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Abstract 

In this paper, we first introduce and characterize a new and general concept of a credible 
deviation in which a coalition may not only deviate from a deviant coalition, but may also 
merge with some residual players. Thus objections are not necessarily nested in the sense of 
coming from subsets of progressively smaller coalitions. We then motivate and introduce an 
infinitely farsighted stable set which is not amenable to similar criticisms as a traditional von 
Neumann-Morgenstern stable set or a Harsanyi stable set. After noting its general properties, 
we prove existence and characterize infinitely farsighted stable sets for general three-player 
superadditive characteristic function games with empty or nonempty cores as well as for 
convex games with any number of players. 
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1. Introduction 

In cooperative game theory, the von Neumann-Morgenstern (vNM) stable sets (von Neumann 

and Morgenstern, 1944) as a solution concept have been dominated by the core introduced to 

the literature almost a decade later by Gillies (1953), at least judging by their applications to 

mainstream economics. This is regrettable because the vNM stable sets, unlike the core, seem 

to be a promising (and perhaps the only) solution concept for games with empty cores, since 

they are generally larger than the core and can be nonempty even if the core is empty. 

However, with the publication of Ray and Vohra (2014), interest in stable sets seems to have 

revived. Following Harsanyi’s (1974) critique and his modification of the vNM stable sets, 

referred to as Harsanyi stable sets, Ray and Vohra (2014) propose a modification of Harsanyi 

stable sets, and thereby of the original vNM stable sets, which beautifully restores feasibility 

and coalitional sovereignty ignored implicitly in the definition of Harsanyi stable sets. 

However, like traditional vNM stable sets, both Harsanyi and Ray and Vohra stable sets, 

called the farsighted stable sets, have one feature in common, namely that, coalitional 

deviations may not be “credible”.  

     In this paper, we first introduce and characterize a new and general concept of a credible 

deviation in which a coalition may not only deviate from a deviant coalition, but may also 

merge with some residual players. Thus, unlike Bernheim, Peleg, and Whinston (1987) and 

Ray (1989), “objections” are not necessarily nested in the sense of coming from subsets of 

progressively smaller coalitions.1 According to this notion, a deviation (defined in the space 

of imputations) is credible if it is immune to every deviation which is immune to every 

deviation … ad infinitum. Since a credible deviation, by definition, is immune to every 

credible deviation, the credible deviations form a stable set in the sense that a deviation 

belongs to the set if and only if it is immune to every deviation in the set and any deviation 

not in the set is not immune to every deviation in the set.2 Conversely, any stable set of 

deviations is a set of credible deviations, since, by definition of a stable set, every deviation 

in the set is immune to every other deviation in the set and no deviation outside the stable set 

is immune to every deviation in the set. Thus, in what follows, a stable set of deviations and a 

stable set of credible deviations mean the same thing. 

                                                           
1 See e.g. Bernheim et al. (1987, fn. 2) on the generality and difficulty of dealing with this type of deviations.  
2 See Section 3.1and definitions 2 and 3 below for the formal definitions of a deviation, an imputation immune 
to a deviation, and a credible deviation. 
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     Given a stable set of deviations and, therefore, a stable set of credible deviations, we 

define from it a set of imputations, which is larger than the stable set of deviations, and show 

that it is stable in the sense to be made clear below. This stable set is the set of all imputations 

which are immune to every deviation in the stable set of deviations and, therefore, it includes 

the stable set of deviations itself. Since credible deviations, by definition, are infinitely 

farsighted, we name it an infinitely farsighted stable set (IFSS).  

     A so-defined IFSS is not amenable to similar criticisms as a vNM  stable set (see 

Harsanyi, 1974) or a Harsanyi stable set (see Ray and Vohra, 2014, p.2-3), since (infinite) 

farsightedness is already built into the definition and it respects both feasibility and 

coalitional sovereignty in exactly the same way as does a traditional vNM stable set. Recall 

that a set of imputations 𝑉 is a vNM stable set if every imputation is either a member of 𝑉 or 

dominated by a member of 𝑉, but not both. Thus, a vNM stable set may be interpreted as a 

“standard of behavior”, i.e., a set of “conventional outcomes” which are given a chance to 

dominate any proposal that might be put forward during pre-play negotiations. 

     In contrast, an IFSS is a stable set of imputations which are not dominated by a set of 

credible deviations. But, as will be shown, the IFSSs and the vNM stable sets, though 

motivated and defined quite differently, are closely related in that a vNM stable set may be a 

subset of an IFSS. In fact, that is indeed so if a vNM stable set, like an IFSS, also contains a 

stable set of deviations. But, as an example shows, a vNM stable set may not always contain 

a stable set of deviations and, thus, may not necessarily be a subset of an IFSS.  

