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A B S T R A C T

The Vehicle Routing Problem (VRP) has recently piqued the interest of researchers seeking to improve the
efficiency and efficacy of the transportation system in distributing commodities. Many scholars have proposed
using a heterogeneous fleet in vehicle routing to minimize distribution costs further. When perishable items
need to be distributed at numerous demand points during specific time intervals, the situation becomes more
difficult. This paper discusses this variant of VRP and the restriction on accepting products with a minimum
stated quality level. This research aims to create and optimize a mathematical model that incorporates
the quality issue of a perishable commodity into the distribution process. The given product’s worth is
decreasing as its quality deteriorates. This problem is mathematically represented as a Mixed Integer Non-
Linear Programming Problem (MINLP). A Genetic Algorithm-based heuristic is also recommended due to the
computational complexity required in applying the model to solve real-world situations. The proposed approach
is used to solve numerical cases and perform sensitivity analysis.
. Introduction

A supply chain includes entities such as suppliers, manufacturers,
istributors, retailers, and purchasers involved in the supply, manu-
acture, distribution and sale of products or services with the objec-
ive to serve customers while earning a profit. Supply chain manage-
ent (SCM) is all about efficiently integrating suppliers, manufacturers,
arehouses and stores to achieve the objectives of the supply chain [1].
ig. 1 depicts the linkage of supply chain management with the other
ritical related functions. Modern supply chains are complex and entail
ransporting raw materials, semi-finished items, and finished products.

The collaborative development of logistics and the economy is
rucial to any country’s development [2,3]. Logistics management in-
reases the efficiency of the entire supply chain [4,5] and is thus an
ssential component of any supply chain. It is about the acquisition
f resources, their storage and transportation to their final destination.
n Fig. 2, different functions associated with logistics management are
hown.

In recent years, the logistics industry has grown significantly and is
lso expected to grow at a faster rate for some years [6,7]. Logistics
lay a critical role in the distribution of perishable products, which
ncludes vegetables, fruits, dairy products, bakeries, medications and
accines etc. [8]. The distribution problem of perishable products is a
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difficult task not only because of their limited shelf life but because,
even during the transportation itself, they deteriorate [9]. In addition,
consumers these days are more concerned than they have ever been
about the quality of products that have a short shelf life. If the required
minimum level of quality of perishable products cannot be maintained,
then buyers will not purchase those products. Finally, such products
have to be sold at discounted prices, and in some cases, they will not
find any buyers. In order to avoid such cases, retailers pay extra pre-
cautions while accepting the delivery of perishable products. Thus, the
distribution of perishable products is different from the other products
in that it focuses on not only the minimum cost of the distribution but
also the quality of the product.

A recent trend is to focus on the transportation part of logistics
management as it accounts for the major cost. Hence vehicle planning
and routing are attracting plenty of attention from researchers nowa-
days. In a logistics network, the Vehicle Routing Problem (VRP) aims to
efficiently resolve the distribution problem for a product or commodity.
VRP creates the routes with the lowest possible cost for the vehicles to
distribute the product or commodity to a group of customers. In VRP,
the start and end nodes for all routes are the same. VRP is a complex
combinatorial optimization problem where optimal routes for different
vehicles are designed to distribute the product from the warehouse
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Fig. 1. Linkage of supply chain management with other functions.

o a finite set of customers. Due to its complexity, VRP is referred
o as an NP-hard problem which is generally difficult to solve [10–
2]. Researchers have used heuristics and exact strategies to tackle
omplex VRP problems [13,14], and while these methods are capable
f providing the optimal solution, they usually take a long time to do so.
n such a scenario, metaheuristics play a crucial role because they can
eliver a comparable quality solution while requiring a much shorter
uration. This study focuses on modelling as an important distribution
roblem of a perishable product which deteriorates with time and
here the retailers are concerned with the quality of the product.
metaheuristics-based solution approach is proposed for solving the

roblem along with the exact solvers.
The paper is organized as follows: The literature review is presented

n Section 2. Section 3 describes the problem and presents the associ-
ted mathematical model. Section 4 contains details of the proposed
enetic Algorithm-based heuristic to solve the Heterogeneous fleet
ehicle Routing Problem with a Time Window (HVRPTW). Section 5

llustrates the use of the proposed model with the help of numerical
xamples. The results of sensitivity analyses are also presented in
ection 5. Section 6 is devoted to presenting the conclusions and scope
or future work.

. Literature review

Travelling Salesman Problem (TSP) is a classic problem of routing
n which a salesman has to visit each of the cities starting from one
nd returning to the same while minimizing the total length of the trip
r the total travel cost. This problem is equivalent to the one where a
ingle vehicle serves single or multiple products to different retail stores
n a single visit or a single vehicle collects a variety of products from
ll the nodes in a single visit. The vehicle’s capacity must be at least
qual to the cumulative demand of all the nodes covered in a single
rip. Fig. 3 depicts a possible result for TSP where a vehicle starts from
he depot and first reaches node 5 and then covers all the remaining 7
odes as shown in the figure before returning to the depot from node
.

The classical Vehicle Routing Problem (VRP) aims to find a set of
outes at a minimal cost beginning from and ending the trip at the depot
o that the known demand of all customers is fulfilled [15]. In the past,
2

many researchers have studied VRP [16]. The main objective of the
VRP is to minimize the total distance travelled by all vehicles, which
constitutes a significant part of delivery costs. The depot and customers
are collectively represented as nodes, and the complexity of the VRP
increases with the number of nodes [17]. In Fig. 4, a possible variation
of the vehicle routing problem is shown where three routes and hence
three vehicles are needed to cover all the demand nodes, and every
vehicle starts and ends its journey at node ‘0’.

