculated by adding LOSI 
to the operation day; Equations (6)–(7) serve this purpose. Equations 
(8)–(9) calculate the patient’s expected discharge date, which is the 
initial date of operation plus the number of days in the hospital.5 For 
patients who enter the ICU before the current planning horizon, if they 
leave the ICU during the current horizon, they will directly enter the 
ward. If a patient does not leave the hospital in the current planning 
horizon, then that patient will still be assigned to a bed in the next 
planning horizon until the discharge date. For patients scheduled in the 
current planning horizon, the day of leaving the ICU and the ward can be 
estimated based on their LOSI and LOSW. While variables Nie and NU

ir can 
be viewed as redundant variables, these variables not only help to un
derstand the model, but also help the computations of the number of 
patients discharged each day. 

∑d

d′ =1

∑N

i=1

∑J

j=1

∑S

s=1
ZiX

s
id′ j −

∑d

e=1

∑N

i=1
Nie − BW −

∑d

d′ =1

RW
d′ +

∑d

d′ =1

RU
d′

+
∑d

r=1

∑N

i=1
NU

ir ⩽ΔW
d , ∀d,

(10)  

ΔW
d ⩾0, ∀d, (11)  

ΔW
d ⩽MB, ∀d. (12) 

Constraints (10)–(12) handle the extra inpatient beds. The patients 
who enter the ward include patients leaving the operating room (see 
process P3 in Fig. 2), as well as patients who enter the ICU and then leave 
the ICU in the current planning horizon (process P6 in Fig. 2), and also 
include patients who enter the ICU before current planning horizon and 
leave the ICU in the current planning horizon. The patients leaving the 

5 Before surgery, each patient will be assigned a bed; so, every non-outpatient 
surgery patient will occupy at least one bed for a day. Patients who enter the 
ICU directly after surgery occupy a bed for one day to improve the utilization of 
hospital beds, after entering the ICU, the beds will be allocated to other 
patients. 
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ward include those who entered the ward during the current horizon and 
those before. Constraints (12) assure that the shortage of inpatient beds 
per day is less than an upper bound. 

∑I

i=1

∑J

j=1

∑d

d′ =1

∑S

s=1
Xs

id′ jD
U
i − BU −

∑d

d′ =1

RU
d′ −

∑d

r=1

∑N

i=1
NU

ir ⩽ΔU
d , ∀d, (13)  

ΔU
d ⩾0, ∀d, (14)  

ΔU
d ⩽MU , ∀d. (15) 

Equations (13)–(15) represent extra ICU beds, i.e., the number of 
beds beyond the capacity. The availability of ICU beds includes the 
initially available ICU beds and the released ICU beds. These released 
ICU beds refer to patients who entered the ICU before the current de
cision period and left the ICU during the current decision period. Con
straints (15) assure that the shortage of ICU beds per day is less than an 
upper limit. 

∑J

j=1

∑S

s=1
Xs

idj⩽
∑S

s=1
βsd, ∀i, (16)  

∑J

j=1

∑N

i=1
Xs

idjL
S
i βsd⩽Ksd, ∀s, ∀d, (17)  

∑Duei

d=1

∑J

j=1

∑S

s=1
Xs

idj = 1, ∀i, (18)  

∑D
′

d=1

∑J

j=1

∑S

s=1
Xs

idj = 1, ∀i, (19)  

∑D
′

d=1

∑J

j=1
Xs

idj = Yis, ∀i, s. (20) 

In order to guarantee the availability of the assigned surgeon for each 
patient on the day of surgery, we have added the constraint (16). Con
straints (17) respectively ensure that the daily working hours of the 
surgical team. Since patients must be admitted before their latest sur
gery date and each patient can only be assigned/discharged once, we 
employ constraints (18)–(19). Constraint (19) ensures that unplanned 
patients in the current planning horizon will be assigned to a dummy 
date, meaning that some patients are postponed to the next planning 
horizon due to capacity constraints. Constraint (20) indicates that each 

patient is assigned to one surgeon only. 
Although the solutions to the above scheduling problem would 

provide the directions on the type of patients that deserves a priority in 
admission, which OR should be assigned to these patients, the optimal 
time for surgeries, etc., we present a more robust version (with uncer
tainty) of the above deterministic problem next. 

3.2. Fuzzy model 

In Section 3.1, we assume that the surgical scheduling environment 
is certain, but in fact, the surgical scheduling environment is fuzzy. 
Therefore, in this subsection, we express the parameters in the surgical 
scheduling model as fuzzy numbers and fuzzy sets. Specifically, in the 
crisp model, we assume that all parameters, such as SD, LOSW, LOSI, 
ICD, and ICC, are known. In practice, decision-makers cannot obtain this 
information in advance. Although hospitals have historical data on SD, 
LOSW, and ICD, each patient presents a unique case with different 
characteristics and ICD dynamics changes due to external factors. For 
example, the demand for ICU beds has surged and become very uncer
tain due to the COVID-19 pandemic. In this subsection, we propose an 
approach based on expert estimates to handle the uncertainties. We 
represent uncertain parameters as fuzzy sets and fuzzy numbers. One of 
the key advantages of the fuzzy model is that the parameters can be 
determined either from expert estimates or a small amount of data (Yao 
and Lin, 2002). Section 3.2 introduces the fuzzy representation of un
certain parameters and presents a comprehensive description of the 
fuzzy model. The literature on decision-making in the fuzzy environ
ment is rich(Bastos, Marchesi, Hamacher, & Fleck, 2019; Bellman & 
Zadeh, 1970). 

Fuzzy models have been widely employed in hospital environments. 
In particular, triangular fuzzy numbers (TFNs) have been used for un
certain parameters in surgery scheduling studies (cf. Lee and Yih, 2014; 
Behmanesh and Zandieh, 2019; Wang et al., 2022). Similarly, we 
employ TFNs to capture uncertainty in our model (The definition of 
triangle fuzzy number can be seen in Appendix C.2). Specifically, we 

represent the patients’ SD by the TFN, ̃L
S
i = (LSl

i ,L
Sm
i ,LSr

i ), where LSl
i , LSm

i , 
and LSr

i respectively denote the most optimistic, plausible, and pessi
mistic values of surgery duration of patient i; see Fig. 3. Also, LOSI and 

LOSW can be represented by fuzzy numbers L̃
W
i = (LWl

i , LWm
i , LWr

i ) and 

L̃
U
i = (LUl

i , LUm
i , LUr

i ). It should be noted that we denote fuzzy numbers 
using ‘tilde’ throughout this paper. 

Since some patients have entered the ward (or ICU) before the cur
rent planning horizon and may leave the ward (or ICU) in the current 
planning horizon, it is necessary to estimate the ICU or inpatient beds 
that may be released in the current planning horizon. Specifically, the 

number of released ICU beds on day d can be expressed as a TFN, R̃
U
d , and 

the number of released inpatient beds on day d can be expressed as R̃
W
d . 

For patients whose discharge date exceeds the planned period, the 
hospital needs to evaluate the possibility of leaving the ward (or ICU) at 
the beginning of the next decision-making period. This approach ensures 
the adaptability of the model for highly uncertain environments with 
smaller decision-making periods. 

Usually, hospitals cannot directly observe the patient’s type, DU
i . 

However, hospitals can form a fuzzy set ̃F through expert estimation and 
then derive DU

i using a transformation of F̃. Specifically, experts (or 
surgeons) can assess whether each patient needs an ICU bed after the 
surgery and establish a fuzzy set ̃F after evaluating the current condition 
and the entire medical history of the patients. Let P = {p1, p2,⋯, pn} be a 
set of elective patients on the waiting list. Then, the fuzzy set of patients 
entering the ICU after surgery is as follows: 

F̃ = {(p1, μ1), (p2, μ2), ..., (pk, μk), ..., (pn, μn) }

Fig. 3. Patients’ SD represented as a triangular fuzzy number L̃
S
i .  
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where μk is the membership degree of the patient pk belonging to ̃F, and 
μk ∈ [0,1]. The membership degree indicates the degree to which each 
element in the set belongs to the set6 and Bellman and Zadeh (1970) 
proposed this idea in their seminal paper; please see Appendix C.1 for a 
complete definition. In this paper, the fuzzy set F̃ reflects the attending 
surgeon’s uncertainty about whether a patient needs ICU care after a 
surgery. 

Nevertheless, hospital managers still need to convert fuzzy sets into 
definite sets according to their attitudes toward risks in order to create 
surgical schedules. Specifically, let A = Fλ denote the λ-cut set of F̃, 
where λ-cut set of a fuzzy number F̃ is defined as Fλ =

{
x ∈ Ω| μ̃

F
≥ λ
}
. 