     Every IFSS of a transferable utility characteristic function (TUCF) game, like every 

traditional vNM stable set, contains the core, but not generally equal to the core. This leads to 

an alternative interpretation of the core, namely that, the core imputations are not dominated 

by the credible deviations and those on the boundary of the core are credible deviations 

themselves. Thus, (infinite) farsightedness is implicit in the concept of core, even though it is 

defined by the property of an imputation of not being “myopically blocked”. However, as 

will be shown, not every credible deviation is a core imputation and an IFSS is generally 

larger than a stable set of deviations, especially if the core of the game has a nonempty 

interior. Similarly, farsightedness is also implicit in those vNM stable sets – though defined 

again by a myopic notion of dominance -- which contain a stable set of deviations and, thus, 

are contained in an IFSS.  
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     Existence of stable sets is usually difficult to prove. Lucas (1968) shows that a vNM stable 

set may not exist in superadditive TUCF games with nonempty cores. However, Ray and 

Vohra (2014) show that in games with nonempty cores, multiple farsighted stable sets exist, 

each of which consists of a single imputation which belongs to the core and each imputation 

in the interior of the core by itself forms a farsighted stable set. They also prove existence of 

farsighted stable sets in proper simple games with empty cores. But other than this 

exceptional result for proper simple games, not much else is known about the existence of 

stable sets in general TUCF games with empty cores. 

     In this paper, we prove existence of an IFSS for general three-player superadditive TUCF 

games with empty or nonempty cores. As will be shown, IFSSs generally consist of many 

imputations and include for each coalition at least one imputation which is “maximally 

feasible” for it. In order to contrast IFSSs with other farsighted solution concepts, we show 

that in games with empty cores, every “interior” imputation is a Harsanyi stable set and the 

largest consistent set (Chwe, 1994) includes at least all interior imputations.3 Thus, in 

contrast to IFSSs, these farsighted solution concepts do not have much predictive power in 

games with empty cores.  

     The contents of this paper are as follows. In Section 2, we discuss a well-known example 

to motivate and introduce the concept of a credible deviation. In section 3, we motivate and 

introduce the concept of an IFSS. This Section also contrasts IFSSs with other concepts of 

farsighted stable sets. In Section 4, we prove existence and comprehensively characterize 

IFSSs for general three-player superadditive TUCF games with empty or nonempty cores as 

well for convex games with any number of players. In Section 5, we draw the conclusion.    

 

2. A motivating example 

                                                           
3 These results regarding the existence and characterization of Harsanyi stable sets and the largest consistent 
set for games with empty cores complement those for games with nonempty cores (Chwe, 1994 and Bèal et 
al., 2008). 
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We begin with a motivating example which has two firms, labelled 1 and 2, emitting smoke 

which reduces the profits of a neighborhood laundry, labelled 3.4 The situation is described 

by a characteristic function 𝑣 such that:5 

𝑣(1) = 3000, 𝑣(2) = 8000, 𝑣(3) = 24000 

𝑣(12) =15000, 𝑣(13) = 31000, 𝑣(23) = 36000 

𝑣(123) = 40000 

Clearly, the characteristic function 𝑣 is (strictly) superadditive which implies that the grand 

coalition, where the externalities are fully internalized, is the unique efficient coalition. Thus, 

efficiency can be achieved only if the grand coalition forms, i.e., all three firms merge. The 

core of this characteristic function game is empty, since, by definition, a feasible payoff 

vector (𝑥1, 𝑥2, 𝑥3) belongs to the core only if 𝑥𝑖 + 𝑥𝑗 ≥ 𝑣(𝑖𝑖) for all  𝑖, 𝑖 ∈ {1, 2, 3}. 6 But 

there is no feasible payoff vector which satisfies these inequalities, since they imply 𝑥1 +

𝑥2 + 𝑥3 ≥
1
2

[𝑣(𝑖𝑖) + 𝑣(𝑖𝑖) + 𝑣(𝑖𝑖)] = 41000 > 𝑣(123). 

The argument that has been used against the stability of the grand coalition runs as 

follows: Consider any three-party agreement between the firms, say (5250, 9750, 25000). 