VRP is a general name given for a class of combinatorial optimiza-
tion problems. There are various subclasses of VRP differing from each
other. Some of these variations are presented below.

Goel and Gruhn [18] proposed a General VRP (GVRP) model in-
corporating various real-life application complexities. Their problem
involved time window restrictions, a heterogeneous fleet of vehicles
with different travel times, travel costs and capacity, order-to-vehicle
compatibility constraints, orders with multiple services, pickup and
delivery locations, different starting and ending locations for every
vehicle, route restrictions for different vehicles and limit on drivers’
working hours. They suggested an iterative improvement approach
based on changing the neighbourhood structure during the search for
the solution. The results of the computational experiments involving
several vehicles and transportation requests signified their method’s
effectiveness. Sadouni [19] proposed a Tabu search-based heuristic
algorithm to solve HVRP with time windows and nonlinear penalized
delays. The objective function included the weighted sum of the cost
of vehicles used, the cost of total distance travelled, and a nonlinear
penalty cost of delays. Méndez et al. (2008) formulated a mixed-
integer linear programming model (MILP) to solve HVRP with time
window constraints and multiple vehicle visits to pickup and delivery
nodes. They used Branch and Cut algorithm-based commercial software
package to find optimal vehicle routes. Penna et al. [21] proposed
an Iterated Local Search (ILS) metaheuristic using a variable neigh-
bourhood descent procedure to find an optimal solution for HVRP.
They tested their developed heuristics on five variants of HVRP with
varying numbers of customers and limited and unlimited fleet sizes.
Kritikos and Ioannou [22] addressed a new variant of HVRP with
permissible overloads where a penalty cost due to overloads, lesser
than the pre-defined limit, is considered. They proposed a sequential
insertion-based heuristic to solve the benchmark data sets of Solomon
[23]. Mungwattana et al. [24] considered a practical case study of a
third-party logistics firm in Thailand and modelled an HVRP with time
windows, multi-product deliveries and limited availability of vehicles
and drivers. They used the Genetic Algorithm and Branch and Bound
approaches to find the optimal solution. Cheng et al. [25] introduced
a green inventory routing problem (IRP) with a heterogeneous fleet.
A mixed-integer linear mathematical programming model (MILP) was
developed to minimize the total cost, including load-dependent fuel
consumption and emission cost. Numerical tests were conducted to
quantify the benefits of this comprehensive study.

Logistics of deteriorating items
Logistics management of deteriorating items has received increasing

research attention in recent years. Hsu et al. [26] proposed a vehi-
cle routing problem with the time windows (VRPTW) model to find
optimal delivery routes, loads and fleet departure times to deliver de-
teriorating food from the distribution centre to customers. Algorithms
were developed to solve the proposed model that considered time-
dependent travel time and temperature. Osvald and Stirn [27] have
used the Tabu search approach to solve the VRPTW of fresh vegetables
and considered the deterioration of product quality in terms of the
associated cost. They applied this model to solve modified versions of
Solomon’s problems. Rong et al. [28] provided a quality degradation
function showing the importance of temperature settings on product
quality and assigned a cooling cost to maintain the desired quality level.
A mixed-integer linear programming model (MILP) was developed to
study production and distribution planning. Yu and Nagurney [29]
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Fig. 2. Different functions associated with logistics.
Fig. 3. An example of travelling salesman problem.

Fig. 4. A variation of vehicle routing problem.

eveloped a network-based food supply chain model where food dete-
ioration and discarding costs were considered. The model was used to
ind the solution to a real-life problem. Nakandala et al. [30] consider
he storage temperature settings of trucks and the transportation period
s decision variables in their multi-product supply chain model. They
roposed three approaches, Genetic Algorithm (GA), Fuzzy Genetic
lgorithm (FGA) and Simulated Annealing (SA), with a repair mech-
nism for solving the problem. The performance evaluation showed
hat the FGA had performed better than the other two approaches.
afari Nozar and Behnamian [31] studied a multiobjective optimiza-
ion problem of perishable products considering vehicle routing and
cheduling where they want to minimize the cost while maximizing the
ustomer’s purchase probability. They used the non-dominated sorting
enetic algorithm-II (NSGA-II) for the solution. Ghasemkhani et al. [32]
onsidered a multi-product case of perishable items with multi-period
ime horizons. They considered the fleet of vehicles as heterogeneous.
hey proposed two evolutionary heuristics for the solution.

istribution of deteriorating items under a heterogeneous fleet of
ehicles

A heterogeneous fleet of vehicles gives rise to another version of

RP. Many a time distributor or third-party fleet operator owns a fleet

3

with vehicles of different capacities [33,34]. Qiang and Jiuping [35]
formulated a fresh agricultural products vehicle routing problem with
a heterogeneous fleet of vehicles (HVRPTW) to minimize total cost
and maximize customer service level in terms of acceptable delivery
time. They proposed a random fuzzy multiobjective Dependent Chance
Programming (DCP) model to account for randomness in demand.
To solve it, they designed a hybrid intelligent algorithm (integrating
random fuzzy simulation and genetic algorithm).