Here, λ represents the risk coefficient of the decision-maker’s assessment 
of ICU needs. Then, the decision-maker gets a definite set A of ICU re
quirements which determines DU

i through the following relationships: 

∑N

i=1
HI

i DU
i = Av, ∀v = 1, 2, ..., |A|,

DU
i ⩽1, ∀i.

Based on the crisp model and the operation rules of triangular fuzzy 
numbers,7 we can establish the fuzzy model (FM) below. Note that 
constraints (23), (28), and (29) jointly represent constraints (3)–(5), 
(10)–(12), and (13)–(15) in the original formulation, respectively. 

Min
∑N

i=1
uT

i ΔT
i +

∑D

d=1

∑J

j=1
uO

j Δ̃
O
dj +

∑D

d=1
uW Δ̃

W
d +

∑D

d=1
uUΔ̃

U
d (21) 

Subject to: 

ΔT
i =

∑D

d=1

∑J

j=1

∑S

s=1
HA

d Xs
idj + WB

i

∑D

d=1

∑J

j=1

∑S

s=1
Xs

idj

+θ⋅D⋅

(

1 −
∑D

d=1

∑J

j=1

∑S

s=1
Xs

idj

)

, ∀i,

(22)  

Δ̃
O
dj = max

{
∑N

i=1

∑S

s=1
Xs

idjL̃
S
i − Tdj, 0

}

⩽MO, ∀j, ∀d, (23)  

[
∑D

d=1

∑J

j=1

∑S

s=1
Xs

idjH
A
d + L̃

U
i

∑D

d=1

∑J

j=1

∑S

s=1
Xs

idj

]

DU
i ⋅Zi =

∑D+QU

r=1
HE

e NU
ir , ∀i, (24)  

∑D+QU

r=1
NU

ir ⩽1, ∀i, (25)  

[
∑D

d=1

∑J

j=1

∑S

s=1
Xs

idjH
A
d +

∑D

d=1

∑J

j=1

∑S

s=1
Xs

idj

(
L̃

W
i ⋅
(
1 − DU

i

)
+ DU

i

)
]

Zi

=
∑D+QW

e=1
HE

e Nie, ∀i, (26)  

∑D+QW

e=1
Nie⩽1, ∀i, (27)  

Δ̃
W
d = max

{
∑d

d′ =1

∑N

i=1

∑J

j=1

∑S

s=1
ZiX

s
id′ j −

∑d

e=1

∑N

i=1
Nie − B̃

W
−
∑d

d′ =1

R̃
W
d′ +

∑d

d′ =1

R̃
U
d′

+
∑d

r=1

∑N

i=1
NU

ir , 0

}

⩽MB ∀d,

(28)  

Δ̃
U
d = max

{
∑I

i=1

∑J

j=1

∑d

d′ =1

∑S

s=1
Xs

id′ jD
U
i −

∑d

r=1

∑N

i=1
NU

ir − B̃
U

−
∑d

d′ =1

R̃
U
d′ , 0

}

⩽MU , ∀d, (29)  

∑J

j=1

∑S

s=1
Xs

idj⩽
∑S

s=1
βsd, ∀i, ∀d = 1, ...,D, (30)  

∑J

j=1

∑N

i=1
Xs

idjL̃
S
i βsd⩽Ksd, ∀s, ∀d = 1, ...,D, (31)  

∑Duei

d=1

∑J

j=1

∑S

s=1
Xs

idj = 1, ∀i, (32)  

∑D
′

d=1

∑J

j=1

∑S

s=1
Xs

idj = 1, ∀i, (33)  

∑D
′

d=1

∑J

j=1
Xs

idj = Yis, ∀i, s, (34)  

∑N

i=1
HI

i DU
i = Av, ∀v = 1, 2, ..., |A|, (35)  

DU
i ⩽1, ∀i = 1, 2, ...,N. (36)  

4. Solution approach 

Given that the fuzzy model cannot be solved directly by a solver, we 
first transform the fuzzy model into a tractable mixed-integer pro
gramming (MIP) model, and then propose a hybrid heuristic algorithm 
for the large-scale problems to reduce the solving time. The solver can be 
applied to small-scale problems, such as small hospitals or single de
partments, because its solution process is stable, fast, and convenient. 
The hybrid heuristic algorithm can be applied to large-scale problems, 
such as large hospitals, because its solution can be achieved in an 
acceptable time. Specifically, since fuzzy models can’t be solved directly 
using commercially available solvers (e.g., AIMMS, CPLEX, Gurobi), we 
provide two approaches. In Section 4.1, we transform the fuzzy model 
(FM) into an equivalent crisp model (FECM) and use a solver (CPLEX) to 
solve it. This transformation is required as the fuzzy models cannot be 
easily converted to an equivalent MIP model that can be solved using a 
commercial solver such as CPLEX; moreover, this approach is also useful 
when employing general meta-heuristics such as GA and DE. In our 
second approach in Section 4.2, we provide a heuristic algorithm based 
on an evolutionary algorithm and employ the proposed algorithm to 
obtain a satisfactory solution in a short time. The advantage of the 
transformation approach is that the resulting FECM can be solved 
directly to get accurate results utilizing an existing solver. However, the 
solution time will increase exponentially with the solution scale as 
surgical scheduling is an NP-hard problem (Denton et al., 2010; Gul 
et al., 2015). In addition, the process of transforming the FM into a 
FECM increases the complexity of the model. Nevertheless, this 
approach works well when 1) the planning horizon is long, 2) the 
problem scale is not too large, and 3) the model solution time 

6 The membership degree is different from the binary logic of traditional sets 
where it is only indicates whether an element belongs to the set or not.  

7 For any two TFNs L̃1 =
(
Ll

1, Lm
1 , Lr

1
)

and L̃2 =
(
Ll

2, Lm
2 , Lr

2
)
, the addition, 

subtraction, and scalar multiplication can be defined as L̃1 + L̃2 =
(
Ll

1 +Ll
2, Lm

1 +Lm
2 , Lr

1 +Lr
2
)
; L̃1 − L̃2 =

(
Ll

1 − Lr
2, Lm

1 − Lm
2 , Lr

1 − Ll
2
)
;and λL̃1 =

(
λLl

1,

λLm
1 , λLr

1
)

for λ > 0, λL̃1 =
(
λLr

1, λLm
1 , λLl

1
)

for λ < 0. 
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requirement is low and produces very accurate results. The heuristic 
approach overcomes most of the disadvantages of the first method. In 
particular, the heuristic approach suits scenarios where the problem is 
large in scale and time-sensitive. This approach can be very useful in 
highly uncertain environments as shorter planning horizons and faster 
solution times are essential in such environments in order to enhance the 
adaptability of the models. 

4.1. Transformation of the fuzzy model 

We employ a transformation method proposed by Jiménez et al. 
(2007) to transform FM into a FECM. In our approach, we first transform 
FM into a FECM and then further linearize it. 

First, we define the transformation approach and provide some 
background information. Consider the following fuzzy model: 

Min z = c̃T x  

subject to x ∈ N(Ã, b̃) =
{

x ∈ Rn
⃒
⃒
⃒ ãix⩾b̃i, i = 1, 2, ...,m, x⩾0

}

where c̃ = (̃c1, c̃2, ..., c̃n), Ã =

[

ãij

]

m×n
, b̃ = (b̃1, b̃1, ..., b̃n) represent, 

respectively, fuzzy parameters involved in the objective function and 
constraints. Then, the equivalent crisp (non-fuzzy) model can be written 
as follows: 

Min EV (̃c) x  

subject to [(1 − α)Eai
2 + αEai

1 ]x⩾αEbi
2 +(1 − α)Ebi

1 , i = 1, 2, ...,m, x⩾0, α
∈ [0, 1]

(37)  

where α represents the degree that, at least, all the constraints are 
satisfied; that is, α is the feasibility degree of a decision x; the expected 
value of a fuzzy number, EV(̃c), is the halfway point of its expected in
terval, EI(̃c) (Heilpern, 1992). Specifically, we have 

EV (̃ci) =
Eci

1 + Eci
2

2
(38)  

EI(c̃i) = [Eci
1 ,E

ci
2 ] (39)  

where ̃ci =
(
cl

i, cm
i , cr

i
)
,Eci

1 = 1
2
(
cl

i + cm
i
)

andEci
2 = 1

2
(
cm

i + cr
i
)
. 

When (37) is a less than or equal (≤) type constraint, the crisp 
constraint can be written as follows: 

[(1 − α)Eai
1 + αEai

2 ]x⩽αEbi
1 +(1 − α)Ebi

2 , i = 1, 2, ...,m, x⩾0, α ∈ [0, 1]

Using the above specifications, the fuzzy model (FM) in Section 3.2 
can be transformed into the FECM below; note that constraints in 
Equations (22), (25), (27), (30), and (32)–(36) are crisp (non-fuzzy) 
constraints, and therefore, we don’t have to transform them. Thus, we 
don’t repeat those constraints here. 

