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a b s t r a c t

The demand is often forecasted using econometric (regression) or statistical forecasting methods.
However, most of these methods lack the ability to model both temporal (linear and nonlinear) and
covariates-based variations in a demand series simultaneously. In this context, a novel forecasting
model is proposed that combines a state-of-the-art sequence modeling method and a machine learning
method in an ensemble model. The proposed model can handle both types of variations in demand
data, and thus, enhances forecasts’ accuracy. A big sample of 4235 demand series consisting of
structured and unstructured data (could be referred to as ‘‘big data’’) related to packaged food products
is used for experimentation. Data contain point-of-sales, promotion, weather, regional economy,
internet media, and economic activity index related variables. Some of these variables and their
combinations is probably used for the first time in a demand forecasting model. The forecasting results
are evaluated through multiple error metrics (i.e. mean error, mean absolute error, mean squared
error), and it has been observed that proposed method outperformed the benchmarking methods. A
demand sensing algorithm is also proposed to forecast demand in real-time.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Demand estimates act as a primary input for effective planning
nd decision making in any organization. A firm’s marketing,
roduction, distribution, and finance departments use short-to-
ong term forecasts to support different decisions. Being such a
ivotal input to business decision-making, the quality of forecasts
s very important.

Demand forecasting needs historical demand data and fore-
asting methods to forecast the future demand. The first step is
o collect relevant data on various factors i.e., product features,
romotional activities, calendar events, meteorological and gen-
ral economic contexts that influence the demand for retail goods
1,2]. Understanding the impact of these factors on demand pro-
ides the needed business intelligence to the retailers for effective
ales planning and management. Next, modeling and forecasting
f demand data requires suitable forecasting methods/models.
In this paper, authors proposes a big data predictive analytics

odel capable of handling a large amount of demand data and
rovide short, medium, and long-term demand forecasts to a
etailer. As per the classification of forecasting methods based on
ata characteristics by Punia et al. [3, p. 4965], the proposed

∗ Corresponding author.
E-mail address: spunia@vgsom.iitkgp.ac.in (S. Punia).
ttps://doi.org/10.1016/j.knosys.2022.109956
950-7051/© 2022 Elsevier B.V. All rights reserved.
model could be placed in the category of medium to a large
dataset with multiple input variables. Thus, machine and deep
learning techniques are used for forecasting.

1.1. Demand forecasting in retail

The research on forecasting models started with univariate
models with sales series as the input data. These models detect
and use the temporal patterns to predict the sales for the future
[3]. However, the sales pattern is influenced by multiple factors
and forecasts from multivariate models are often better than
forecasts from univariate models [4,5].

In multivariate models, a set of factors, broadly categorized
into point-of-sales, promotion, weather, and general economics
context variables, have been used as the independent variables
in various studies. Geurts and Patrick Kelly [4] highlighted the
importance of using point-of-sales and promotion data for sales
forecasting. Choi and Li [6] reported that the forecasting models
could achieve better performance using autoregressive compo-
nents of sales variables. Choi [7] reported that market information
for pre-seasonal products would lead to better forecasts and
recommended the continuous update of forecasts based on avail-
able near real-time information. Au et al. [8] used point-of-sales
information such as pricing, discounts, and product features to
predict the sales in apparel fashion retail; and reported multivari-

ate model are better than univariate models for regular products

https://doi.org/10.1016/j.knosys.2022.109956
http://www.elsevier.com/locate/knosys
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ith low demand uncertainty and weak seasonal trends. Kumar
nd Patel [9] revealed that performing the clustering based on
eatures leads to better performance of the forecasting methods.

In the past decade, researchers discovered several new ex-
ernal indicators to estimate future demand for products. The
actors related to weather, economic indicators, internet social
edia, and sentiments indices are found to be most prominent.
ince data on external indicators are not directly available to
he retailer and ascertaining the veracity of the external data is
hallenging too. For these reasons, limited research is available
n the use of multiple external factors for demand forecasting.
Osadchiy et al. [10] used financial market information, such

s financial index, returns achieved on equity, etc., to better the
orecasting performance. Ferreira et al. [5] used the point-of-sales,
romotion, and time-based indicators such as day of the week,
ay of the month, etc., to forecast demand for an online retail
ompany. They reported that the use of additional market and
emporal information helped in better accuracy. Papanagnou and
atthews-Amune [11] used the internet social media indicators
uch as Google index, YouTube index for forecasting the sales of a
harmaceutical drug, and revealed a positive correlation between
ocial media indicators and sales prediction. Verstraete et al.
12] used the weather information to forecast low-margin high-
olume products for short-term and long-term forecasts. They
nferred that weather indicators significantly influence the sales
f low-margin, high-volume products.
With the increase in number of variables, the complexity of

he model increases. It requires the management of massive data
nd complex models to handle, process, and generate a quality
orecast. Thus, only a few studies tried to incorporate multiple
ypes of indicators in a single forecasting model. For example, [13]
eveloped a model that included product features, promotion,
nd economic indicators. However, they also did not include
eather information and social media indicators.
This paper addresses the demand forecasting problem by in-

orporating data on factors related to product features, promo-
ion, weather, regional economy, and internet social media. The
ata for three years for the 4235 demand time series with in-
ependent variables are used for the study. The details of the
ndependent variables and factors are explained in Section 2.
o manage the huge data, a big data framework using Apache
park is designed. This framework is used to process, model, and
nalyze the data to generate forecasts efficiently. In addition, the
elative importance (ranking) of the independent variables are
rovided to understand the impact of these variables on sales.