Since 2 and 3 would be getting in total $34,750 but could obtain $36,000 if they made an 

agreement between themselves in which, e.g., 2 receives $10,000 and 3 receives $26,000, 

this two-party agreement would clearly be preferred by both 2 and 3 rather than the three-

party agreement (5250, 9750, 25000). However, this two-party agreement between 2 and 3 

would not be a stable agreement either, since firm 1 would now be operating independently 

and earning $3,000 and 2 would be earning $10,000 (as a result of the agreement with 3), the 

total profit earned by 1 and 2 would be $13,000.7 But if 1 and 2 made an agreement between 

themselves, their joint profits would amount to $15,000 -- which they would find profitable to 

                                                           
4 This example has previously appeared in Aivazian and Callen (1981) among others to question validity of the 
Coase theorem in three-player superadditive TUCF games with empty cores. Also, see Koldstad (2000, Ch. 6) 
for a lucid discussion of this example.  
5 To economize on parenthesis and commas, we shall denote coalitions {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3} simply 
by 12, 13, 23 and 123, respectively. The coalitional payoffs are measured in dollars. 
6 We shall follow the convention that 𝑖 = 𝑖 + 1 (mod3). E.g., if 𝑖 = 3, then 𝑖 = 1 and 𝑖 = 2. 
7 If the two-party agreement between firms 2 and 3 is translated into an imputation as defined below, then 
firm 1 will have a payoff of $4,000 instead of $3,000 and the total payoff of firms 1 and 2 will be $14,000 
instead of $13,000. 
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the previous situation. Thus, 2 would leave the two-party agreement with 3 and form a 

coalition with 1 and divide their joint profit of $15,000 as $4,000 for firm 1 and $11,000 for 

firm 2 such that they would each be better-off. But this is not the end of the story either. As 

Aivazian and Callen (1981) argue, the re-contracting process will continue endlessly and, 

therefore, the grand coalition is not stable. 

One problem with the re-contracting process described above is that firm 3 at the time of 

breaking the initial three-party agreement (5250, 9750, 25000) and entering into a separate 

two-party agreement with firm 2 assumes that it would get a profit of $26,000 without taking 

into account the fact that firm 2 would subsequently break the agreement and form a coalition 

with firm 1 instead, leaving it alone to earn a profit of $24,000 -- less than the $25,000 it was 

getting in the initial three-party agreement before entering into the two-party agreement with 

firm 2.8  

     Another problem is that firms 2 and 3 are assumed to divide their $36,000 profit 

arbitrarily among them except that they should each be better-off compared to the initial 

agreement (5250, 9750, 25000) without any concern for the impact it will have on the 

stability of their coalition. 

     Also, notice that the re-contracting process assumes implicitly that a player may leave a 

two-member deviant coalition and merge with the residual player to form another two-

member coalition. Deviations of this type are unconventional and have not been studied much 

previously. Most solution concepts in game theory which allow deviations from deviations 

(see e.g. Bernheim, Peleg, and Whinston, 1987 and Ray, 1989) do not allow mergers between 

coalitions deviating from a deviant coalition and residual players. Thus, deviations from 

deviations can only result in smaller coalitions, but not so if mergers with residual players are 

allowed and deviations and mergers can continue forever as seen above.  

 

3. Credible deviations and infinitely farsighted stable sets 

The purpose of this section is to motivate and introduce a notion of a credible deviation 

which does not rule out mergers between coalitions deviating from deviant coalitions and 

                                                           
8 In other words, the firms are myopic about their prospects.  
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residual players and then introduce a concept of a stable set based on this notion. We need the 

following definitions. 

     A TUCF game is a pair (𝑁, 𝑣) where 𝑁 = {1,2, … , 𝑛},𝑛 ≥ 3, is the finite set of players 

and 𝑣(𝑆) is the transferable worth that members of coalition 𝑆 will have to divide among 

themselves if they were to cooperate together and with no one outside 𝑆. A TUCF game 

(𝑁, 𝑣) is superadditive if 𝑣(𝑆 ∪ 𝑇) ≥ 𝑣(𝑆) + 𝑣(𝑇) for all disjoint coalitions 𝑆 and 𝑇. 

     A payoff vector 𝑥 = (𝑥1, … , 𝑥𝑛) is feasible if ∑ 𝑥𝑖𝑖∈𝑁 = 𝑣(𝑁). In words, a feasible payoff 

vector represents a division of the worth of the grand coalition, and is efficient, i.e. 

maximizes the total payoff of the players, if the game is superadditive. An imputation of 

(𝑁, 𝑣) is a feasible payoff vector 𝑥 such that 𝑥𝑖 ≥ 𝑣(𝑖) for each 𝑖 ∈ 𝑁. Let 𝑋 denote the set of 

all imputations of (𝑁, 𝑣). An imputation 𝑥 is dominated by an imputation 𝑦 if there is a 

coalition 𝑆 such that  ∑ 𝑦𝑖𝑖∈𝑆 ≤ 𝑣(𝑆) and 𝑦𝑖 > 𝑥𝑖 for all 𝑖 ∈ 𝑆. Let ≻ denote this dominance 

relation, that is, for any two imputations 𝑥 and 𝑦, 𝑦 ≻ 𝑥 if there is a coalition 𝑆 such that  