Min
∑N

i=1
uT

i ΔT
i +

∑D

d=1

∑J

j=1
uO

j EV
(

Δ̃
O

dj

)
+
∑D

d=1
uW EV

(
Δ̃

W

d

)
+
∑D

d=1
uUEV

(
Δ̃

U

d

)

(40)  

subject to: 

EV
(

Δ̃
O
dj

)
= EV

(

max

{
∑N

i=1

∑S

s=1
Xs

idjL̃
S
i − Tdj, 0

})

, ∀j, ∀d, (41)  

∑N

i=1

∑S

s=1
Xs

idj

[

(1 − α)LSl
i + LSm

i

2
+ α LSm

i + LSr
i

2

]

− Tdj⩽MO, ∀j, ∀d, (42)  

[
∑D

d=1

∑J

j=1

∑S

s=1
Xs

idjH
A
d +

[
1
2

LUl
i + LUm

i

2
+

1
2

LUm
i + LUr

i

2

]
∑D

d=1

∑J

j=1
Xidj

]

DU
i ⋅Zi

=
∑D+QU

r=1
HE

e NU
ir ,∀i,

(43)  

∑D

d=1

∑J

j=1

∑S

s=1
Xs

idjZiH
A
d

+
∑D

d=1

∑J

j=1

∑S

s=1
Xs

idjZi

[[
1
2

LWl
i + LWm

i

2
+

1
2

LWm
i + LWr

i

2

]

⋅
(
1 − DU

i

)
+ DU

i

]

=
∑D+QW

e=1
HE

e Nie, ∀i,

(44)  

EV
(

Δ̃
W

d

)

= EV

(

max

{
∑d

d′ =1

∑N

i=1

∑J

j=1

∑S

s=1
ZiX

s
id′ j −

∑d

e=1

∑N

i=1
Nie − B̃

W

−
∑d

d′ =1

R̃
W
d′ +

∑d

d′ =1

R̃
U
d′ +

∑d

r=1

∑N

i=1
NU

ir , 0

})

, ∀d, (45)  

∑d

d’=1

∑N

i=1

∑J

j=1

∑S

s=1
ZiX

s
id’ j −

∑d

e=1

∑N

i=1
Nie

−

[

α BWl + BWm

2
+ (1 − α)BWm + BWr

2

]

−
∑d

d’=1

[

α
RWl

d’ + RWm
d’

2
+ (1 − α)

RWm
d’ + RWr

d’

2

]

+
∑d

d’=1

[

(1 − α)
RUl

d’ + RUm
d’

2
+ α

RUm
d’ + RUr

d’

2

]

+
∑d

r=1

∑N

i=1
NU

ir ⩽MB, ∀d,

(46)  

EV
(

Δ̃
U

d

)

= EV

(

max

{
∑I

i=1

∑J

j=1

∑d

d′ =1

∑S

s=1
Xs

id′ jD
U
i −

∑d

r=1

∑N

i=1
NU

ir − B̃
U

−
∑d

d′ =1

R̃
U
d′ , 0

})

, ∀d, (47)  

∑I

i=1

∑J

j=1

∑d

d’=1

∑S

s=1
Xs

id’ jD
U
i −

∑d

r=1

∑N

i=1
NU

ir

−

[

α BUl + BUm

2
+ (1 − α)BUm + BUr

2

]

−
∑d

d’=1

[

α
RUl

d’ + RUm
d’

2
+ (1 − α)

RUm
d’ + RUr

d’

2

]

⩽MU ,∀d,

(48)  

∑J

j=1

∑N

i=1

∑S

s=1
Xs

idj

[

(1 − α) LSl
i + LSm

i

2
+ α LSm

i + LSr
i

2

]

βsd⩽Ksd , ∀s, ∀d. (49) 

In our formulation above, the objective and several constraints are 

not linear as the terms with EV(⋅) are not linear. For example, EV(Δ̃
O
dj)

given in Equation (41) is not linear. In order to linearize this, we 
introduce a crisp auxiliary variable ΦO

dj, and change the related con
straints as follows: 

ΦO
dj⩾
∑N

i=1

∑S

s=1
Xs

idjL̃
S
i − Tdj, ∀j, ∀d, (50)  

ΦO
dj⩾0, ∀j, ∀d.

Then, we also have that EV
(

Δ̃
O
dj

)
= EV

(
ΦO

dj

)
= ΦO

dj,∀j,∀d. Moreover, 
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constraint (50) can be expressed as: 

ΦO
dj⩾
∑N

i=1

∑S

s=1
Xs

idj

[

(1 − α)LSl
i + LSm

i

2
+ α LSm

i + LSr
i

2

]

− Tdj, ∀j, ∀d.

Similarly, we can introduce crisp auxiliary variables ΦW
d and ΦU

d to 
linearize Equations (45) and (47). 

ΦW
d ⩾
∑d

d’=1

∑N

i=1

∑J

j=1

∑S

s=1
ZiX

s
id’ j −

∑d

e=1

∑N

i=1
Nie

−

[

α BWl + BWm

2
+ (1 − α)BWm + BWr

2

]

−
∑d

d’=1

[

α
RWl

d’ + RWm
d’

2
+ (1 − α)

RWm
d’ + RWr

d’

2

]

+
∑d

d’=1

[

(1 − α)
RUl

d’ + RUm
d’

2
+ α

RUm
d’ + RUr

d’

2

]

+
∑d

r=1

∑N

i=1
NU

ir , ∀d,

ΦW
d ⩾0, ∀d,

ΦU
d ⩾
∑I

i=1

∑J

j=1

∑d

d’=1

∑S

s=1
Xs

id’ jD
U
i −

∑d

r=1

∑N

i=1
NU

ir

−

[

α BUl + BUm

2
+ (1 − α)BUm + BUr

2

]

−
∑d

d’=1

[

α
RUl

d’ + RUm
d’

2
+ (1 − α)

RUm
d’ + RUr

d’

2

]

, ∀d,

ΦU
d ⩾0, ∀d.

A complete formulation of FECM after linearization is provided in 
Appendix D. 

4.2. DE-OR algorithm 

We propose a heuristic rule called OR-heuristic and combine it with 
the Differential Evolution (DE) algorithm to obtain a hybrid genetic 
algorithm which we call the ‘DE-OR’ algorithm. 

4.2.1. Framework of DE-OR 
Code: The chromosome I consists of two substrings γ and β, that 

Fig. 4. Heuristics for OR allocation.  
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represent the patient’s OR allocation and surgery date allocation, i.e., 

I =
(

γ
β

)

=

(
o1, ..., oN

d1, ..., dN , dN + 1

)

where dN+1 is a dummy date, indicating that the patient has not been 
selected for surgery in the current decision period. For example, the OR 
of patient 1 is o1, and the operation date of patient 5 is d5. 

Population Initialization: To improve the efficiency of the algo
rithm, we need to generate as many feasible solutions as possible. Here, 
we adopt a semi-random method based on heuristic rules. Specifically, 
we develop an OR-heuristic and then use it to generate the substring γ of 
the chromosome I. A semi-random method is used to produce the sub
string β, taking into account the latest start date of the patient and the 
availability of the surgeon on a given day. The specific process is 
detailed in Algorithm 1.  

Algorithm 1: Population Initialization 

Input The latest date of the patient’s operation H, the available date of the attending 
surgeon P, planning horizon T.  

m←0 
While m not in P do 
for each h ∈ H do 

if h ≤ T then 
m←rand(1, h)

else 
m←rand(1,T+1)

n = OR heuristic(m)

Output [m,n]

Fitness Function: Fitness function is defined as 

H(s) =
{

O(s), if s is feasible,
C, otherwise,

where O(s) is the objective function and C is a constraint penalty. 
Crossover and Mutation: The algorithm generates the substring β 

based on crossover and mutation, then generates γ based on the OR- 
heuristic and β. The ‘crossover and mutation’ process is not 
completely random since we ensure that the feasible solution is still a 
feasible solution after each operation. 

Population Diversification: We remove duplicate individuals from 
the population after each iteration, and then use Algorithm 1 to regen
erate it. 

More details on algorithms similar to the one above can be found in 
Storn and Price (1997). 

4.2.2. OR-heuristic 
The algorithm includes an assignment operator and an adjust oper

ator. To illustrate the process of the algorithm, we first present an 
example with 11 patients, 2 ORs with a maximum individual capacity of 
45; see Fig. 4 

Assignment Operator: In the first step, the operator groups the pa
tients according to the admission date, i.e., Day 1 and Day 2. For each 
group, the operator sorts the patients in descending order according to 
the surgery duration. Each patient is inserted sequentially into the freest 
OR until all patients obtain their OR; here, the patients are assigned to 
the OR with the highest availability first. 