.2. Methods for demand forecasting

The time-series data based demand forecasting methods can
e classified into three categories: statistical methods, machine
earning methods, and hybrid methods. In time-series methods,
he exponential smoothing method, Auto-Regressive Integrated
oving Average (ARIMA), various decomposition models are used

or forecasting. Further, the use of some multivariate time-series
ethods such as ARIMAX has also been used. The details of these
ethods are available in Hyndman & Athansopoulos [14].
In machine learning methods, artificial neural networks

ANNs) are widely used for demand prediction. Alon et al. [15]
sed the ANN to predict the aggregate sales in retail stores
nd reported that ANN could capture the dynamic nonlinear
rend and seasonality in the sales data. Au et al. [8] used the
volutionary neural network for sales forecasting in fashion retail
nd reported improvements in the accuracy of forecasts. Ferreira
t al. [5] predicted the sales using the random forest (RF) method
ased on regression trees and bagging algorithms and reported
he advantages of RF over NNs in terms of interpretability and
2

accuracy. The latest addition to the repository of multivariate
methods is a deep neural network, and results are encouraging to
use of deep learning for the sales forecasting and decision making
[16,17].

In hybrid models, both time-series and regression (or machine
learning methods in recent) are used to model the demand pat-
terns. The hybrids of ARIMA-ANN [18], ARIMA-regression [19],
ARIMA-SVM [20], and seasonal ARIMA and wavelet transforma-
tions [21] were proposed for forecasting. It may be noted that
ARIMA is widely used with other methods to develop hybrids.
Because sARIMA can efficiently handle and model the linear tem-
poral (level and seasonality) part of the time series, and the
remaining nonlinear temporal and regression part is taken care
of by method [22].

To further the research on hybrid models, this paper proposes
a novel forecasting model, which combines deep learning-based
long–short-term-memory (LSTM) networks and random forests
(RF) method. LSTM networks are the state-of-the-art techniques
to predict the linear and nonlinear sequential data [23], and RF is
a machine learning technique to model relationships among sales
and independent variables [5]. Both methods are combined using
a genetic algorithm into an ensemble model. The forecasts from
the proposed model are tested on three error metrics for bias,
accuracy, and variance. The results are compared with forecasts
from other demand forecasting methods. The proposed method
outperformed all other methods on all three metrics. Further, this
paper proposes two auxiliary algorithms to generate daily and
long-term forecasts. These algorithms use temporal aggregation
and temporal disaggregation methods to convert the forecasts
from the proposed method to daily and long-term demand fore-
casts for retailers [14]. The study will significantly contribute to
the literature on forecasting and forecasting applications in retail
industry.

The remainder of this paper is organized as follows. The pro-
posed forecasting model for demand planning is presented in
Section 2. In Section 3, demand data and its characteristics are
discussed. Section 4 contains the data preparation, data analysis,
and results. Section 5 analyzes and discusses the results and
provides managerial insights for the effective use of the proposed
model. Finally, conclusions and future work are described in
Section 6.

2. Proposed demand forecasting framework

The proposed demand forecasting framework provides the
forecasts for short, medium, and long-term planning horizons.
The short-term model can be used for operational decision-
making while the medium and long-term model has usage for
tactical decisions such as handling products with long lead times
in retail. The factors related to point-of-sale, promotion, time,
store, and external indicators related to weather, social, and econ-
omy are used input data. An overview of the whole methodology
is described in Fig. 1.

2.1. Methodology

To eliminate reduce the high dimensionality of data and mul-
ticollinearity among variables, Principal Components Analysis
(PCA) is used. PCA is a dimensionality reduction multivariate
statistical technique first introduced by Pearson and later in 1933,
developed by Hotelling. PCA uses linear combinations to generate
non-overlapping components retaining maximum original infor-
mation. Therefore, it can help in reducing the multicollinearity
and dimensionality of retail data. Further, to avoid poor fitting of
traditional linear time-series model to nonlinear sequences and
incapability of machine learning methods on sequential data, we
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Fig. 1. Flow diagram for Proposed Demand Forecasting Framework.
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b

propose to use the long–short-term memory (LSTM) networks.
The LSTM networks are state-of-the-art deep learning techniques
to handle sequential data. LSTM networks will help to address the
linear and nonlinear relationships among dependent and inde-
pendent variables. Further, being a deep learning technique, it can
also handle big data efficiently than other traditional methods.