Amorim et al. [36] focused on a heterogeneous fleet vehicle routing
problem with multiple time windows as a case study for a Portuguese
Food Distribution Company. They used an adaptive extensive neigh-
bourhood search framework to find the optimal solution. Rabbani et al.
[37] proposed a mix-integer nonlinear programming model to maxi-
mize the distributor’s profit and the freshness of the delivered products.
They solved their proposed model with the TH method [38]. Genetic
Algorithm and Simulated Annealing algorithm-based approaches were
also proposed for large-sized problems. Shahabi-Shahmiri et al. [39]
studied a scheduling and routing problem with the consideration of
cross-docking for heterogeneous vehicles which carry perishable prod-
ucts. Their study was inspired by a real case of a supermarket chain.
They also considered a deadline for pickups and deliveries. Máximo
et al. [40] also studied HFVRP and implemented an adaptive iterated
local search (AILS) heuristic for solving the HFVRP. AILS is nothing but
an adaptive version of iterative local search (ILS). Küçük and Yildiz
[41] considered a capacitated vehicle routing problem where they
considered the capacity of the vehicle while solving the vehicle routing
problem.

This paper addresses the problem of distributing a deteriorating
item from a warehouse to several retail stores. A mixed integer non-
linear programming model is proposed for the Heterogeneous fleet
Vehicle Routing Problem with Time Window (HVRPTW), subjecting the
acceptance of the product to some minimum specified quality level.
The objective is to minimize the total cost consisting of fixed costs
of hiring the vehicles and drivers, the variable cost of transportation,
loss in value because of diminishing quality of supplied product and
a penalty cost on being late from the allowed time. This allowed time
is within the specified time window. The penalty must be borne if the
item is supplied after this time. In no case will the item be accepted
beyond the specified time window.

3. The problem and formulation

This paper considers the problem of distributing a deteriorating
item from a warehouse to several retail stores. The distribution is to
be carried out using a heterogeneous fleet of vehicles with different
travel times, travel costs and storage capacities. The hiring cost of
vehicles is also considered. The cost of hiring drivers is the same and
is independent of the type of vehicle they would operate.

Retail stores have varying demands for the product, which can
be met in a single supply by some vehicle types. Retail stores would
accept the product only when it is of some acceptable quality level.
The product quality keeps falling with time, but it must reach a store
by some specified time by the retailer. After this time, the distributor
has to pay a fine based on how late they were up until the latest time
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and how many units were ordered. There is no restriction on the early
supply of products to any retail store.

The route that a vehicle will follow is the sequence of visiting the
retail stores. Such sequences determined serve the purpose of routing
decisions. Vehicles start and end their trip at the warehouse only, and
these cannot carry items in quantity more than their capacity at any
time.

Opportunity cost due to loss in products’ quality is based on the
consideration of Rong et al. [28], who described the change in food
quality q over time t as:
𝑑𝑞
𝑑𝑡

= −𝑘 ′𝑞𝑛 (1)

where q = quality of the product
′ = rate of decay in quality, and

= 0 for a fresh product such as foods and vegetables
rom Eq. (1), 𝑞 = −𝑘′𝑡 + 𝑞0
here 𝑞0 = quality of product at time 𝑡 = 0.

The expression for the cost corresponding to the loss in quality of
he product will be:

nit product devalue cost = 𝐶𝑞(𝑞𝛽 − 1) (2)

here 𝐶𝑞 represents the value of one unit of the product with no dete-
ioration and 𝛽 is a constant (𝛽 < 0). Therefore, the total opportunity
ost due to the loss in the value can be computed by multiplying the
nit product devalued cost with the total number of units of the product
upplied to that retail store.

For the mathematical formulation of the problem, the following
otations have been used.

ndices
∶Avehicle type
, 𝑘∶Nodes

arameters
∶A constant
∶Number of different types of vehicle
′ ∶Rate of decay∕degradation in product‘ s quality
∶Total number of nodes

′ ∶Minimum acceptable quality level
𝑑 ∶Cost of hiring a driver
𝑝 ∶ Penalty cost per unit of product per unit time for being late than

he allowed time
𝑞 ∶Devalued cost per unit product due to quality lost
𝑘 ∶Demand for the product at node 𝑘(𝐷1 = 0)
𝑖 ∶Capacity of vehicle type 𝑖
𝑖 ∶ Speed of vehicle of type𝑖
𝑖 ∶Number of vehicles of type 𝑖 used
ℎ𝑖 ∶Cost of hiring a single vehicle of type 𝑖

𝐶𝑖𝑡 ∶Transportation cost per unit time for vehicle type 𝑖
𝑗𝑘 ∶Distance between nodes 𝑗 and 𝑘
𝑎𝑘 ∶ Time for product’s arrival at node 𝑘 without any penalty (𝑘 =
, 3,… , 𝑁)
𝑘 ∶ Latest time for receipt of the product by node 𝑘 (𝑘 = 2, 3… , 𝑁)

Decision Variables

𝑝𝑘 ∶

⎧

⎪

⎨

⎪

⎩

1 When the product arrives at node k
later than the allowed time

0 Otherwise

𝑘 ∶ Quality level of the product when it reaches node 𝑘 (𝑘 = 2, 3… , 𝑁)
𝑡𝑘 ∶Arrival time of products at node 𝑘 (𝑘 = 2, 3… , 𝑁)
𝑊𝑖𝑘 ∶ Number of units of product left in vehicle type 𝑖after serving node
𝑘 (𝑘 = 2, 3,… , 𝑁)

𝑋𝑖𝑗𝑘 ∶

{

1 if vehicle type 𝑖 travels from node 𝑗 to 𝑘
0 Otherwise

4

Using the above notations, the mathematical programming formu-
lation of the problem is as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =
𝐼
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
[
(