Adjust Operator: For each day, the operator calculates the surgery 
duration of each OR, and then selects the OR with the largest overtime 
(OR1 for Day 1) and the OR with the idlest time (OR2 for Day 1). Since 
the capacity of each OR is 45 units of time, the operator can calculate the 
timeout of OR1, which is 46 − 45 = 1, and the idle time of OR2, which is 
45 − 39 = 6. The patient with the shortest surgery duration in OR2 is p1, 
and its surgery duration is 19. Using this, a threshold L = 19+1+6 will 
be calculated. In the interval [19,L], select the patient p9 with the largest 
surgery duration. Finally, exchange the ORs of patients p1 and p9. 
Repeat the above process until the patients on other days are also 
treated. 

The algorithm process of OR assignment is summarized below.  
Algorithm 2:OR Assignment 

Input patient set P, patient’s surgery duration S, patient’s surgery date D, planning 
horizon T, operation room set R, 

Pr, patients belonging to the operating room r 
The P is divided into sub-sets P1, P2, PT+1, according to the surgery date D.  
for l←1 to T+1 do 

Pl ← Sort in descending order (Pl) 
for each p ∈ Pl do 

for each r ∈ R do 
Cr ← Calculate the remaining capacity of operation room r 

r←argmax(Cr)

Op←r 
Cr←Cr − Sp 

If min(Cr) < 0 and max(Cr) > 0 then 
rmin←argmin(Cr)

rmax←argmax(Cr)

pm ← Find the patient with the smallest surgery time in Prmax 

Y←|min(Cr) | + max(Cr) + Spm 

PY ← Patients whose surgery duration in Prmin is less than the threshold Y 
pn ← The patient with the longest surgery duration in PY 

L←Opn 

Opn ←Opm 

Opm ← L 
Output O  

Fig. 5. No-Info and Given-Info decision-making environments.  
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We present several computational experiments to illustrate the efficacy 
of the DE-OR algorithm in the next section. 

5. Computational experiments 

For the contributions mentioned in this paper, we have carried out 
the verification one by one in the experimental part. The first part is the 
effectiveness of the fuzzy model, the second part is the verification of the 
proposed methods for resource shortage and uncertainty in the COVID- 
19 environment, and the last part is the effectiveness of the trans
formation method and heuristic algorithm. Specifically, in this section, 
we design three sets of experiments. First, the robustness and adapt
ability of the fuzzy model are tested in the first experiment when the 
data is limited, and the parameter distributions are unknown. The sec
ond experiment studies the adaptability of the fuzzy model for extreme 
circumstances with resource shortages and uncertain capacities such as 
COVID-19 environment. At last, the experiment is designed to verify the 
efficacy of the hybrid (DE-OR) algorithm and FECM. 

Experimental Design: 
Our experiments are designed using two decision-making environ

ments in terms of the availability of data and information on underlying 
parameter distributions. In the first environment, it is assumed that 
neither data nor information on the underlying parameter distribution is 
available. We call this the ‘no decision-making information (No-Info)’ 
environment. The second environment assumes either data or infor
mation on the underlying parameter distribution is available. Thus, we 
call this the ‘given decision-making information (Given-Info)’ environ
ment. Fig. 5 below depicts the two decision-making environments and 
data generation processes under each approach. 

For the No-Info environment, it is required to obtain fuzzy numbers 
through expert (surgeon) estimates in order to solve the fuzzy model. 
However, since fuzzy data is not readily available, Behmanesh and 
Zandieh (2019) replicate the surgeon’s process of generating fuzzy data 
(by using crisp data) and generate fuzzy processing times (t − u, t, t + u), 
where u and v were randomly approximated between intervals of 1 % to 
30 % of the deterministic duration (t). This approach has also been 
employed and validated recently by Wang et al. (2020), and thereby, we 
also adopt the same approach in this paper. In the Given-Info environ
ment, since either fuzzy data or the underlying parameter distribution is 
available, we can simply utilize the fuzzy model or available stochastic 
optimization models to solve the problem. In particular, our numerical 
experiment adopts the data configuration proposed by Min and Yih 
(2010), where surgical patients are considered under 9 groups, namely, 
ENT, OBGYN, ORTHO, NEURO, GEN, OPHTH, VASCULAR, CARDIAC, 

and UROLOGY. Table B.1 in Appendix B provides a summary of 
descriptive statistics for these 9 groups. Moreover, to test the perfor
mance of the model, we divide the history records into two subsets. The 
first subset is called the training set, which serves as the input to the 
model, and the second subset is called the test set, which is used for 
performance evaluation. Finally, our algorithm was programmed in 
Python, and executed on a 3.7 GHz Intel Core i7 CPU computer with 16 
GB memory using solver CPLEX within the Python docplex package for 
the MIP model. 

Regarding the impact of the number of operations on the model, we 
tested the performance under different numbers of operating rooms. 
Although we assume operating rooms are homogeneous for simplicity, 
our model can be adapted to situations with different operating room 
types. Since the surgeons have different skills or experience, the same 
operation could have different surgery duration under different sur
geons; therefore, we express the surgery duration of each patient as a 
different fuzzy number. Moreover, it is assumed that the ratio of sur
geons to patients is 1:4. In addition, since the priority of the patient is 
related to the patient’s condition, we set different unit waiting costs to 
capture this important heterogeneity in our model; nevertheless, within 
each class and feasible range, waiting costs are generated randomly 
between two bounds. The differences in the surgical needs are reflected 
in the matching of patients and surgeons, as well as differences in sur
gery duration. We consider non-elective surgery as an external uncer
tainty and express it as a fuzzy number based on expert experience. 
Moreover, we do not consider temporary cancellations of patients as 
cancellations are rare. 

Different studies in the literature have set the unit overtime cost 
according to the actual operating conditions of the related hospital. For 
example, Gul et al. (2015) set the operation unit overtime cost to $13/ 
min. The main part of the downstream hospitalization cost is the cost of 
care. Izady and Israa (2021) use the cost of human resources to represent 
the cost of care. Following their approach, considering the human 
resource cost of the actual hospital, we set the bed shortage cost to $100. 
It may not be possible to know the true value of the patient waiting cost 
as it is highly dependent on individuals. In this study, based on the in
formation that we gathered during our interviews with the hospital of
ficials, we set the unit waiting cost of patients to be a randomly 
generated number between $70 to $80. Several other studies have 
employed similar estimates in the literature; for example, Gul et al. 
(2015) regard waiting costs as a punishment and employ a spectrum of 
daily waiting costs between two bounds.8 Table 4 summarizes our model 
parameters. 

5.1. Robustness and adaptability of the fuzzy model 

Mulvey et al. (1995) describe robustness as the robustness of the 
model as well as the solution. A robust model should be less sensitive 
against modifications while the number of violated constraints should 
be minimized under a more robust solution; a model that possesses both 
of these characteristics can be thought of as an adaptable model. This 
notion of robustness has also been employed in Gorissen et al. (2015) as 
a performance measure of robustness. Therefore, we use the following 
formulas to describe the performance and robustness of our model: 

ob :=
1
N
×
∑N

n=1
obn;

Table 4 
Model parameters.  

Planning horizon (D) one week 

Unit overtime cost per operating room (uO
j ). Rand(10,16)

Unit cost per optional extra inpatient bed (uW). 100 
Unit cost per optional extra ICU bed (uU). 500 
Unit waiting cost of patient i (uT

i ). Rand(70,80)
Upper-bound for daily overtime hours of each OR (MO). 3 h 
Upper-bound on extra inpatient beds for each day (MB). 2 
Upper-bound on extra ICU beds for each day (MU). 2 
Open duration of ORj on day d (Tdj). 8 h 
Maximum working time of surgeons s on day d (Ksd). 11 h 
The latest date of the surgery of patient i (Duei). Rand(1,2D)
Total waiting days of patient i before the beginning of the current 

planning horizon (WB
i ). 

Rand(0,D)

Penalty coefficient of waiting time for patients deferred to the next 
planning horizon (θ). 

1–10 

The feasibility of decision vector (α). 0.6 
Risk coefficient of the decision-maker’s assessment of ICU needs (λ). 0.6 

Note: For a < b, Rand(a, b) denotes a randomly generated number from the 
uniform distribution over (a,b).  

8 While the cost calculations in Gul et al. (2015) show that elective surgery 
patients are time sensitive, Zhang et al. (2019) assume that patients scheduled 
for surgery during the planning horizon will not incur waiting costs; however, 
the authors introduce a higher waiting cost when the waiting time is longer 
than the planning horizon. 