However, LSTM uses time windows (look back) for making
future predictions. Due to this approach, LSTM will get fewer data
per independent variable in one step than a machine learning
method. This approach restricts the scope of LSTM networks to
model the impact of the interaction among independent variables
on sales. Therefore, we propose to make a hybrid method in
which a separate machine learning method will be combined
with LSTM networks. Based on the literature, it is found that
random forest (RF) performs better than linear regressions and
neural networks for demand forecasting and also provides more
interpretable models. This will help the retail managers to under-
stand the influence of independent variables on sales.

To combine predictions from LSTM networks and RF, we pro-
posed an ensemble technique. We used the LSTM only for uni-
variate sales time-series data and the RF for the multivariate
model. Further, a genetic algorithm is used to assign the weights
analytically, eliminating any bias in weights. In these ways, the
proposed methodological framework provide a better alternative
to existing ones. The schematic diagram of the proposed frame-
work is shown in Fig. 2. Morever, a detail look at the working of
LSTM, RF and optimization for ensemble is provided in the below
sub-sections.

2.1.1. Time-series data modeling the LSTM networks
The base for LSTM networks is the Recurrent Neural Networks

(RNN), which are a better version of the traditional neural net-
work (NN) to handle the sequential (time-series) data. To forecast
the time series data, methods are required to memorize the
temporal patterns. The nodes in the hidden layers of the RNN
are connected, whereas, in traditional NN, only hidden layers
are connected. This accounts for the efficient memory of the
RNN over NN and its ability to memorize the information from
previous time steps. Unlike NN, the hidden layer in RNN at time-
step t receives the information from the input layer and receives
the information transmitted from the hidden layer at time-step
t-1. Therefore, RNNs use their memory to remember the depen-
dencies among elements of the sequence and can process long
sequences. However, RNN requires overcoming the vanishing
gradient problem, i.e., non-convergence of the network towards
the end, to learn long-term dependencies. Gradient clipping is
one of the methods to handle this problem, which is applied by
modifying RNNs to the long–short memory (LSTM) networks (see
Fig. 3).
3

Notations.

• Xt : the input vector at time step t
• ht : the output vector at time step t
• ct : the vector for cell state t
• c̃t : the vector for a candidate value for input gate
• ft , it , ot : vectors of values obtained after activation of the

gates (forget gate, input gate, and output gate)
• bf , bi, bc̃, bo : bias vectors

Wf ,x, Wf ,h, Wc̃,x, Wc̃,h, Wi,x, Wi,h, Wo,x, Wo,h: weight matrices
for input and outputs for the three gates

The LSTM networks are proposed by Hochreiter and Schmid-
huber [24] and are further enhanced by Graves and Schmidhuber
[23]. The LSTM handles the vanishing gradient problem by an
improved structure of a memory cell. The memory cell is shown
in Fig. 4. The LSTM adds and forgets information using three gates,
namely, input gate (i), forget gate (f ), and output gate (o). Let, Ct−1
nd Ct are the cell states at time t-1 and t respectively. The input
nd hidden states are represented by Xt and ht respectively. The
ell states and gates are updated through the following equations:

ft = σ
(
Wf ,xXt + Wf ,hht−1 + bf

)
(1)

c̃t = tanh
(
Wc̃,xXt + Wc̃,hht−1 + bc̃t

)
(2)

it = σ
(
Wi,xXt + Wi,hht−1 + bi

)
(3)

ct = ft ∗ ct−1 + it ∗ c̃t (4)

ot = σ
(
Wo,xXt + Wo,hht−1 + bo

)
(5)

t = ot ∗ tanh (ct) (6)

σ (.) denotes the sigmoid and tanh(.) hyperbolic tangent func-
ion. W,x and W,h indicate input weights and recurrent weights,
espectively, b represent the bias. The backpropagation algorithm
pdates weights. The forget gate remove the information from
he cell state ct−1 using Eq. (6). After that input gate adds infor-
ation to the cell state ct as shown in Eqs. (2) and (3). The output
ate through Eqs. (6) and (7) decides how much information will
e carried forward to the next cell of the LSTM network.
The LSTM networks require the variable in to form of se-

uences for training. The target and input sequences are gen-
rated for sales data, as illustrated in Fig. 5. The sales variable
ime-series sequence is used as the target variable, and for the
reation of independent variables, the sales variable is ordered
s time-series, and the autoregressive series are generated by
ime-periods shifting.