𝑑𝑗𝑘
𝑣𝑖

)

𝐶𝑖𝑡𝑋𝑖𝑗𝑘] +
𝐼
∑

𝑖=1
[(𝐶ℎ𝑖 + 𝐶𝑑 )𝑉𝑖]

+
𝑁
∑

𝑘=2
[𝐶𝑞(𝑞𝑘𝛽 − 1)𝐷𝑘] +

𝑁
∑

𝑘=2
[(𝑡𝑘 − 𝐿𝑎𝑘)𝐶𝑝𝑝𝑘𝐷𝑘] (3)

ubject to constraints:

𝑘 ≥
{

𝑞𝑗–
(

𝑑𝑗𝑘
𝑣𝑖

)

𝑘′
}

𝑋𝑖𝑗𝑘 ∀𝑖, ∀𝑗, 𝑘 = 2, 3,… , 𝑁 (4)

𝑞𝑘 ≥ 𝑞′ 𝑘 = 2, 3,… , 𝑁 (5)

𝑞1 = 1 (6)

𝑡𝑘 ≥
{

𝑡𝑗 +
(

𝑑𝑗𝑘
𝑣𝑖

)}

𝑋𝑖𝑗𝑘 ∀𝑖, ∀𝑗, 𝑘 = 2, 3,… , 𝑁 (7)

𝑡𝑘 ≤ 𝐿𝑘 𝑘 = 2, 3… , 𝑁 … (8)
𝐼
∑

𝑖=1

𝑁
∑

𝑗=1
𝑋𝑖𝑗𝑘 = 1 𝑘 = 2, 3,… , 𝑁 (9)

𝐼
∑

𝑖=1

𝑁
∑

𝑗=1
𝑋𝑖𝑗𝑘 =

𝐼
∑

𝑖=1

𝑁
∑

𝑗=1
𝑋𝑖𝑘𝑗 𝑘 = 1, 2,… , 𝑁 (10)

𝑁
∑

𝑘=2
𝑋𝑖1𝑘 = 𝑉𝑖 ∀𝑖 (11)

𝑊𝑖1 ≤ 𝑃𝑖 ∀𝑖 (12)

𝑊 𝑖𝑘 ≥ [(𝑊 𝑖𝑗–𝐷𝑘)𝑋𝑖𝑗𝑘] ∀𝑖, ∀𝑗, 𝑘 = 2, 3,… , 𝑁 (13)
(

𝑡𝑘 − 𝐿𝑎𝑘
) (

𝑝𝑘 − 1
)

≥ 0 𝑘 = 2, 3… , 𝑁 (14)

𝑊 𝑖𝑘 ≥ 0 ∀𝑖, 𝑘 = 2, 3… , 𝑁 (15)

𝑋𝑖𝑗𝑘 ∈ {0, 1} ∀𝑖, ∀𝑗, 𝑘 = 2, 3… , 𝑁 (16)

𝑝𝑘 ∈ {0, 1} 𝑘 = 2, 3… , 𝑁 (17)

The objective function (3) has four terms. The first term shows
transportation cost, while the second term represents the total cost of
hiring various vehicles and drivers. The third term is the opportunity
cost due to deterioration in the quality of the product supplied to the
retail store. The fourth term represents penalty cost due to late arrival.
Constraint (4) finds out the resulting quality of the product arriving
at a retail store. Constraint (5) will help ensure the product’s final
quality reaching a retail store is greater than the minimum specified
quality level. Constraint (6) states that the product quality level is the
best when it is dispatched from the warehouse (i.e., from node 1) for
distribution to different retail stores. Constraint (7) finds the time of
arrival of the product at a retail store, while constraint (8) makes sure
that this arrival time must be within the latest time for the receipt of the
product. Constraint (9) ensures that a retail store is visited by only one
vehicle of any of the available types. Constraint (10) takes care of flow
conservation to ensure that every vehicle reaching a node must also
leave it. Constraint (11) finds out the total number of a type of vehicles
put into use. Constraint (12) represents the total number of units of
the product in a vehicle once it departs from the warehouse, while
constraint (13) determines the number of units of the product left after
a retail store has been served. Constraint (14) is used in determining
whether a vehicle is reaching a node in time or not. It will help in
penalty cost computation in the case of the late supply of the product.
Constraint (15) makes sure that the total number of units of product
remaining in any vehicle after serving any node cannot be negative
Constraints (16) and (17) show that the related decision variables can
have only binary values.

4. Genetic algorithm-based heuristic

Genetic Algorithm (GA) is one of the popular optimization meta-
heuristics. It is based on Charles Darwin’s theory of natural selection
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Fig. 5. Structure of the Genetic Algorithm.

nd evolution. GA works on the principle of survival of the fittest over
any generations. Each generation has a population of chromosomes.
n individual chromosome, made of a number of genes, represents
solution for the problem. These chromosomes are exposed to the

rocess of evolution, where genes from good individuals combine to
orm offspring. This process continues in successive generations, and
ne gets the fittest chromosome or an optimal solution for the problem
n the last. The overall structure of GA is shown in Fig. 5. Various steps
f the proposed heuristic are described below.

olution Encoding
The chromosome chosen is a non-binary number string, with the

umber of genes equal to three times the number of retail stores
excluding warehouse). For a better understanding of the solution rep-
esentation, this string in 3 parts is shown in Fig. 6. For a problem with
even nodes, node 1 is the warehouse, and the other nodes represent

he retail stores. In the first row, all the nodes are randomly filled up.