∑ 𝑦𝑖𝑖∈𝑆 ≤ 𝑣(𝑆) and 𝑦𝑖 > 𝑥𝑖 for all 𝑖 ∈ 𝑆. An imputation 𝑦 is feasible for 𝑆 if ∑ 𝑦𝑖𝑖∈𝑆 ≤ 𝑣(𝑆) 

and maximally feasible for 𝑆 if ∑ 𝑦𝑖𝑖∈𝑆 = 𝑣(𝑆). For easy reference, we reproduce here the 

definition of a vNM stable set (see e.g. Osborne and Rubinstein, 1994). 

 

Definition 1 Given a TUCF game (𝑁, 𝑣), a subset 𝑌 of the set of imputations 𝑋 is a vNM 

stable set if it satisfies the following two conditions. 

Internal stability: If 𝑥 ∈ 𝑌, then there is no 𝑦 ∈ 𝑌 such that 𝑦 ≻ 𝑥. 

External stability: If 𝑥 ∈ 𝑋\𝑌, then there is a 𝑦 ∈ 𝑌 such that 𝑦 ≻ 𝑥. 

 

     The definition does not rule out that an imputation 𝑦 in a vNM stable set may be such that 

∑ 𝑦𝑖𝑖∈𝑇 < 𝑣(𝑇) for some coalition 𝑇.9 A vNM stable set in the game in Example 2 below 

indeed includes such imputations. This is odd, since internal stability then implies that 

imputations in a vNM stable set should not be dominated even by an imputation 𝑦 such that 

∑ 𝑦𝑖𝑖∈𝑇 < 𝑣(𝑇) for some coalition 𝑇, though 𝑇 itself has no incentive to choose 𝑦, since it 

can unilaterally choose instead an alternative imputation 𝑧 such that ∑ 𝑧𝑖𝑖∈𝑆 = 𝑣(𝑇) and 

𝑧𝑖 > 𝑦𝑖 for all 𝑖 ∈ 𝑇. All the more so, since, by definition of a vNM stable set, the coalitions 

                                                           
9 In contrast, the core includes no such imputation. 
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are supposedly myopic and care only about their immediate payoffs. But it can be justifiably 

argued that such an imputation 𝑦 may belong to the vNM stable set not because of coalition 

𝑇, but because it is the choice of some other coalition 𝑆 ≠ 𝑇 for which it is maximally 

feasible. If that is so, for every imputation 𝑦 in a stable set such that  ∑ 𝑦𝑖𝑖∈𝑇 < 𝑣(𝑇) for 

some coalition 𝑇 there must be at least some coalition 𝑆 (≠ 𝑁,𝑇) for which ∑ 𝑦𝑖𝑖∈𝑆 = 𝑣(𝑆).10 

 

3.1 A new and general definition of a credible deviation 

     As is the convention in the related literature, we define a deviation in the space of 

imputations. More specifically, a deviation by a coalition 𝑇 is an imputation 𝑦 such that 

∑ 𝑦𝑗 ≤ 𝑣(𝑇)𝑗∈𝑇  and ∑ 𝑦𝑖𝑖∈𝑆 = 𝑣(𝑆) for some coalition 𝑆 (≠ 𝑁) which is not necessarily the 

deviating coalition 𝑇.11 That is, a deviation must be feasible for the deviating coalition and 

maximally feasible for some coalition, though not necessarily for the deviating coalition. It is 

worth noting that this definition allows for the possibilities that a deviation 𝑦 by a coalition 𝑇 

is such that ∑ 𝑦𝑗𝑗∈𝑇 < 𝑣(𝑇), but for some coalition 𝑆 ≠ 𝑇, we have  ∑ 𝑦𝑖 = 𝑣(𝑆)𝑖∈𝑆  or 

∑ 𝑦𝑗𝑗∈𝑇 = 𝑣(𝑇), but for no coalition 𝑆 ≠ 𝑇, we have ∑ 𝑦𝑖 = 𝑣(𝑆)𝑖∈𝑆 . However, for the 

reasons discussed in the preceding paragraph, the definition rules out deviations 𝑦 by a 

coalition 𝑇 such that  ∑ 𝑦𝑗𝑗∈𝑇 < 𝑣(𝑇) and there is no other coalition 𝑆 for which ∑ 𝑦𝑖 =𝑖∈𝑆

𝑣(𝑆). That is, the deviations which are not maximally feasible either for the deviating 

coalition or for any other coalition are ruled out.  