.1.2. For multivariate data modeling:Random Forest (RF)
The Random Forest (RF) algorithm is used to develop a model

etween principal components and sales. RF works on the
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p

Fig. 2. Flowchart of the Proposed Ensemble Method.
Fig. 3. The LSTM Memory Cell Architecture.
Fig. 4. Input sequences for the LSTM networks (all sequences are transposed).
rinciple of bagging. The predictions from many decision trees
are combined to provide a final prediction. The bootstrap sample
S is randomly selected from the n observations with equal
n

4

probability and replacement. Let the variable Φq, be an i.i.d.
random variable. Several such samples (SΦ1

n , . . ., SΦq
n ) are selected

from the data. Afterward, the classification and regression trees
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R
S

Fig. 5. Groups of Independent Variables Used for Demand Forecasting.
(CART) algorithm is applied to these samples to obtain q predict-
ing trees (ĥ(X, SΦ1

n ), . . ., ĥ(X, SΦq
n )). The outputs are aggregated

through a bagging algorithm to provide the result. The output, Y’
for the unknown input, X,’ is estimated with the help of Eq. (8).
The Y’ is calculated by averaging the output from all the tress.

Y ′
=

1
q

q∑
l=1

ĥ(X, SΦl
n ) (7)

.1.3. Ensemble model
After getting the predictions from the LSTM networks and

F, the weighted aggregation of the prediction is performed.
uppose for a time-series vector (Yt ), the predictions from the

LSTM networks and RF are ŷt and yrf vectors respectively, then
the aggregation vector equation is given by:

Ŷt = α1ŷt + α2yrf (8)

The weights (α1 and α2) for the aggregation are calculated by
an optimization problem. The minimization of the mean absolute
error (

∑n
i=1

⏐⏐⏐Yt − Ŷt

⏐⏐⏐ /n) is considered as a cost function, and the
summation of weights is restricted equal to 1 with both weights
can vary between 0-1. The Genetic Algorithm (GA) is used for the
solution of this optimization problem.

In GA, initially, a set of the random population of weights
(known as chromosomes) is generated. Over the next several
steps, these potential solutions are modified using selection op-
erator (selection of a set of solutions for further operation),
crossover operations (swapping of genetic contents in chromo-
somes), mutation operations (point changes in the chromosome),
and elitism (retaining the top solution) operations in the algo-
rithm [25]. The steps are repeated in each subsequent generation
until the convergence or the user-defined maximum number of
generations is achieved. The best weights for the ensemble are
the output of the optimization problem. As no experts’ opinions
are used to decide the weights, this process is free from any bias,
and the whole demand forecasting process is automated.
5

2.2. Methodologies for generating short-term and long-term fore-
casts

2.2.1. Long-term forecasts
The weekly time series are aggregated to lower frequency (say

monthly or quarterly) from a higher frequency (weekly) series.
After that, the proposed forecasting method is applied to monthly
and quarterly data, and separate forecasts are generated for these
horizons. Then forecasts are reconciled using the hierarchical
reconciliation [26]. It makes the forecasts coherent, i.e., the sum,
average, start, and end of all forecasts are consistent. For recon-
ciliation, the algorithm proposed by Athanasopoulos et al. [26] is
used. The benefits of using this algorithm are that it extracts both
high and low-frequency components and provides a chance to
model seasonality and trend/cycle separately. These components
help to understand better and model the data and tend to give
accurate, coherent, and robust forecasts. In this way, the monthly
and other low-frequency forecasts were generated.

2.2.2. Short-term Forecasts (demand sensing)
We propose the use of real-time point-of-sales data to gener-

ate the daily sales forecasts from the weekly forecast. In this way,
first, all types of variables (point-of-sales, promotions, economic
indicators, etc.) will be utilized to generate the weekly forecasts.
When additional daily point-of-sales information is available, the
daily sales forecasts can be generated. This type of forecasting
is also known as demand sensing. The concept of temporal dis-
aggregation (TD) is used to accomplish this task. TD uses the
available high-frequency indicator series to disaggregate the low-
frequency series to high-frequency series. TD is a well-known
technique in other research areas for time-series forecasting [27,
28]; however, it has not been used much in retail.

For TD, [29], [30], [31] are some of the most prominent avail-
able methods. Denton [29], Dagum and Cholette [30], mainly
concerned with movement preservation, while the other men-
tioned methods used the Generalized Least Squares (GLS) re-
gression among indicators and target variable to generate the
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ow-frequency series. Chow and Lin [31] is more suitable for sta-
ionary series [32]. We use the [33] where weekly forecasts series
ith daily point-of-sales variables as the high-frequency indicator
ill be the input to [33] method. The daily sales forecasts will be
enerated after fitting the GLS regression among low-frequency
nd high-frequency independent variables.

. Demand data and its characteristics

.1. Factors influencing the sales

The factors that influence sales can be categorized into point-
f-sales, promotion, time, store, weather, and external indicators.
he point-of-sales consists of variables related to product spec-
fication (category, color, manufacturer, volume, size, etc.) and
ustomer’s transactions (units sold, price, discount, no. of cus-
omer visits, etc.). Then, there promotional events and marketing
elated variables, such as temporary price reduction (TPR), fea-
uring in the display area, etc. These variables represent special
ttention given to a product for a short period to boost its sales.
urther, store-related variables such as location, parking space,
otal sales area, city name, type of store, etc., may not be directly
sed but can be helpful to extract the information on external
ndicators on regional weather and economy.