Z. Dai et al.                                                                                                                                                                                                                                      



Computers & Industrial Engineering 176 (2023) 108893

12

cons :=
1
N
×
∑N

n=1
consnumn,

where n is the problem index in the simulation experiment, obn is the 
objective value under the solution in the simulation experiment, and 
consnumn represents the number of times wherein the current scheduling 
solution exceeds the maximum capacity limit in the simulation envi
ronment. For example, consider a scheduling plan derived from the 
model for a 5-day working schedule with 2 operating rooms. For this 
plan, if a realization in the simulation environment produces OR over
time numbers of {190, 170, 160, 120, 170, 150, 120, 110, 130, 170}, 
then the number of times the OR capacity exceeds the limit (MO = 180) 

is 1. When the number of extra inpatient beds per day is {0,3,1,2,3}, the 
number of times it exceeds the capacity limit (MB = 2) is 2. Moreover, if 
the number of extra ICU beds per day is given by {1,1,0,2,3}, then the 
number of times it exceeds the capacity limit (MU = 2) is 1. Thus, the 
total number of violations is consnumn = 1 + 2 + 1 = 4. Consequently, 
cons reflects the adaptability of the solution scheme and represents the 
robustness of the model. 

We next evaluate the performance and robustness of the fuzzy model 
by comparing it with several crisp (non-fuzzy) models. Following Lee 
et al. (2014), we set the modal point (MODE), center (CNE), lower 
bound (LS), and upper bound (US) of the support set of a TFN as the 
parameter values of the crisp models as shown in Fig. 6. In Fig. 6, m 
represents the degree of membership, and x represents the elements in 
the TFN. It must be noted that all the models are solved using the DE-OR 
algorithm since it is suitable for both the fuzzy and crisp models. 

As shown in Table 5 and Fig. 7, not only FECM method consistently 
produces the lowest ob values but also generates very robust solutions as 
indicated by cons. While US is the only model that outperforms the 
FECM model in terms of ‘cons’, this model produces inferior ob values to 
the FECM model. Consequently, the scheduling scheme of FECM can 
adapt to an uncertain environment with high accuracy. 

Stochastic optimization is a widely proven method that can effec
tively deal with uncertain environments. To prove the applicability of 
the fuzzy model, we compare it with the classical stochastic model. In 
addition, the comparison is to show that the fuzzy model can deal with 
the surgery schedule problems in environment both with data and 
without data. We compare the performance of the fuzzy model with a 
well-known stochastic model (SM) proposed by Min and Yih (2010) in 

Fig. 6. Parameters of the crisp models.  

Table 5 
Simulation results of different models.  

Problem NP LS US CNE MODE FECM 

ob cons ob cons ob cons ob cons ob cons 

1 18 9680 3.40 36,837 0.72 14,657 0.72 14,980 0.57 19,746  0.35 
2 40 181,099 54.48 65,611 0.00 37,389 0.76 36,751 0.75 23,786  0.04 
3 40 156,040 19.32 64,729 0.00 37,031 0.86 36,616 0.86 24,190  0.12 
4 40 149,329 6.98 71,244 0.00 37,218 1.10 36,413 1.10 27,142  0.28 
5 48 220,909 80.69 101,706 0.00 48,174 2.50 47,067 1.00 45,891  0.46 
6 48 197,943 50.64 99,693 0.00 45,787 0.87 46,570 0.92 44,902  0.62 
7 70 282,255 36.08 161,099 0.00 66,490 2.21 65,218 15.96 73,562  3.64 
8 70 321,212 217.06 148,628 0.00 64,339 1.24 67,221 1.88 61,376  1.03 
9 80 376,338 582.96 146,433 0.00 78,151 2.26 80,024 12.22 53,096  1.18 
10 80 320,126 216.28 141,464 0.00 77,179 9.32 74,284 1.42 53,523  3.72 
11 90 421,228 180.66 194,405 0.00 92,297 3.65 87,300 2.02 80,405  0.82 
12 90 392,636 177.58 184,652 0.00 93,593 3.00 89,831 2.37 76,180  0.80 
13 100 417,802 85.32 174,112 0.00 98,398 2.06 101,064 4.04 72,653  1.52 
14 100 408,013 62.93 171,656 0.24 101,501 2.10 103,263 3.60 73,222  3.02 
15 110 413,234 178.20 166,377 0.00 108,109 28.16 109,685 24.94 70,319  0.80 
16 110 415,357 211.67 161,410 0.00 104,783 6.71 102,108 7.26 67,775  4.14 
17 120 454,517 108.00 212,156 0.02 122,262 7.80 125,478 5.06 84,835  2.42 
18 120 480,787 192.48 201,256 0.00 126,226 3.50 126,174 6.75 86,661  3.22 
19 150 532,588 100.98 281,970 0.02 158,976 7.42 155,041 7.68 121,713  4.96 
20 150 482,209 87.21 176,132 0.02 147,631 19.94 154,943 12.49 89,149  0.57 
Average 331,665 132.65 148,078 0.05 83,010 5.31 83,002 5.64 62,506 1.69  

Fig. 7. Simulation results of different models.  
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this subsection. Min and Yih (2010) use the sample average approxi
mation (SAA) to solve their model. For fairness of comparison, we only 
consider the uncertainty in SD, LOSW, and LOSI, while all other pa
rameters are assumed to be known. Moreover, to highlight the benefits 
of the fuzzy model, we select small-scale problems in our experiments. 
Finally, note that an SM requires an environment with known data while 
the fuzzy model requires fuzzy data. Thus, we use the given data to 
generate fuzzy data by representing the patients’ SD, LOSW, and LOSI as 

TFN L̃
(.)

i = (L(.)l
i ,L(.)m

i ,L(.)r
i ), where L(.)l

i , L(.)m
i , and L(.)r

i respectively repre
sent the lowest value, mean value, and maximum value of the respective 
parameter distribution. 

As shown in Table 6, the crisp model (CM) has relatively higher ob 
and cons, indicating that the CM solution leads to higher costs and the 
CM does not adapt to uncertain environments easily. While the SM is 
very robust and associated with smaller objective values for some test 
problems, when the number of patients exceeds a certain threshold, the 
solution can be very long under the SM. Moreover, we observe that the 
performance of FECM and SM are similar although the solution time 
under FECM is much shorter than that under SM. Finally, as the sample 
size increases, both the SAA-based SM and the FECM usually cannot 
produce optimal results within a reasonable time frame whereas the DE- 
OR-based FECM (FECM-I) method produces a satisfactory solution in a 
quick time. 

According to the above experimental results, the adaptability of the 
fuzzy model to the uncertain environment is not much different from 
that of the stochastic optimization model. In comparison with the sto
chastic optimization model, the fuzzy model has a lower solution time 
complexity and requires a shorter solution time, thereby increasing the 
responsiveness of the model in an uncertain environment. Finally, it 
must be reiterated that fuzzy models are mainly suitable for uncertain 
environments with unknown parameter distributions. One of the main 

advantages of the fuzzy approach over stochastic programming is that 
the uncertain parameters do not have to follow any statistical 
distribution. 

5.2. Adaptability of the fuzzy model for uncertainty during COVID-19 
pandemic 

In an uncertain environment, not only the patient’s SD, LOSW, and 
LOSI are uncertain, but also the available resources are highly uncertain. 
In particular, amid the pandemic outbreaks such as COVID-19, ICU re
sources become scarce. In this subsection, we focus on the adaptability 
of models when ICC and ICD are uncertain. To reduce the interference of 
the uncertainty of SD, LOSW, and LOSI in our findings, it is assumed that 
these parameters are given. Moreover, two separate sets of experiments 
are designed to study the effects due to uncertainty in each ICD and ICC. 
Specifically, Experiments 1 and 2 respectively consider the uncertainty 
in ICC and ICD while keeping the other component fixed. 

In Experiment 1, we select the traditional ICU bed assessment policy 
for comparison, where the decision-makers use a certain percentage of 
surgical patients as the estimated number of patients who need ICU care 
after the surgery; these percentages are denoted by RT in Table 7. 
Moreover, we set NP = 70 and NR = 4. For the estimation of the ca
pacity parameters of the fuzzy model, we use the following three levels: 
L1 = (6,12,15), L2 = (16,20,30), and L3 = (30,35,40). In the exper
iment, different from the input data of the model earlier, the simulation 
data simulates the ICC when the actual plan is executed, whereas the 
earlier model estimates ICC before the plan is implemented. For our 
simulation data, ICC is randomly generated from the support of the fuzzy 
number (between LS and US) in the simulation environment; thus, we 
denote it by S B, and consider the following three value ranges: S1 = [6,
15], S2 = [16,30], and S3 = [30,40]. The results of the experiment are 

Table 6 
Comparison of CM, SM and FECM.  