  

Definition 2 An imputation 𝑥 is immune to a deviation 𝑦 if there is no coalition 𝑆 such that 

∑ 𝑦𝑗𝑗∈𝑆 ≤ 𝑣(𝑆) and 𝑦𝑖 > 𝑥𝑖 for all 𝑖 ∈ 𝑆, i.e., 𝑥 is not dominated by 𝑦.  

 

    Let 𝐷 denote the set of all deviations. Then, 𝐷 ⊂ 𝑋. Thus, the dominance relation in 

Definition 2 is the same as in the original definition of a vNM stable set, except that it is 

defined over the set 𝐷 × 𝑋 rather than 𝑋 × 𝑋. 

 
                                                           
10 Going further, one may postulate that a stable set must contain for each coalition 𝑆 at least one imputation 
𝑦 such that ∑ 𝑦𝑖𝑖∈𝑆 ≥ 𝑣(𝑆) and a stable set that does not meet this requirement is “coercive”. Fortunately, as 
will be seen below, this requirement is met by the IFSSs in all cases in which we are able to prove their 
existence. This requirement is met by the core, but in a rather strong way in that every core imputation 𝑦 is 
such that ∑ 𝑦𝑖𝑖∈𝑆 ≥ 𝑣(𝑆) for every coalition 𝑆. 
11 By definition of an imputation, the equality is always satisfied for 𝑆 = 𝑁. 
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Definition 3 A deviation is credible if it is immune to every deviation which is immune to 

every deviation … ad infinitum. 

 

    Since deviations belong to the space of imputations, the definition permits a subset of 

players to leave a current coalition, merge with some outside players, and choose an 

alternative deviation which is feasible for the coalition so-formed and maximally feasible for 

some coalition. Thus, “objections” need not come only from subsets of increasingly smaller 

coalitions and, as seen in the motivating example, can continue to come forever. 12  

     Since a credible deviation, by definition, is immune to every credible deviation,13 the 

credible deviations form a stable set in the sense that a deviation belongs to the set if and only 

if it is immune to every deviation in the set and any deviation not in the set is not immune to 

every deviation in the set. Conversely, any stable set of deviations is a set of credible 

deviations, since, by definition of a stable set, every deviation in the set is immune to every 

other deviation in the set and no deviation outside the stable set is immune to every deviation 

in the set. Thus, in what follows, a stable set of deviations and a stable set of credible 

deviations mean the same thing and a deviation is credible if and only if it belongs to a stable 

set of deviations. 

     Let 𝑍 denote a stable set of deviations. Then, 𝑍 is a stable set in the space of deviations, 

but not necessarily in the space of imputations 𝑋. However, as will be seen below, we can 

construct from 𝑍 another set 𝑌 which is a stable set in 𝑋 in the sense to be made clear below. 

We now introduce a stable set which is identical to a vNM stable set (see Definition 1) except 

that the deviations are required to be credible. 

 

Definition 4 Given a TUCF game (𝑁, 𝑣), a subset 𝑌 of the set of imputations 𝑋 is a credible 

stable set if it satisfies the following two conditions: 

                                                           
12 Credibility of deviations or strategies is an important requirement in game theory. E.g., the concept of 
coalition-proof Nash equilibrium (Bernheim et al., 1989), in contrast to a strong Nash equilibrium (Aumann, 
1959), requires blocking deviations to be “credible”. Similarly, the concept of subgame-perfect Nash 
equilibrium in contrast to a Nash equilibrium, requires the strategies to be “credible”. However, the notions of 
credibility differ across the literature. The one introduced presently is a new addition and is of an independent 
interest. 
13 This follows from the fact that the “chain” is required to be infinite. More precisely, if a deviation 𝑥1 is 
immune to every deviation 𝑥2 which is immune to every deviation 𝑥3 and so on, then every 𝑥2 satisfies exactly 
the same property as 𝑥1, since the chain is infinite. Hence, if 𝑥1 is credible, then so is every 𝑥2 and so on. 
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Internal stability: If 𝑥 ∈ 𝑌, then there is no credible deviation 𝑦 ∈ 𝑌 such that 𝑦 ≻ 𝑥. 

External stability: If 𝑥 ∈ 𝑋\𝑌, then there is a credible deviation 𝑦 ∈ 𝑌 such that 𝑦 ≻ 𝑥.  