Weather related factors such as temperature, and wind speed
re included to incorporate the impact of weather on the sales
f products and to improve forecasting of seasonal products [34].
urther, economic indicators such as fuel prices, unemployment
ate, and metropolitan economic index are selected as the proxy
or economic indicator of the geographical region in which the
tore is located. Here, the economic index represents the average
conomic growth in the metropolitan area based on a set of
ynamic factors [35]. Therefore, it can indicate the economic
ondition of any store’s nearby area and its consumers.
Finally, a weekly Google search index is obtained from the

oogle trends website and used to predict sales. The name and
ategory of the product are used as the keywords. Google search
ndex indicates the volume ratios of keywords searched in specific
eographical areas related to the word of interest. The formula for
btaining the Google search index is given by:

It,i =

[
St,i/Rt,i∑Nw

t=1(St,i/Rt,i)

]
∗ 100, t ∈ [1,Nw] (9)

where St,i represent the number of searches with selected key-
words (kt,i), Rt,i denotes the total number of search queries in
eographical area i in total Nw weeks. The search volume index

(keyword search ratio) obtained from google trends is given by
(kt,i/GIt,i). In the Google search occurring over multiple geograph-
ical regions, the google search index is simply aggregated over all
geographical regions.

In recent literature, researchers ignored the time-series nature
of the retail data to deploy machine learning techniques for sales
forecasting. These studies included the proxy variables such as
day of sales, week of sales, month of sales, etc. as independent
variables to account for the temporal variations in the sales. In
this study, we keep the data as time series, yet the time-series
features are extracted for the input to benchmarking methods.
All the independent variables used for the current study are
summarized in Fig. 5.

3.2. Data characteristic

Espousing on the recent approach of researchers and practi-
tioners, ‘‘5Vs’’ big data framework is used to explain the charac-
teristics of the retail data. The 5Vs stand for the big data’s innate
characteristics and refer to Volume, Variety, Velocity, Veracity,
6

and Value. In a retail chain, data on hundreds of thousands
of products are available, which adds to a massive volume of
data (e.g., ∼24 million data points in this study). The struc-
ured (e.g., historical sales), semi-structured or unstructured data
e.g., Google search index) represent the variety characteristic.
The data is continuously generated through various retail opera-
tions, thus, representing the velocity dimension. The value of retail
data is high as it is used for determining the impact of predictor
variables on the forecasting accuracy, and veracity is also high
because data is obtained through in-house or reliable sources.

To summarize, the following characteristics are identified for
retail data:

• multivariate time series data
• it exhibits 5Vs of the big data
• nonlinear relationships between dependent and indepen-

dent variables
• interaction among independent factors
• multicollinearity among some independent variables

4. Data analysis

4.1. Data and summary statistics

The data is taken from a large retailer who operates multiple
retail store. The data consists of weekly sales for 55 food items
sold through 77 stores and is available for the duration from
January 2009 to January 2012. The total sample size adds up to
4235 demand time series with multiple independent variables.
The independent variables are divided into five categories: point-
of-sales, promotions, store, geographical weather, and other eco-
nomic indicators. In addition, the sixth category is derived from
the time dimension and will only be used with a machine learning
method, which ignores the time-series nature of the data. The
summary statistics of the variables from the retailer’s dataset are
provided in Table 1.

Many independent variables are self-explanatory from vari-
ables names, yet, descriptions of some of the new variables are
as follows. The ‘‘no. of visits’’ and HHS means the number of cus-
tomers and the number of purchasing households that visited the
store in the given week, respectively. The Display, TPR, and Fea-
ture stand for whether the product was part of the in-store dis-
play, temporary price reduction, and appeared in in-store circular,
respectively. Finally, the economic activity index (Econ_Index)
measures the average economic growth in a metropolitan area,
as described in Section 3.1. The weather and economic indicators
data are collected through the National Oceanic and Atmospheric
Administration (NOAA), USA, and www.data.gov public websites,
respectively, so these indicators are not summarized here. For the
model development, two years of data is used for training, and
the remaining one year of data is used for testing purposes.

4.2. Big data framework for data management and modeling

For the pre-processing of the data, two freeware and open-
source platforms, R and Python, are used. Further, to model the
big data, the Apache SystemML library is used in integration with
Keras [36] to apply the machine learning and deep learning
algorithms. The Apache SystemML is the workspace that works
on top of the big-data framework Apache Spark to efficiently run
machine learning with big data [37]. Apache Spark is a popular
framework to process big data through distributed operations. For
benchmarking, forecast package [38] for S/ARIMAX, neuratnet [39]
for backpropagation neural network, and caret [40] for data mod-
eling was used. The flowchart for the big data analysis framework
is presented in Fig. 6.

http://www.data.gov
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Table 1
Summary statistics of input variables for demand forecasting.
Variable 2009 2010 2011