5

The second row is filled up by randomly deciding vehicle types used for
serving them. The third row mentions the vehicle index of a vehicle
type mentioned in row 2. If the quality, capacity and reaching time
constraints are violated, then an additional copy of the same vehicle
type is added to the third row. The same will be obvious from Fig. 6.
According to the information in row 2, vehicle type 1 was planned for
meeting the requirement of nodes 3, 2 and 4 in order. On noticing
that some of the above-mentioned constraints are violated in the use
of this vehicle type to meet the requirements of node 4, an additional
vehicle of type 1 is then employed to serve node 4. This vehicle index
is mentioned as 2 in row 3. This process is detailed in Fig. 7.

Generate initial population
Following the scheme for the solution encoding, a good number of

chromosomes are generated, and the same form the initial population.

Fitness evaluation
Before performing the selection operation, every individual chromo-

some’s fitness is evaluated using a fitness function, which is nothing but
the objective function itself. The fitness value for any chromosome is
the total cost of distributing the products to various nodes.

Selection
The roulette-wheel selection mechanism is used to select individuals

for further operations. The total number of chromosomes selected is
equal to the population size.

Crossover
Crossover is an operator used to produce offspring by combining the

genetic information of two chromosomes. The number of individuals
that take part in the crossover operation is obtained by multiplying the
crossover rate by the population size. Here, the single-point crossover
is used to produce offspring, and a rationalization procedure is adopted
to convert infeasible offspring, if any, into feasible ones. Even though
it may appear that the multi-point crossover strategy is being adopted,
the fact is that single-point crossover is used with a slight variation.
The logic followed is described below with the help of Fig. 8.

Fig. 8 (a) shows the two parent chromosomes to be used for the
crossover. Let the cross-site be 2. This cross-site will be applicable to
all three rows. In case the three rows are taken as one single array,
then the cross-site values will be 2, (N + 2), and (2N + 2). After the
crossover, the two resulting chromosomes will be as shown in Fig. 8(b).
From this figure, it can be seen that some of the nodes are missing while
some are repeated. For example, in offspring 1, nodes 5 and 3 repeats,
while nodes 2 and 7 are missing. A procedure is adopted to overcome
this problem by substituting missing nodes in place of repeated nodes.
After this operation, the two offspring will be, as shown in Fig. 8(c). It
is the outcome of a rationalization procedure (detailed in Fig. 9) that
converts an infeasible solution into a feasible one. In the flowchart of
Fig. 13, ‘‘3 constraints’’ refer to constraints (5), (8) and (12).

Mutation
The mutation operator is used to maintain diversity in the pop-

ulation by changing the value of the randomly selected genes. Here
mutation operation is performed on the genes of the first two rows
only. Mutation sites are determined by multiplying population size with
mutation rate and twice the value of (𝑁 − 1). If the randomly selected
gene belongs to row 1, then its value is interchanged with any of the
randomly selected nodes except with node 1. If it is in row 2, then the
genes’ value is changed to any of the vehicle type. Feasible chromo-
somes may become infeasible after undergoing a mutation operation.
The rationalization procedure detailed in Fig. 9 is adopted to make
them feasible.

Formation of a new population
Each of the new offspring’s fitness values obtained after crossover

and mutation is determined at this stage. In the new population, to be of
the same size, those from old chromosomes of the current population
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Fig. 6. Representation of a chromosome.
Table 1
Data related to different types of vehicles.

Vehicle type Capacity Fixed hiring Speed Transportation cost
(units) cost ($) (km/h) ($/h)

1 12 1200 30 30
2 08 900 40 25
3 04 600 50 20

and new offspring are retained that have superior fitness value than
those that will be rejected.

Termination
The selection, crossover, mutation and formation of the new pop-

ulation is continued for some specified number of generations. The
chromosome with the best value in any generation is taken to represent
the optimal solution.

5. Results and discussion

The proposed model in Section 3 is used to solve an illustrative
example using LINGO Lindo Systems Inc [42] software for solving
optimization problems. Sensitivity analysis has also been carried out
by changing the values of certain parameters of the example problem.

5.1. Illustrative example

The example problem is with a warehouse and 15 retail stores. Data
regarding the distance between two nodes (Table 3) and the demand
at various retail stores (Table 2) is taken from the work of Qiang and
Jiuping [35]. A heterogeneous fleet of 3 types of vehicles is taken to be
available with the distributor. The capacity of different vehicle types,
their hiring cost, speed and unit time transportation cost are shown in
Table 1. Table 2 shows the time window for various retail stores along
with their demand. Additional data are as follows:
Penalty cost per unit time per unit product (𝐶𝑝) = $40
Cost of hiring one driver (𝐶𝑑) = $400
Cost of a single unit of the product without any deterioration (𝐶𝑞) =
$500
𝛽 = −1

The rate of deterioration in product’s quality (k′) = 2% per hour,
which is defined as the rate of degradation which may depend upon
environmental factors like temperature etc., and a rate of 2% means
that the quality drops by 2% in an hour.

Minimum acceptable quality level (q′) = 80%
The example problem was solved with the above data using the

mathematical model. The resulting routes from the warehouse to other
retail stores are shown in Fig. 10. From this figure, the following can
be noticed.

• Three vehicles (one of type 1, two of type 2 and none of type 3)
are used.

• Vehicle type 1 starts from node 1 and delivers the product to
nodes 16, 11, 15, 9, 12 and 14 in sequence before returning to
node 1. It is utilizing 97.5% of its capacity.