 

     Since a deviation 𝑦 is credible if and only if it belongs to a stable set of deviations, external 

stability of a credible stable set implies that it must contain a stable set of deviations and, by 

internal stability, no imputation in the credible stable set should be dominated by a deviation 

in this stable set of deviations, but, by external stability, every imputation not in the credible 

stable set should be dominated by some deviation in this stable set of deviations. In contrast, 

no imputation in a vNM stable set should be dominated by an imputation in the vNM set 

which is not necessarily a deviation but may only be an imputation which is feasible for some 

coalition and every imputation outside the vNM stable set should be dominated by an 

imputation which is not necessarily a deviation but is feasible for some coalition. Since every 

deviation, by definition, is an imputation which is feasible for some coalition, but not every 

imputation which is feasible for some coalition is a deviation, a vNM stable set could be a 

subset of a credible stable set. Proposition 2 below confirms this intuition and identifies the 

exact conditions under which that is indeed so. 

 

3.2 An infinitely farsighted stable set 

 

Definition 5 Given a TUCF game (𝑁, 𝑣), a  set of imputations 𝑌 is an infinitely farsighted 

stable set if there is a stable set of deviations 𝑍 such that 𝑌 is the set of all imputations which 

are not dominated by any deviation in 𝑍. 

     

Proposition 1 Given a TUCF game (𝑁, 𝑣), if 𝑌 is an infinitely farsighted stable set, then Y is 

a credible stable set. 

Proof: Since 𝑌 is an infinitely farsighted stable set, there is a stable set of deviations 𝑍 such 

that 𝑌 is the set of all imputations which are not dominated by any deviation in 𝑍. Since 𝑍 is a 

stable set, if 𝑥 ∈ 𝑍, then there is no 𝑦 ∈ 𝑍 such that  𝑦 ≻ 𝑥. Since 𝑌 is the set of all 

imputations which are not dominated by deviations in 𝑍, it follows that 𝑌 ⊃ 𝑍.  Since 𝑌 is the 

set of all imputations which are not dominated by any deviation in 𝑍, if 𝑥 ∈ 𝑌, there is no 

𝑦 ∈ 𝑍 such that 𝑦 ≻ 𝑥. Since 𝑌 is the set of all imputations which are not dominated by any 

deviation in 𝑍, for any 𝑥 ∈ 𝑋\𝑌 there must be a 𝑦 ∈ 𝑍 such that 𝑦 ≻ 𝑥. This proves that for 
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any 𝑥 ∈ 𝑌, there is no 𝑦 ∈ 𝑍 ⊂ 𝑌 such that 𝑦 ≻ 𝑥 and for any 𝑥 ∈ 𝑋\𝑌 there is a 𝑦 ∈ 𝑍 ⊂ 𝑌 

such that 𝑦 ≻ 𝑥, The proof now follows by noting that a deviation 𝑦 is credible if and only if 

it belongs to the set 𝑍.   ■ 

 

     It is worth noting that no imputation in the set 𝑌\𝑍 is a deviation, since every deviation 

which is not dominated by any deviation in 𝑍 is itself a credible deviation and, thus, belongs 

to 𝑍. Thus, the existence of a stable set of credible deviations is the key to the definition and 

existence of an IFSS. Since credible deviations, by definition, are infinitely farsighted, 

farsightedness is already built into the definition of an IFSS. Additional characterizations of 

the IFSSs follow from their relationship with the core and the vNM stable sets. 

     Recall that a feasible payoff vector 𝑥 belongs to the core of (𝑁, 𝑣) if 𝑣(𝑆) ≤ ∑ 𝑥𝑖𝑖∈𝑆  for 

every coalition 𝑆 and in the interior of the core if 𝑣(𝑆) < ∑ 𝑥𝑖𝑖∈𝑆  for every 𝑆 ≠ 𝑁 or on the 

boundary of the core if ∑ 𝑥𝑖 = 𝑣(𝑆)𝑖∈𝑆  for some coalition 𝑆 ≠ 𝑁. Since the core -- if 

nonempty -- has a nonempty boundary,14 it includes at least some imputations which are 

deviations. 

  

Proposition 2 Let (𝑁, 𝑣) be a TUCF game. Then (1) no IFSS is a subset of another, (2) every 

IFSS contains the core and is strictly larger than a stable set of credible deviations if the core 

has a nonempty interior, and (3) every vNM stable set which contains a stable set of 

deviations is a subset of an IFSS. 