Problem NP CM  SM  FECM  FECM-I 

ob cons T  ob cons T  ob cons T  ob cons T 

1 16 12,995  0.21 0.11  9197  0.17 200  9253  2.24 0.12  8980 0.01 173 
2 18 12,240  0.18 0.08  8246  0.02 137  8118  0.01 0.08  8007 0 170 
3 20 12,142  0.15 0.23  9518  0.04 454  9835  0.1 0.11  9386 0.01 176 
4 25 20,846  0.22 0.45  15,163  0.03 >36 k  14,868  0.02 0.5  14,783 0.02 181 
5 30 25,340  2.63 0.14  14,523  0.21 >36 k  14,726  0.07 1.84  15,094 0.03 188 
6 35 36,783  0.73 2.47  23,806  0.15 >36 k  22,164  0.06 8.55  21,049 0.04 195 
7 40 37,949  0.8 >36 k  25,267  0.17 >36 k  24,335  0.04 >36 k  24,752 0.08 199 
8 48 60,732  1.81 >36 k  84,733  0.03 >36 k  55,285  1.3 >36 k  61,390 3.81 212 
9 60 61,629  1.26 >36 k  44,509  0.28 >36 k  41,819  0.26 >36 k  42,734 0.9 311 

Note: CM and FECM are solved by CPLEX; SM is solved by SAA; FECM-I is the model FECM solved by DE-OR. 

Table 7 
Performance of FECM and CM under the uncertainty in ICC.  

RT BU 
B̃

U SB CM  FECM 

WC IC TC  WC IC TC  

0.1 7 L1 S1 33,700 745 34,445  32,940 821 33,761  
0.1 7 L2 S2 35,000 0 35,000  28,500 0 28,605  
0.1 7 L3 S3 34,040 0 34,040  27,500 0 27,515  
0.3 21 L1 S1 27,640 10,914 38,599  32,940 3030 35,970  
0.3 21 L2 S2 31,320 0 31,380  31,860 0 31,905  
0.3 21 L3 S3 27,940 0 28,000  28,220 0 28,220  
0.5 35 L1 S1 29,040 9286 38,431  35,280 855 36,135  
0.5 35 L2 S2 27,680 0 27,695  28,240 0 28,240  
0.5 35 L3 S3 29,900 0 29,900  30,380 0 30,380  
0.7 49 L1 S1 30,900 3014 34,064  36,680 203 36,883  
0.7 49 L2 S2 29,300 2 29,302  29,860 0 29,860  
0.7 49 L3 S3 27,640 0 27,640  28,280 0 28,280  
0.9 63 L1 S1 29,480 3155 32,725  34,860 67 34,927  
0.9 63 L2 S2 28,500 0 28,710  28,880 0 28,880  
0.9 63 L3 S3 30,020 0 30,155  30,000 0 30,000  
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given in Table 7 below, where BU represents the estimated number of 

available ICU beds in CM, B̃
U 

represents the estimated fuzzy number of 
available ICU beds in FECM, WC denotes the waiting cost of all patients, 

IC denotes the extra ICU bed cost of all patients, and TC is calculated by 
adding WC and IC. WC and IC are the sub-objectives of the proposed 
model. We chose these evaluation criteria since the uncertainty of ICC 
and ICD mainly affects the admission, i.e., patient waiting time and extra 
ICU bed demand. 

Firstly, it is evident from our experiment that pessimistic ICC esti
mates by hospital managers can lead to a reduction in the number of 
scheduled elective surgeries, and thereby reduce or eliminate the cost of 
extra ICU beds; e.g., RT = 0.1, SB = S3, WC = 34,040, and IC = 0 in 
Table 7. In contrast, more optimistic estimates by the managers can lead 
to a higher number of scheduled surgeries; while this can reduce the 
patient waiting costs, it will lead to a serious shortage of ICU beds and 
increase the cost therein, e.g., RT = 0.9, SB = S1, WC = 29,480, and IC =
3155. 

Fig. 8 compares the FECM method with the CM under small (S1), 
medium (S2), and large (S3) scale scenarios. As seen in Fig. 8, when the 
value of RT is small, i.e., approximately lower than 0.3, FECM clearly 
dominates CM while it is mostly very comparable with CM for other 
values of RT. Note that when RT > 0.3, the cost of CM and FECM looks 
similar because we have not calculated the fixed cost of beds. In fact, 
when RT > 0.3, the CM model needs to reserve a large number of bed 
resources, which is difficult to achieve in the resource shortage 
environment. 

In Experiment 2, the ICD for CM is a randomly generated 0–1 
sequence. Specifically, we first generate a random set ‘SS’ between 
[0,1]. For each element of SS, if it is greater than λ, then it is rounded up 
to 1, otherwise, it is rounded down to 0, then we get 0–1 set S. The ICD of 
the fuzzy model is crisp set S. The simulations are then carried forward 
using SS = SS*(1 ± 0.3) in each step. Finally, the λ defined in Section 3.2 
represents the decision maker’s assessment of ICD in FECM. 

Fig. 9 and Table 8 depict TC, IC, and WC as functions of λ. As seen in 
Fig. 9, when the hospital managers are more pessimistic as characterized 
by a smaller value of λ, it is less likely to exceed the ICU capacity. At the 

Fig. 8. The total cost under models FECM and CM.  

Fig. 9. Costs as a function of the preference coefficient (λ) of the deci
sion-maker. 

Table 8 
Performance of FECM and CM under the ICD uncertainty.  

λ CM FECM 

WC IC TC WC IC TC  

0.1 29,400 4107 33,507 34,100 692 34,792  
0.3 31,080 3746 34,826 33,280 164 33,444  
0.5 32,620 6827 39,447 33,400 1363 34,763  
0.7 32,100 3961 36,061 31,880 5292 37,172  
0.9 30,560 3072 33,632 30,160 3132 33,292  
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same time, the patients’ waiting costs are higher as expected. Interest
ingly, the total cost stays flat as a function of λ; thus, the model is not 
affected by the risk preference of the decision-maker and can be 
considered fairly robust. In addition, we found that only when the 
decision-maker is extremely conservative or extremely optimistic, FECM 
performs slightly worse than CM. Thus, our results suggest that a more 
moderate approach might be the best approach with fuzzy data. 

5.3. Efficacy of the solution methods 

In this section, we conduct extensive numerical experiments to 

demonstrate the efficacy of the transformation method and heuristic 
algorithm for the elective surgery scheduling problem. 

To further demonstrate the effectiveness of the transformation 
method, we compare the proposed crisp model (FECM) with other 
models by the same solver to avoid interference from the heuristic al
gorithm. We select Rodriguez’s and Niu’s models (Abdullah & 
Abdolrazzagh-Nezhad, 2014; Niu, Jiao, & Gu, 2008), two trans
formation models (named FRM and FNM in this paper), as our com
parison models. In addition, the model MODE is also a comparison 
model. The experimental results are shown in Fig. 10. For small-scale 
test problems 1–6, all the models can be solved within 800 s, but for 
large-scale problem 7, the solution times of all the models increase 
exponentially. Therefore, there is no significant difference in computa
tional complexity between FECM and FRM, MODE for small-scale 
problems. On the other hand, FECM has a lower ob and cons, indi
cating that it has better environmental adaptability. In addition, we 
found that the cons of FECM are stable and do not change with the in
crease of the problem size, which shows that it has excellent robustness. 
On the contrary, MODE, FRM and FNM fluctuate considerably. 

The model MODE is a simplification of the fuzzy model according to 
fuzzy theory. For example, without loss of generality, the surgery 

duration of the fuzzy model is L̃
S
i = (LSl

i ,L
Sm
i ,LSr

i ), while that of MODE is 
LSm

i by assuming LSl
i = LSm

i = LSr
i . Therefore, the complexity of MODE is 

less than that of the fuzzy model. The experimental results show that 

Fig. 10. The comparison of model FECM and other transformation models.  

Table 9 
Comparison of experiment results under different algorithms (Small-scale case).  

Problem NP BU BW NR CPLEX PSO-GA GA DE DE-OR 

OB T ARPD T ARPD T ARPD T ARPD T 

1 18 1 6 2 13,075 0.16  0.38 291  22.56 309  22.56 289 0 281 
2 40 4 40 2 13,901 12  4.86 333  6.29 370  4.55 334 0.89 324 
3 40 4 35 2 13,950 2  7.81 336  4.3 372  3.76 334 1.19 324 
4 40 4 30 2 14,025 8  6.95 336  4.91 371  4.81 335 2.14 324 
5 48 4 45 2 18,375 323  5.25 348  5.27 387  5.14 349 1.77 340 
6 48 4 40 2 18,551 2450  7.75 349  6.39 387  5.12 349 1.88 340  

Fig. 11. Comparison of experiment results under different algorithms (Small- 
scale case). 
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there is no significant difference in the computational complexity be
tween MODE and FECM, which indirectly proves that the complexity of 
FECM is not greater than that of the original fuzzy model. 