Median Mean (SD) Median Mean (SD) Median Mean (SD)

Sales 11 16.88 (31.30) 11 17 (30.55) 10 16.04 (27.88)
MRP 3.00 3.50 (1.57) 3.05 3.55 (1.65) 3.29 3.64 (1.66)
Price 2.92 3.29 (1.54) 2.99 3.32 (1.55) 3.19 3.40 (1.57)
% Discount 0 4.98 (11.89) 0 4.86 (11.23) 0 4.83 (11.20)
Visits 10 14.93 (25.01) 9 15.04 (25.41) 9 14.27 (23.73)
HHS 9 14.57 (24.42) 9 14.67 (24.83) 9 13.96 (23.19)
Avg. Baskets 24766 24324 (8915) 24766 24345 (8874) 24766 24357 (8899)
Parking Qty. 0 128.32 (342.5) 0 127.85 (344.7) 0 127.81 (341.9)
Sales Area 48632 49892 (13434) 48632 49925 (13384) 48632 49974 (13480)

% of cases % of cases % of cases

Feature 0.062 (0.28) 0.061 (0.28) 0.060 (0.27)
Display 0.094 (0.32) 0.082 (0.30) 0.091 (0.32)
TPR 0.129 (0.35) 0.109 (0.33) 0.111 (0.33)
Discount 0.273 (0.45) 0.243 (0.44) 0.251 (0.44)

No. of Samples 4235 4235 4235
No. of Obs. 164145 179136 177894
Fig. 6. Big Data Framework Used for Modeling and Analysis.
Table 2
Principal Component Analysis Results for Point-of-sales variables.
Component Total % of var Cumulative % variable Explanation of

components
Test

1 2.061 0.515 0.515 VISITS 0.9991 Bartlett’s test
2 1.903 0.476 0.991 HHS 0.9992 p < 0.0001

3 0.034 0.008 1.000 PRICE 0.9829 Chi-sq. (n = 2)
4 0.002 0.000 1.000 MRP 0.9834 p < 0.0001
4.3. Data conversion: Principal component analysis (PCA)

Taking the example of point-of-sales variables (Table 2), it
an be observed that the first two components explain over 99.1
ercent of the variance of variables and at least 98 percent of
ach of the variables. The Bartlett test of sphericity with p-value
0.0001 means the null hypothesis that the correlation matrix

s an identity matrix can be rejected. It means the variables in
he point-of-sales set were suitable for the PCA. For selecting
he number of components, the chi-square test is conducted. For

= 2, with p < 0.0001, null hypothesis is rejected. Therefore,
selected two principal components can replace the four variables
in our model.

Similarly, the PCA is applied to variables from promotion,
eather, and economic factors, and results are presented in Ta-
les 3–5. Based on the chi-square test, the optimal number of
rincipal components are selected from each PCA, and these
omponents will be used as input to the forecasting model.
7

4.4. The benchmarking methods and performance metrics

The RF and backpropagation neural networks are widely used
for demand forecasting in retail. Further, the ARIMA method is
also used for time-series prediction; and ARIMAX is the mul-
tivariate version of ARIMA. All these methods are used as first
set of Benchmarking Methods (BM) in the study. Further, the
multivariate LSTM networks are also used to benchmark the
proposed combination of LSTM and RF. We also compared our
results with other hybrid methods i.e., ARIMA+NN, ARIMA+RF.
The OLS regression is chosen as the baseline to scale the errors
to a relative scale.

The parameters selection and hyperparmeters optimizations
were performed for the proposed and benchmarking methods.
For LSTM networks, in Keras, input data is provided as [samples,
timesteps, features] and normalized to the range of [−1,1]. Fur-
ther, grid search method was used for hyperparameter optimiza-
tion. In grid search, optimizers (‘adam’’, and ‘‘sgd’’), activation
functions (‘‘linear’’ and ‘‘relu’’) and different values of LSTM layers
for the network were taken [3]; and an optimization algorithm
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Table 3
Principal Component Analysis Results for Promotion-related variables.
Component Total % of var Cumulative % variable Explanation of

components
Test

1 1.468 0.367 0.367 Discount 0.9789 Bartlett’s test
2 1.234 0.309 0.676 Feature 0.9992 p < 0.0001

3 1.149 0.287 0.963 TPR 0.9833 Chi-sq. (n = 3)
4 0.149 0.037 1.000 Display 0.9959 p < 0.0001
Table 4
Principal Component Analysis Results for Weather-related variables.
Component Total % of var Cumulative % variable Explanation of

components
Test

1 2.916 0.583 0.583 Wind Speed 0.9997 Bartlett’s test
2 1.041 0.208 0.791 Precipitation 0.9998 p < 0. 0001