Proof: (1) Suppose contrary to the assertion that 𝑌 and 𝑌′ are two IFSSs such that 𝑌 ⊂ 𝑌′ and 

𝑌 ≠ 𝑌′. Then there must be stable sets of deviations 𝑍 and 𝑍′ such that 𝑌 and 𝑌′ are the sets 

of all imputations which are not dominated by deviations in 𝑍 and 𝑍′, respectively.Since 

𝑍 ⊂ 𝑌 ⊂ 𝑌′ and 𝑍 is a stable set of credible deviations, no imputation in 𝑌′ must be 

dominated by a deviation in 𝑍. But that contradicts that 𝑌 is the largest set of imputations 

which are not dominated by deviations in 𝑍. Hence our supposition is wrong and 𝑌 cannot be 

a subset of 𝑌′.  

     (2) Let 𝑌 be an IFSS. Since every member of the core is an imputation and no core 

imputation, by definition, is dominated by a deviation (credible or not), it follows that the 

                                                           
14 The core is a closed (and convex) set, since, by definition, it satisfies a system of weak linear inequalities. 
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core is contained in 𝑌, since 𝑌, by definition, contains a set of deviations 𝑍 and is the set of 

all imputations which are not dominated by the deviations in 𝑍. Let 𝐶 denote the set of all 

core imputations. Then 𝐶 consists of two separate parts: the set of core imputations which are 

deviations, i.e., 𝑥 ∈ 𝐶 such that ∑ 𝑥𝑖 = 𝑣(𝑆)𝑖∈𝑆  for some coalition 𝑆 ≠ 𝑁 and the (possibly 

empty) set of core imputations which are not deviations and, therefore, are in the interior of 

the core, i.e., the set of imputations 𝑥 ∈ 𝐶 such that ∑ 𝑥𝑖 > 𝑣(𝑆)𝑖∈𝑆  for every coalition 𝑆 ≠ 𝑁. 

Let 𝐶1 and 𝐶2 denote the first and the second parts, respectively. Then 𝐶1 ≠ ∅, since the core 

is nonempty and therefore it has a nonempty boundary. Furthermore,  𝐶1 ⊂ 𝑍, since 𝐶1 ⊂ 𝑌 

and, therefore, each deviation in 𝐶1 is immune to every credible deviation and, thus, itself a 

credible deviation. By definitions, 𝐶1 ∩ 𝐶2 = ∅, 𝐶1 ∪ 𝐶2 = 𝐶, 𝐶2 ⊂ 𝑌, and 𝐶2 ∩ 𝑍 = ∅. Since 

𝑍 ⊂ 𝑌, 𝐶2 ⊂ 𝑌, and 𝐶2 ∩ 𝑍 = ∅, it follows that 𝑌 is strictly larger than the set 𝑍 if 𝐶2 ≠ ∅, 

i.e., if the core has a nonempty interior.  

     (3) Let 𝑉 be a vNM stable set such that there is a stable set of deviations 𝑍 ⊂ 𝑉. Then, by 

internal stability of 𝑉, for each 𝑦 ∈ 𝑉\𝑍, there is no 𝑧 ∈ 𝑍 such that 𝑧 ≻ 𝑦. Let 𝑌 denote the 

set of all imputations which are not dominated by the deviations in 𝑍. Then, 𝑍 ⊂ 𝑌, 𝑌 is an 

IFSS, and 𝑉\𝑍 ⊂ 𝑌\𝑍, since 𝑌 is the set of all imputations which are not dominated by 

deviations in 𝑍. Hence 𝑉 ⊂ 𝑌 and 𝑌 is an IFSS.   ■ 

 

Corollary If an infinitely farsighted stable set 𝑌 coincides with a stable set of deviations 𝑍, 

then 𝑌 is a vNM stable set. 

 

     The proposition does not imply that an IFSS is generally equal to the core.  Indeed, as will 

be shown, it can be nonempty even if the core is empty. However, the proposition does imply 

that if an IFSS exists, then it contains the core and each core imputation is immune to every 

credible deviation and every deviation that belongs to the core is itself a credible deviation. 

This might explain why the core, as observed by Ray and Vohra (2014), often exhibits very 

powerful farsighted stability properties, even though it is defined by the property of an 

imputation of not being myopically blocked. Similarly, farsightedness is also implicit in at 

least those vNM stable sets – though supposedly defined again by a myopic notion of 

dominance -- which contain a stable set of credible deviations and, thus, are contained in an 
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IFSS. In fact, as will be seen, in many cases a vNM stable set coincides with an IFSS, as the 

Corollary above claims.  