• First, the vehicle of type 2 goes from node 1 to node 3 and then
to nodes 2, 6, 4 and 13 in sequence, and then returns to node 1.

Its capacity is fully utilized.

6

Table 2
Data related to various nodes.

Node Demand (Units) Allowed time (h) Latest time (h)

1 0 – –
2 1.1 4 8
3 1.4 4 8
4 1.8 4 8
5 2.1 4 8
6 1.2 4 8
7 1.9 4 8
8 1.9 4 8
9 1.4 4 8
10 1.6 4 8
11 1.8 4 8
12 1.6 4 8
13 2.5 4 8
14 2.1 4 8
15 2.2 4 8
16 2.6 4 8

• The second vehicle of type 2 moves from node 1 to node 5, and
then to nodes 7, 8 and 10 in sequence before returning to node
1. It is utilizing 93.75% of its capacity.

Table 4 shows the arrival time and quality of products arriving at the
retail stores. All the nodes are visited before the latest time. However,
nodes 9, 12, 13 and 14 are served after no-penalty time. Table 5 shows
resultant values for various cost elements.

5.2. Validation of the proposed model

In this section, some of the problem parameters, such as minimum
acceptable quality level, latest time and quality deterioration rate, are
modified to visualize their impact and whether it is in line with the
general and shared understanding.

Effect of increased acceptable quality level
Once the acceptable quality level is increased, the routing solution

has to ensure that the deterioration in quality is comparatively less to
meet the requirement on the increased quality level. This may ask for
a greater number of vehicles for the quick supply of the product to the
retail stores. This feature of the model is explained with the help of
the example problem. The quality of the product served to nodes 9, 12
and 14 is less than 90%. On increasing the minimum acceptable quality
level from 80% to 90% and solving the example problem once again,
a routing solution shown in Fig. 11 is obtained. From this figure, it
can be seen that nodes 9, 12 and 14 are now served with vehicle type
2 instead of type 1. At the same time, a type 3 vehicle is also used
along with one type 1 and two types 2 vehicles to match the quality
constraint. This solution shows a change in the mix of vehicles and their
total number put into operation. Table 6 shows the time and quality of
products arriving at various retail stores, while Table 7 shows optimal
values for various cost elements. From the two tables, the following
observations can be made.

• The hiring cost of vehicles and drivers increased as the vehicle of
type 3 is being hired now.

• The penalty cost was reduced due to less time taken by the
vehicles to serve the nodes.

• Quality deterioration cost also decreased as the product is served
in lesser time with higher quality.
• The overall cost increased from $6621 to $6734.
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Fig. 7. Procedure to assign a vehicle to various nodes.
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Fig. 8. Crossover operation.
Table 3
Node to node distance (km).

Node Node

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 39.0 37.5 39.5 38.5 40.0 80.0 85.5 86.5 90.5 92.5 136.5 140.0 137.5 53.0 49.5
2 39.0 0 7.5 13.0 35.5 30.5 40.0 48.5 76.5 57.5 60.0 151.5 106.5 156.5 25.5 20.5
3 37.5 7.5 0 15.0 13.5 38.5 55.5 89.0 40.5 105.5 115.5 99.5 158.0 111.5 20.0 26.5
4 39.5 13.0 15.0 0 15.5 21.5 46.5 43.5 78.5 51.5 45.5 155.5 109.5 157.0 21.0 18.5
5 38.5 35.5 13.5 15.5 0 14.5 58.5 75.5 42.0 84.0 81.5 100.5 160.5 107.5 23.5 21.5
6 40.0 30.5 38.5 21.5 14.5 0 45.0 105.5 45.0 88.5 79.5 101.5 159.0 106.5 21.5 24.0
7 80.0 40.0 55.5 46.5 58.5 45.0 0 23.5 45.5 42.5 42.5 75.5 65.5 98.5 30.5 34.5
8 85.5 48.5 89.0 43.5 75.5 105.5 23.5 0 25.0 25.0 38.5 78.5 62.5 100.0 34.0 33.5
9 86.5 76.5 40.5 78.5 42.0 45.0 45.5 25.0 0 21.4 65.5 58.5 80.5 56.5 35.5 36.0
10 90.5 57.5 105.5 51.5 84.0 88.5 42.5 25.0 21.4 0 22.5 75.0 66.5 97.5 38.0 32.5
11 92.5 60.0 115.5 45.5 81.5 79.5 42.5 38.5 65.5 22.5 0 60.5 59.5 95.0 34.5 31.5
12 136.5 151.5 99.5 155.5 100.5 101.5 75.5 78.5 58.5 75.0 60.5 0 25.5 20.5 88.5 95.5
13 140.0 106.5 158.0 109.5 160.5 159.0 65.5 62.5 80.5 66.5 59.5 25.5 0 25.5 90.5 93.5
14 137.5 156.5 111.5 157.0 107.5 106.5 98.5 100.0 56.5 97.5 95.0 20.5 25.5 0 85.0 96.5
15 53.0 25.5 20.0 21.0 23.5 21.5 30.5 34.0 35.5 38.0 34.5 88.5 90.5 85.0 0 97.0
16 49.5 20.5 26.5 18.5 21.5 24.0 34.5 33.5 36.0 32.5 31.5 95.5 93.5 96.5 97.0 0
Effect of decreased quality deterioration rate
When the rate of quality deterioration is low, the quality of a

product reaching a node should be less of a problem than when the
rate of quality deterioration is high because the first product is likely
to be of better quality, even if both take the same amount of time to get
there. As a result, the number of required vehicles may decrease with
8

the possibility of each vehicle utilizing more of its capacity. This feature
of the model is explained with the help of the same example problem
by decreasing the quality deterioration rate from 2% per hour to 1%
per hour. For this case, the optimal vehicle route obtained is shown in
Fig. 12. Although the vehicles used are the same, the stores covered
by them differ. Understandably, there is a considerable decrease in the
quality-deterioration cost. Table 8 shows the arrival time and quality
of products arriving at the retail stores, while Table 9 shows optimal
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Fig. 9. Rationalization procedure.