3 1.004 0.201 0.992 Tmax 0.9759 Chi-sq. (n = 3)
4 0.039 0.008 1.000 Tmin 0.9816 p < 0.0001
5 0.000 0.000 1.000 Tavg 0.9999
Table 5
Principal Component Analysis Results for Economy related variables.
Component Total % of var Cumulative % variable Explanation of

components
Test

1 2.149 0.537 0.537 Gasoline price 0.9998 Bartlett’s test
2 1.042 0.260 0.798 Diesel price 0.9998 p < 0.0001

3 0.809 0.202 1.000 Unemployment 0.9999 Chi-sq. (n = 3)
4 0.000 0.000 1.000 Econ_Index 0.9999 p < 0.0001
Bergstra et al. [41] was used for hyperparameter optimization.
Also, regularization and early stopping techniques were utilized
to prevent the overfitting. For RF and NN methods, a similar
approach of grid search was implemented by choosing different
set of parameters and selecting the best configuration based on
minimum error metrics.

To evaluate the forecasting performance of our proposed
ethod mean error (ME) for bias, mean absolute error (MAE)

or accuracy, and mean squared error (MSE) for variance are
ncluded in the study. Further, the errors metrics were made
elative to make them scale-free and east-to-interpret, thus the
elative mean error (RME), relative mean absolute error (RMAE),
nd the relative mean squared errors (RMSE) were used. The
elative errors were calculated by dividing the sum or mean of
rrors from the evaluated method with a benchmark method [42].
s the study has thousands of time series and multiple methods,
verage relative forecast errors are used for better readability and
nterpretability of the results.

.5. Results and discussions

Table 6 presents the performance of the proposed and bench-
arking methods. It can be observed that the proposed method
utperformed the other methods on all three error metrics. No-
ably, MAE and RMSE for the proposed methods are better than
he other methods by a significant margin. The low MAE and
MSE mean predictions are closer to the actual values. The better
ccuracy of the proposed method can be attributed to its capa-
ility to capture linear and nonlinear temporal features. Because
f these capabilities, the proposed method can capture the trend
nd seasonal peaks in the sales better than other methods. For
E, the proposed methods, ARIMA, ARIMA+RF, and LSTM, are
ompetitive. The negative bias of proposed methods and other
eural network-based suggests that these methods are slightly
ver-forecasting the sales. However, in absolute terms, the bias
s lower than other methods. It means that the sales prediction
rom the proposed method is not only more accurate but also
ver- and under-forecasted more equally, which is important for

ecision-makers.

8

Table 6
Relative errors for One-week ahead predictions (with ranking in
brackets).

ME MAE RMSE

OLS 1.000 1.0000 1.0000
ARIMA 0.1553 (2) 0.6757 (7) 0.7918 (8)
ARIMAX 0.4018 (6) 0.6367 (5) 0.7009 (6)
RF 0.3146 (5) 0.5106 (4) 0.5796 (4)
NN −0.4479 (8) 0.7511 (8) 0.7551 (7)
LSTM −0.1950 (4) 0.4954 (3) 0.5588 (2)
ARIMA+NN −0.2452 (7) 0.6586 (6) 0.6686 (5)
ARIMA+RF 0.1704 (3) 0.4221 (2) 0.5689 (3)
LSTM+RF −0.1216 (1) 0.3569 (1) 0.4638 (1)

Further, based on ME, MAE, and RMSE (Table 6), it can be said
that hybrid methods are performing better than their constituent
methods. In one instance, the MEs of the ARIMA and its hybrid
with RF are competitive. However, poor MAE and RMSE with good
ME of ARIMA suggest that the ARIMA model is predicting around
the mean values and due to which the bias of the ARIMA is lower,
but the accuracy is poor. The multivariate version of ARIMA,
which is ARIMAX, performed better than ARIMA because it can
model the relationships among independent variables and sales.
This phenomenon also highlights the importance of including
contextual business variables in sales prediction in retail. The ran-
dom forest is performing best among the non-hybrid methods on
all three metrics. However, the performance of the hybrid method
of RF is further better. This highlights the relative importance of
keeping the time-series nature of the data.

The impact of PCA is also analyzed on the forecasting per-
formance. For that purpose, the error metrics of the LSTM+RF
without PCA and with PCA are calculated. The error metrics with
PCA are reported in Table 6 and found to be slightly better
than errors metrics for LSTM+RF without PCA (ME = −0.1291,
MAE = 0.3657, and RMSE = 0.4782). In addition, the PCA made
the results of benchmarking methods more accurate, as it is
widely accepted that PCA reduces the number of predictors in
linear regression and other regression methods and improves
their performances. Also, PCA helps better explain factors (by
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Fig. 7. Relative importance of input variables for sales prediction.
Table 7
Real-time daily point-of-sales data.
Day 1 2 3 4 5 6 7
PRICE 1.17 0.99 0.98 1.17 1.18 1.17 1.17
Discount 1 1 1 0 1 0 0
FEATURE 0 1 0 0 0 0 0
DISPLAY 1 0 0 0 1 1 1
TPR_ONLY 0 0 1 0 0 0 0

Table 8
Error results for the short term forecasting.