For DE-OR algorithm, we have selected the following representative 
algorithms for comparison:  

• CPLEX: CPLEX optimization software package can be used to solve 
integer linear programming models CM and FECM and obtain ac
curate solutions for small-scale problems. However, this process 
could be time-consuming and may not produce optimal solutions for 
large-scale problems (Zhou, Geng, Jiang, & Wang, 2018)  

• GA: This is a standard genetic algorithm (Bonabeau et al., 1999), 
except that it uses the same initial population method as in DE-OR (to 
generate many feasible solutions); all other algorithms use the classic 
tournament selection, two-point crossover, and insertion mutation.  

• PSO-GA: Niu et al. (2008) proposed this hybrid particle swarm PSO- 
GA algorithm to solve the job-shop scheduling problem. Considering 
the similarity between surgery scheduling and job shop scheduling, 
we applied it to our problem for comparison.  

• DE: This is a standard Differential Evolution algorithm (Storn and 
Price, 1997), except that it uses the same initial population method 
as in DE-OR (to generate many feasible solutions). 

• FDE: This is an improved Differential Evolution algorithm (Tsafar
akis, Zervoudakis, Andronikidis, & Altsitsiadis, 2020).  

• GA-VNS: This is a hybrid algorithm based on GA and variable 
neighborhood search (Wang et al., 2021). 

Relative Percentage Deviation (RPD) has been used as a general 
performance indicator to evaluate the optimization effect of the algo
rithm. Since each algorithm needs n runs, following Wang et al. (2018), 
we use the Average Relative Percentage Deviation (ARPD) defined 
below as the performance evaluation indicator: 

ARPD =
1
n

∑n

l=1

Rk
l − Rbest

Rbest
× 100  

where Rk represents the objective value of algorithm k, Rbest represents 

Table 10 
Comparison of experiment results under different algorithms (Large-scale case). *Note: The test probems 7–13 are executed using 0.2, 0.11, 0, 0.14, 0.23, 0.19, and 0.33, 
respectively, as the value of the relative MIP gap tolerance.  

Problem NP BU BW NR CPLEX  FDE GA-VNS DE-OR 

OB  T*  ARPD T ARPD T ARPD T 

7 70 7 65 3 28,900  >36 k   96.64 732  18.43 616  3.3 548 
8 70 7 55 3 28,868  >36 k   40.85 749  4.72 614  1.89 560 
9 80 8 70 4 28,725  >36 k   34.73 891  4.18 715  1.31 669 
10 80 8 60 4 28,575  >36 k   43.18 875  3.94 705  2.1 650 
11 90 9 80 4 33,075  >36 k   66.29 1048  6.55 866  1.81 781 
12 90 9 70 4 33,375  >36 k   109.13 1036  6.25 863  2.02 776 
13 100 10 70 5 37,425  >36 k   67.46 1334  5.81 1102  1.6 981  

Fig. 12. Comparison of experiment results under different algorithms (Large- 
scale case). 

Table A1 
List of Abbreviations and Acronyms.  

DE Differential Evolution 

DE-OR Hybrid Genetic (algorithm) 
FM Fuzzy model 
CM Crisp(non-fuzzy) model 
FECM Equivalent crisp(non-fuzzy) model 
ICU Intensive Care Unit 
SD Surgery Duration 
ICD ICU Demands 
ICC Available ICU capacity 
LOSI Length of Stay (in ICU) 
LOSW Length of Stay (in the ward) 
LS Lower Bound (crisp model) 
US Upper bound (crisp model) 
CNE Center (crisp model) 
MODE Modal Point (crisp model) 
OR Operating Room 
PACU Post-Anesthesia Care Unit 
PHU Pre-operative Holding Unit 
RO Robust Optimization 
SO Stochastic Optimization 
TFN Triangular Fuzzy Number  

Table B1 
The structure of test problems.  

Surgical group SD (minute) LOSI (day) LOSW (day) Observations 

Mean Standard 
deviation 

Mean Standard 
deviation 

Mean Standard 
deviation 

ENT 74 37 0.1 0.1 3 1 788 
OBGYN 86 40 2 2 2 2 342 
ORTHO 107 44 1.5 1.5 1 2 859 
NEURO 160 77 2 2 2 2 186 
GEN 93 49 0.05 0.05 3 1 817 
OPHTH 38 19 0.05 0.05 4 1 110 
VASCULAR 120 61 3.5 3.5 5 2 303 
CARDIAC 240 103 2 2 2 2 90 
UROLOGY 64 52 0.8 0.8 6 1 198 

Note: Min and Yih (2010) also generated SD and LOSI data using this approach. 
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the objective value of the optimal solution, and n represents the number 
of runs. 

In our experiment, test problems 1–6 consider small-scale cases 
whereas problems 7–13 focus on large-scale cases. Table 9 and Fig. 11 
present our experimental results for the small-scale cases, where NP, BU, 
BW, and NR respectively represent the number of the patients, the 
available number of ICU beds, the available number of inpatient beds, 
and the number of ORs; T and OB respectively denote the time to 
convergence in seconds and objective function value. In this case, CPLEX 
produces the optimal results (Rbest) and thus, we can calculate the ARPD 
under each algorithm. As we noted above, one contribution of this study 
is to transform the fuzzy model into a simpler MIP model that can be 
handled directly using the commercial solver CPLEX, and this approach 
is also useful when employing general meta-heuristics such as GA and 
DE. As can be seen from Table 9, for small scales, our model can be 
solved quickly via CPLEX. In comparison, the meta-heuristic algorithm 
shows better stability. Moreover, compared with the classical heuristic 
algorithms GA, DE, and PSO-GA, the accuracy and speed of DE-OR are 
exceptional. By comparing the values of ‘ARPD’ and ‘T’ in Table 9 and 
Fig. 11, it is easily seen that the proposed DE-OR algorithm outperforms 
both classical heuristic algorithms GA and DE as well as the hybrid PSO- 
GA algorithm based on particle swarm and genetic algorithm. It should 
also be noted that the DE-OR algorithm produces solutions relatively 
quickly compared to PSO-GA, GA, and DE algorithms. 

In order to minimize the selection bias in our comparison, we chose 
the most advanced ones such as FDE and GA-VNS. Furthermore, to prove 
the effectiveness of the algorithm in large-scale scenarios, we set up 
large-scale test cases. For the large-scale cases, CPLEX does not converge 
to the optimal solution in a reasonable amount of time even after 
increasing the value of the relative MIP gap tolerance to 0.1 (see values 
of ‘T’ under CPLEX in Table 10). Note that DE-OR has a significant 
advantage over solver (CPLEX) in terms of solution time when the 
problem scale is large and there is a shortage of resources such as ICU 
and inpatient beds (BU and BW). As we can see, the solution time in the 
CPLEX solver easily exceeds 10 h and this is not acceptable for a time- 
sensitive process such as surgery scheduling. In contrast, the DE-OR 
algorithm produces a satisfactory solution within 0–0.3 h even for 
large-scale cases. Finally, as shown in Fig. 12, the DE-OR algorithm 
clearly dominates all other algorithms by producing a higher value for 
the ARPD. 

6. Discussion and concluding remarks 

We have studied the scheduling problem of elective surgeries as an 
uncertain system where the downstream includes both the ICU and 
ward. The proposed DE-OR algorithm is proven to be computationally 
efficient and more effective than the existing algorithms for the research 
problem in this paper. For example, the DE-OR algorithm outperforms 
both classical heuristic algorithms GA and DE as well as the hybrid PSO- 
GA algorithm based on particle swarm and genetic algorithms; more
over, when the problem scale is large and there is a shortage of resources 
such as ICU and inpatient beds, the DE-OR algorithm clearly dominates 
popular algorithms of CPLEX in terms of the solution time. The 
robustness and adaptability of the proposed fuzzy model and its solution 
via the algorithm DE-OR is shown to be superior to extant crisp heuristic 
methods such as modal point (MODE), center (CNE), lower bound (LS), 
upper bound (US). We have further shown that the solution time under 
FECM is much shorter than that under the SAA-based SM although the 
performance of FECM and SM are similar; moreover, our experiments 
show that while both the SAA-based SM and the FECM take a very long 
time to produce optimal results as the sample size increases, the optimal 
solution to the proposed FECM method can be computed relatively 
quickly using the DE-OR algorithm. Finally, we have also demonstrated 
the adaptability of the fuzzy model to scenarios with uncertainty in ICU 
demand and capacity as well as shortages in resources amid the 
pandemic such as COVID-19. The fuzzy method is based on expert 

experience and inference to describe the uncertain information of the 
surgical process. This method can be very useful when scheduling with 
uncertainties if historical data is insufficient or the existing medical 
environment undergoes major changes. Moreover, when an environ
ment changes rapidly and the dynamic of the associated processes 
switches regimes, historical data can no longer predict future trends, and 
fuzzy models can be a solution for such scenarios. 