Fig. 10. Optimal routes (original problem).
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Fig. 11. Optimal routes (modified version A).
Table 4
Arrival time and quality of the product (original problem).

Nodes Arrival time of product (h) Quality of shipped product (%)

2 1.12 97.76
3 0.94 98.12
4 2.42 95.16
5 0.96 98.08
6 1.89 96.22
7 2.42 95.16
8 3.01 93.98
9 5.03 89.94
10 3.64 92.72
11 2.70 94.60
12 6.98 86.04
13 5.16 89.68
14 7.67 84.66
15 3.85 92.30
16 1.65 96.70

Table 5
Resultant cost values (original problem).

Cost element Value ($)

Vehicle hiring cost 3000
Driver hiring cost 1200
Transportation cost 731
Quality deterioration cost 1018
Penalty cost 672
Overall cost 6621

Table 6
Arrival time and quality of the product (modified version A).

Nodes Arrival time of product (h) Quality of shipped product (%)

2 0.97 98.06
3 4.25 91.50
4 2.88 94.24
5 2.37 95.26
6 2.63 94.74
7 1.73 96.80
8 2.19 95.62
9 2.16 95.68
10 3.71 92.58
11 3.15 93.70
12 4.09 91.82
13 4.72 90.56
14 3.58 92.84
15 3.58 92.84
16 1.65 96.70

values for various cost elements. From the two tables, the following can

be observed.

10
Table 7
Resultant cost values (modified version A).

Cost element Value ($)

Vehicle hiring cost 3600
Driver hiring cost 1600
Transportation cost 588
Quality deterioration cost 855
Penalty cost 91
Overall cost 6734

Table 8
Arrival time and quality of the product (modified version B).

Nodes Arrival time of product (h) Quality of shipped product (%)

2 1.30 98.70
3 1.55 98.45
4 0.98 99.02
5 1.38 98.62
6 7.30 92.70
7 5.80 94.20
8 3.55 96.45
9 2.16 97.84
10 4.38 95.62
11 3.41 96.59
12 5.32 94.68
13 4.17 95.83
14 4.81 95.19
15 4.27 95.73
16 2.43 97.57

• The hiring cost of the vehicles and drivers is the same as no
additional vehicle is hired.

• Since the quality deterioration cost has been decreased, which
shows that the product served to the retail stores was of higher
quality.

• The low deterioration rate implies that the product deteriorates
at a slower rate and has more time to degrade below a certain
level, which means the constraint on the quality requirement can
easily be achieved, and the model will therefore try to reduce
the transportation and penalty costs further. The same is being
observed here in this case.

• Transportation cost and penalty cost reduced.
• The overall cost has decreased from $6622 to $5832.

Effect of decrease in the latest time for receipt of the product
If the latest time for receipt of the product at retail stores is some-

what less, it may force more vehicles to be put into operation. This
feature of the model is explained with the help of the same example
problem. Let this time (𝐿 ) is reduced from 8 h to 5 h.
𝑘
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Fig. 12. Optimal routes (modified version B).
Fig. 13. Optimal routes (modified version C).
Table 9
Resultant cost values (modified version B).

Cost element Value ($)

Vehicle hiring cost 3000
Driver hiring cost 1200
Transportation cost 617
Quality deterioration cost 513
Penalty cost 502
Overall cost 5832

In solving this example, the optimal vehicle route obtained is shown
n Fig. 8. From this figure, it can be seen that four vehicles are now
sed instead of three in the earlier case. Table 10 shows the arrival
ime and quality of products arriving at different retail stores, while
able 11 shows optimal values for various cost elements. From the two
ables, the following can be observed.

• Initially, the arrival time of products at nodes 12, 13 and 14 was
more than 5 h. Once the latest time was decreased from 8 h to
5 h, node 12 is served with vehicle type 2 and node 14 was served
with vehicle type 3 instead of vehicle type 1.

• The hiring cost of the vehicle and drivers increased as a separate
vehicle of type 3 is hired.

• The penalty cost for late supplying the product is now less re-
duced due to the shortening of the latest supply time, making the
penalty period length smaller.
11
Table 10
Arrival time and quality of the product (modified version C).

Nodes Arrival time of product (h) Quality of shipped product (%)

2 1.75 96.50
3 2.00 96.00
4 1.32 97.36
5 1.36 97.28
6 1.00 98.00
7 2.00 96.00
8 3.80 92.40
9 1.73 96.54
10 3.46 93.08
11 4.02 91.96
12 4.27 91.46
13 3.64 92.72
14 2.86 94.28
15 2.67 94.66
16 4.92 90.16

• Quality deterioration cost decreased as the product could no more
be supplied late because of the shortening of the permissible latest
time for the receipt of the product.

• The overall cost increased from $6621 to $6810.

The sensitivity analyses carried out hereinabove are sufficient to
prove the model’s validity as the changes made in the problem parame-
ter values force the optimal routing decision to change as was expected
and understood.