ME MAE RMSE

Proposed Approach 0.1248 1.7428 2.2741
Mean Forecast −0.1457 2.5715 2.8732

Relative Errors 0.8565 0.6777 0.7914

aggregating the different variables) and reducing the number of
input variables.

Following the proposed methodology mentioned in
ection 2.2.1, the weekly data is aggregated to generate long-
erm forecasts. Using the proposed method as the base forecast
ethod, the separate forecasts are made for monthly and quar-

erly sales. Following the proposed approach from Section 2.2.2,
he weekly forecasts are disaggregated to daily demand forecasts
sing daily point-of-sales data as indicators. For example, the
eekly forecast for one sample week was 68, and real-time daily
oint-of-sales data is shown in Table 7. Then using the daily data,
he weekly forecast was disaggregated into daily sales series of
7,5,5,8,8,14,14}. The actual aggregate sale for the week was 62,
ith daily sales distribution series of {11,7,5,5,8,14,12}, with a
ean of 8.85 (∼9). A comparison of mean forecast and demand
ensing results from our proposed approach reveals a significant
mprovement in the accuracy of the daily forecasts. The overall
esults for all demand series are summarized in Table 8.
9

5. Managerial implications

The proposed demand forecasting framework can be used
for effective tactical and operational planning decision by retail-
ers. The accurate and real-time estimates of daily, weekly, and
monthly demand will help the retailer to plan the right products
mix to procure from the distributors. This will lead to a significant
saving of inventory and transportation costs. This will also help in
the optimal planning of assortment and assortment promotions
at the stores.

The proposed model provides the relative importance of the
factors that influence sales (Fig. 7). Understanding these factors
that drive the store and product sales is essential for the retailer
to design the promotional events, plan the assortment display
and shelf-space optimization, etc. Fig. 7 shows that Price and
maximum retail price (base price) are the most critical factors,
i.e., customers consider both types of prices for buying. This
might be because customers want to buy quality products by
avoiding artificially heavily discounted products. In the top three
important variables, the presence of economy-related variable —
Economy Index (Econ_Index) gives more support to the claims
made in the literature that external variables can be good indica-
tors for demand prediction in retail. Econ_Index is a combination
of 12 economic indicators, and it is used for the first time in
demand forecasting in retail. Therefore, we suggest the retailer
and researchers include this variable in place of other econ-
omy and consumer-related individual variables for better results
and concise data. Promotion-related variables are also coming
in the top five crucial variables, suggesting promotion and as-
sortment optimization is also essential for retail. Google index
and weather-related variables have weak prediction power for
sales, but it can be observed that maximum temperature is more
important among weather-related variables.

The proposed demand forecasting framework also generated
long-term and real-time updated daily demand forecasts. As the

forecasts are coherent across planning horizons, it will remove
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he inconsistencies in planning and decisions across various de-
artments of retail companies. Thus, demand forecasting frame-
ork can serve as decision support system for forecasting and
perations planning for retailers. The proposed methods can also
e used in improving forecasting in other industries like logis-
ics & transportation [43,44], energy forecasting [45] hierarchical
orecasting [46,47] etc.

. Conclusions

A novel demand forecasting method is developed to generate
ccurate short, medium, and long term demand forecasts in re-
ail stores. The proposed method combines LSTM networks and
andom forests into an ensemble model. The principal compo-
ent analysis is used to reduce dimensionality of the input data.
he proposed forecasting method is benchmarked against time-
eries, machine learning, and hybrid methods. The dataset of 4235
emand series with independent variables is used for analysis.
he new factors related to product features, point-of-sales, pro-
otion, weather, economy, and social media were incorporated

nto the model. Using an apache-spark based big data framework,
he data is pre-processed and modeled. Based on the three-
rror metrics, which measure the bias (ME), accuracy (MAE), and
ariance (RMSE) of the forecasts, the proposed method is found
o be the best performing method.

For short-term and long-term monthly forecasts, two auxiliary
lgorithms were also proposed. These algorithms use the con-
epts of temporal aggregations and temporal disaggregation to
onvert the forecasts from proposed methods to monthly and
aily forecasts, respectively. The algorithm for daily forecasts
nables the retailer to integrate real-time information in demand
lanning and thus acts as a demand sensing algorithm. Further,
he relative importance (ranking) of factors influencing the sales
as calculated. The point-of-sales variable and the external eco-
omic indicators are coming out to be found to most influencing
actors for sales predictions.

The present study has some limitations. It used the data from
ood products, and in order to generalize the proposed method,
he data from other product categories could be considered. Also,
eta-heuristics other than a genetic algorithm could be tested to

ind weights for combining the forecasting methods. The current
ork can be extended in several possible ways. The authors
ave restricted the forecasting horizons to three months because
onger-horizon forecasts require incorporation of human opin-
ons and judgments in the forecasts. Therefore, this work can
e extended by using judgment methods. Further, different deep
earning methods and neural networks could also be used to
xtend the present study.
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