In practical application, the solution time by the solver may be too 
long for large-scale problems. To make up for the defect of this practical 
application, we propose the algorithm DE-OR for our research problem, 
which can meet some environments with high requirements on sched
uling time. The performance of the algorithm (DE-OR) is compared with 
different heuristic algorithms, yet DE-OR is highly customized for the 
specific model in the paper. Our future research will focus on the algo
rithm in more detail to further assess its superiority. 

We have considered the initial state at the beginning of each plan
ning horizon such as the initial waiting time of the patient and the 
availability of inpatient and ICU beds at the beginning and during a 
planning horizon. Thus, our formulation also facilitates replanning as 
the problem can be reformulated at any time for a given set of initial 
conditions. However, when the disturbances of the initial schedule get 
too large, the replanning problem needs a more rigorous treatment. 
While modeling the replanning horizon problem is beyond the scope of 
this paper, it will be an interesting and challenging problem for future 
research. Moreover, it should be noted that the hospital profit analysis 
may also include other costs such as the cost of empty wards and the cost 
of patients, surgeons, staff, operating room, etc. Although we have 
focused on fulfilling the patients’ surgery requirements while avoiding 
the risk of overloading due to insufficient resources, it will be interesting 
to see how one can incorporate other financial performance measures 
associated with surgeries in this setting as future research. 

7. Data Availability 

The datasets generated during and/or analyzed during the current 
study are available from the online materials alongside with this article. 
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Appendix A 

See Table A1 

Appendix B 

See Table B.1 

Appendix C.1. Definition of a fuzzy set 

Let U be a classical set of objects, called the universe, whose generic elements are denoted by x, i.e., U = {x}. A fuzzy set A in U is characterized by a 
membership function μA(x), which associates each element in U with a real number in [0,1]. A fuzzy set Ais usually denoted by the set of pairs 

A = {(x, μA(x) ), x ∈ U }

For example, for an ordinary set A, 

μA(x) =
{

1, if x ∈ A
0, if x ∕∈ A

}

When U is a finite set such that U = {x1, x2,⋯, xm}, a fuzzy set A in U can be represented as 

A =
∑n

i=1
xi/μA(xi)

Note that symbols ‘Σ’ and symbol ‘/’ are not traditional summation and division symbols here. 

Appendix C.2. Definition of triangle fuzzy number 

If T =
(
aL, aM, aR), where 0 < aL⩽aM⩽aR, T is called a triangular fuzzy number, and its membership function can be expressed as: 

μA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − aL

aM − aL, if aL < x < aM

x − aR

aM − aR, if aM < x < aR

0, otherwise  
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Appendix F. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cie.2022.108893. 

References 

Abdullah, S., & Abdolrazzagh-Nezhad, M. (2014). Fuzzy job-shop scheduling problems: A 
review. Information Sciences, 278, 380–407. https://doi.org/10.1016/j. 
ins.2014.03.060 

Ayvaz-Cavdaroglu, N., & Huh, W. (2010). Allocation of hospital capacity to multiple 
types of patients. Journal of Revenue and Pricing Management, 9, 386–398. https:// 
doi.org/10.1057/rpm.2010.30 

Bastos, L. S. L., Marchesi, J. F., Hamacher, S., & Fleck, J. L. (2019). A mixed integer 
programming approach to the patient admission scheduling problem. European 
Journal of Operational Research, 273(3), 831–840. https://doi.org/10.1016/j. 
ejor.2018.09.003 

Batun, S., Denton, B. T., Huschka, T. R., & Schaefer, A. J. (2011). Operating room pooling 
and parallel surgery processing under uncertainty. INFORMS Journal on Computing, 
23(2), 220–237. https://doi.org/10.1287/ijoc.1100.0396 

Z. Dai et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.cie.2022.108893
https://doi.org/10.1016/j.ins.2014.03.060
https://doi.org/10.1016/j.ins.2014.03.060
https://doi.org/10.1057/rpm.2010.30
https://doi.org/10.1057/rpm.2010.30
https://doi.org/10.1016/j.ejor.2018.09.003
https://doi.org/10.1016/j.ejor.2018.09.003
https://doi.org/10.1287/ijoc.1100.0396


Computers & Industrial Engineering 176 (2023) 108893

20

Behmanesh, R., & Zandieh, M. (2019). Surgical case scheduling problem with fuzzy 
surgery time : An advanced bi-objective ant system approach. Knowledge-Based 
Systems, 186, Article 104913. https://doi.org/10.1016/j.knosys.2019.104913 

Bellman, R., & Zadeh, L. A. (1970). Decision-making in fuzzy environment. Management 
Science, 17(4), B141–B164. https://doi.org/10.1287/mnsc.17.4.B141 

Beninato, T., Laird, A. M., Graves, C. E., Drake, F. T., Alhefdhi, A., Lee, J. A., … 
Lubitz, C. C. (2022). Impact of the COVID-19 pandemic on the practice of endocrine 
surgery. The American Journal of Surgery. https://doi.org/10.1016/j. 
amjsurg.2021.07.009 

Best, M. J., Aziz, K. T., McFarland, E. G., Anderson, G. F., & Srikumaran, U. (2020). 
Economic implications of decreased elective orthopaedic and musculoskeletal 
surgery volume during the coronavirus disease 2019 pandemic. International 
Orthopaedics, 44(11), 2221–2228. https://doi.org/10.1007/s00264-020-04713-8 

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to 
artificial systems. In New York, United States:Oxford University Press. https://doi.org/ 
10.1093/oso/9780195131581.001.0001. 

Bovim, T. R., Christiansen, M., Gullhav, A. N., Range, T. M., & Hellemo, L. (2020). 
Stochastic master surgery scheduling. European Journal of Operational Research, 285 
(2), 695–711. https://doi.org/10.1016/j.ejor.2020.02.001 

Cao, C., Liu, Y., Tang, O., & Gao, X. (2021). A fuzzy bi-level optimization model for multi- 
period post-disaster relief distribution in sustainable humanitarian supply chains. 
International Journal of Production Economics, 235, Article 108081. https://doi.org/ 
10.1016/j.ijpe.2021.108081 

Chung, W. H., Mihara, Y., Chiu, C. K., Hasan, M. S., Chan, C. Y. W., & Kwan, M. K. 
(2022). Factors affecting operation duration in posterior spinal fusion (psf) using 
dual attending surgeon strategy among lenke 1 and 2 adolescent idiopathic scoliosis 
(AIS) patients. Clinical Spine Surgery, 35(1), 18–23. 

Dai, Z., Wang, J. J., & Shi, J.(Junmin) (2022). How does the hospital make a safe and 
stable elective surgery plan during COVID-19 pandemic? Computers and Industrial 
Engineering, 169(May), Article 108210. https://doi.org/10.1016/j.cie.2022.108210 

Denton, B. T., Miller, A. J., Balasubramanian, H. J., Huschka, T. R., Denton, B. T., & 
Miller, A. J. (2010). Optimal allocation of surgery blocks to operating rooms under 
uncertainty. Operations Research, 58(4), 802–816. https://doi.org/10.1287/ 
opre.1090.0791 

Eun, J., Kim, S.-P., Yih, Y., & Tiwari, V. (2019). Scheduling elective surgery patients 
considering time-dependent health urgency : Modeling and solution approaches. 
Omega, 86, 137–153. https://doi.org/10.1016/j.omega.2018.07.007 

Freeman, N. K., Melouk, S. H., & Mittenthal, J. (2016). A scenario-based approach for 
operating theater scheduling under uncertainty. Manufacturing and Service Operations 
Management, 18(2), 245–261. https://doi.org/10.1287/msom.2015.0557 

Gabriel, L., Marcelloni, F., Cecílio, M., Cesar, L., & Carpinetti, R. (2021). Exploring the 
relations between supply chain performance and organizational culture : A fuzzy 
grey group decision model. International Journal of Production Economics, 233, Article 
108023. https://doi.org/10.1016/j.ijpe.2020.108023 

Gerchak, Y., Gupta, D., & Henig, M. (1996). Reservation planning for elective surgery 
under uncertain demand for emergency surgery. Management Science, 42(3), 
321–334. https://doi.org/10.1287/mnsc.42.3.321 

Gonzalez-Rodriguez, I., Puente, J., Vela, C. R., & Varela, R. (2008). Semantics of 
schedules for the fuzzy job-shop problem. IEEE Transactions on Systems, Man, and 
Cybernetics, 38(3), 655–666. https://doi.org/10.1109/TSMCA.2008.918603 
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