The vehicle routing model proposed in Section 2 is NP-hard and
was found to take hours of CPU time when the example problems
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Fig. 14. Results of Taguchi experiments.
Table 11
Resultant cost values (modified version C).

Cost element Value ($)

Vehicle hiring cost 3600
Driver hiring cost 1600
Transportation cost 659
Quality deterioration cost 837
Penalty cost 114
Overall cost 6810

Table 12
Taguchi L16 combinations.

Population size Crossover rate Mutation rate No. of iterations Total Cost

120 0.4 0.04 50 6840
120 0.5 0.06 100 6835
120 0.6 0.08 150 6829
120 0.3 0.10 200 6820
60 0.4 0.06 150 6850
60 0.5 0.04 200 6848
60 0.6 0.10 50 6918
60 0.3 0.08 100 6851
80 0.4 0.08 200 6834
80 0.5 0.10 150 6840
80 0.6 0.04 100 6867
80 0.3 0.06 50 6870
100 0.4 0.10 100 6848
100 0.5 0.08 50 6860
100 0.6 0.06 200 6825
100 0.3 0.04 150 6832

described in Section 5.1 were solved using LINGO software to find out
an optimal solution. Therefore, a Genetic Algorithm (GA) is proposed
to find solutions in a computationally efficient manner.

5.3. Determination of robust parameters of the GA based heuristic

Effect analysis was carried out to find out the robust values for the
parameters for the proposed heuristic. For this purpose, L16 combi-
nations, as shown in Table 12, were used. The result in terms of the
total cost for the example problem of Section 4 is also shown. Using
the data of Table 12, the main effect analysis has been carried out, and
the results are shown in Fig. 14.

Fig. 14 shows that the best results are obtained for a population size
of 120, a crossover rate of 0.4, a mutation rate of 0.08, and a number
of generations (iterations) of 200.
12
5.4. Performance evaluation of proposed heuristic

In this section, efforts are being made to find out the computational
efficiency of the proposed heuristic. For this purpose, the same example
problems are solved with an exact solver LINGO, and these solutions
are compared with that of the heuristics. The results for the example
problems of Section 4 are recorded in Table 13. From this table, it is
clear that the proposed GA heuristic successfully finds out a solution
in much lesser time in comparison to ones from the use of LINGO. It
may be noted that the CPU time requirement mentioned herein is for
a computer with Intel i7 3.4 GHz microprocessor.

LINGO is, in general, providing better results. However, the differ-
ence does not seem to be very high. Mann–Whitney test was performed
using MINITAB software to evaluate the significance of the difference.
The test results find the differences to be statistically insignificant. This
analysis suggests that one should favour the GA-based heuristic for
solving the related problems to get the results much quicker without
any significant loss in the solution quality.

Since GA-based heuristic takes much less CPU time and yields
solutions very close to the optimal ones, it is suggested to use the
proposed heuristic to find a reasonably good upper bound value for
the objective function and use them while solving the problem using
LINGO software. This will help in fathoming many of the branches of
the branch and bound procedure adopted by the software for yielding
integer solutions and thus helping in resulting the optimal solution very
quickly. For this approach, named as Hybrid Approach, the CPU time
requirement has also been mentioned in Table 13. It can be seen from
this table that the time required is very less (around 8%), and the
hybrid approach yields the optimal solution.

6. Conclusion

In this paper, the problem of distributing a deteriorating item from
a warehouse to various retail stores with the help of a heterogeneous
fleet of vehicles has been considered with a restriction on supply during
the customer specified time-window and the same being of specified
minimum quality level. The problem is formulated as a mathematical
programming model. This model can solve distribution problems re-
lated to products, even those with a short shelf life, like milk, fruits,
vegetables, etc. Sensitivity analyses were carried out to prove the valid-
ity of the proposed model. Whether it is the increase in the quality level
requirement, the decrease in the latest time for supply or the increase in
the deterioration rate, it is expected that a greater number of vehicles
will be required in the distribution operation. The results obtained
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Table 13
Comparison between LINGO and GA results.

Illustrative examples LINGO solver Genetic Algorithm (GA) [(B-A)/A] ∗ 100 HYBRID APPROACH

Resultant cost (A) CPU time (s) Resultant cost (B) CPU time (s) Resultant Cost CPU time (s)

Original problem $6622 28 800 $6720 0.84 1.47% $6622 2330
Modified version A $6735 24 600 $6849 0.82 1.68% $6735 2140
Modified version B $5832 24 300 $5960 0.80 2.19% $5832 2035
Modified version B $6810 25 500 $6950 0.82 2.03% $6811 2195
from the proposed model were exactly in this line, asking for more
vehicles when constraints become more stringent on the quality and
the time or with the increased deterioration rate. A Genetic Algorithm
based heuristic was proposed to find out the optimum set of routes
in a computationally efficient manner. Efforts have also been made to
determine the most suitable values of GA parameters. The output from
the GA-based heuristic can be used as an upper bound on the objective
function value to yield the optimal solution in a very computationally
efficient manner. Statistical test performed shows that the proposed
heuristic provides a solution computationally quite efficiently with
statistically insignificant loss in the quality of the solution.

Traffic congestion and variability in demand for retail stores can
be incorporated to make the problem more realistic. The problem can
be extended to consider the distribution of multiple items instead of a
single one. In the present work, only the case of dropping products at
retail stores is considered. One can extend this work to address those
problems where retail stores get the supply and, also from these, some
products are picked up. Products picked up may be required to be
stored at the warehouse or may be demanded by other stores.
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