 

3.3 Other farsighted solution concepts  

      Harsanyi (1974) seems to have been the first to motivate and introduce farsightedness in 

the context of stable sets. Since Harsanyi stable sets are known to include imputations that do 

not belong to the core, they also seem to be a promising solution concept for games with 

empty cores. Thus it may be worth contrasting them with the IFSSs, especially if the core is 

empty. We need the following definitions: A TUCF game (𝑁, 𝑣) is normalized if 𝑣(𝑖) =

0, 𝑖 = 1, … ,𝑛. It is well-known that there is no loss of generality in restricting to games which 

are normalized. We also assume that 𝑣(𝑁) > 0, i.e. the game is essential. Only essential 

games are of interest, since in normalized games which are not essential the only conceivable 

imputation is 𝑥𝑖 = 𝑣(𝑖) = 0, 𝑖 ∈ 𝑁, and, thus, there is no need to study solution concepts for 

such games.  

     For any two imputations 𝑥 and 𝑦, 𝑥 is said to be feasible from 𝑦 via a coalition 𝑆 if 

∑ 𝑥𝑖𝑖∈𝑆 ≤ 𝑣(𝑆), to be denoted by 𝑦 →𝑆 𝑥. Notice that 𝑦 →𝑆 𝑥 if and only if  𝑧 →𝑆 𝑥 for every 

𝑧 ∈ 𝑋. An imputation 𝑥 farsightedly dominates an imputation 𝑦, to be denoted by 𝑥 ≫ 𝑦, if 

there exists a finite sequence of imputations 𝑦 = 𝑥1, 𝑥2, … , 𝑥𝑚 = 𝑥 and a sequence of 

coalitions 𝑆1,𝑆2, … . 𝑆𝑚−1 such that for each 𝑖 = 1,2, …𝑚 − 1, 𝑥𝑗 →𝑆𝑗 𝑥
𝑗+1and 𝑥𝑖

𝑗 < 𝑥𝑖 for 

each 𝑖 ∈ 𝑆𝑗 . 15  

     Clearly, the dominance relation “≫ " underlying the definition of a Harsanyi stable set is 

weaker than the dominance relation “≻ " underlying the definitions of both vNM stable sets 

and the IFSSs in the sense that for any 𝑥 and 𝑦, if 𝑥 ≻ 𝑦, then 𝑥 ≫ 𝑦, but the converse is not 

true. Thus, a Harsanyi stable set may be more exclusive. The following important result 

confirms this intuition.   

 

                                                           
15 It is worth noting that the dominance chain 𝑥1, 𝑥2, … , 𝑥𝑚 may terminate at an imputation 𝑥 which is not 
maximally feasible for any coalition, leave alone for the coalitions 𝑆𝑗 , 𝑖 = 1, … ,𝑚 − 1, which induce the chain. 
Thus, the “deviations” in the dominance chain may not be “credible”. 
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Proposition 3 (Béal et al., 2008) Let (𝑁, 𝑣) be a normalized TUCF game in which 𝑣(𝑇) > 0 

for some 𝑇 ⊂ 𝑁,𝑇 ≠ 𝑁.Then, a set of imputations is a Harsanyi stable set if and only if it 

contains a single imputation 𝑥 such that for some coalition 𝑆 ⊂ 𝑁, ∑ 𝑥𝑖𝑖∈𝑆 ≤ 𝑣(𝑆) and 𝑥𝑖 > 0 

for each 𝑖 ∈ 𝑆. 

 

     In light of this result, Ray and Vohra (2014) note that if the core is nonempty, then no 

imputation in the interior of the core can be part of a Harsanyi stable set. Here we 

characterize the Harsanyi stable sets for games with empty cores. We need the following 

additional definition: An imputation 𝑥 of a game (𝑁, 𝑣) is called interior if 𝑥𝑖 > 𝑣(𝑖), 𝑖 =

1, … , 𝑛. Notice that given an imputation of an essential game, there exists an interior 

imputation which is arbitrarily close to it. 

        

Proposition 4 Let (𝑁, 𝑣) be a normalized TUCF game with an empty core. Then, every set 

containing a single interior imputation is a Harsanyi stable set. 

Proof:16 Let 𝑥 be an interior imputation. Clearly, the singleton set {𝑥} satisfies internal 

stability. We prove that it also satisfies external stability by showing that 𝑥 farsightedly 

dominates every other imputation 𝑧, i.e., there exists a dominance chain from 𝑧 to 𝑥. Since 𝑥 

is an interior imputation and the core of (𝑁, 𝑣) is empty, 𝑥𝑖 > 𝑣(𝑖) = 0 for all 𝑖 and 𝑣(𝑆) >

∑ 𝑥𝑖𝑖∈𝑆  for some 𝑆 ≠ 𝑁. Furthermore, coalition 𝑆 can neither be a singleton nor equal to 𝑁, 

since 𝑥 is an imputation. Since 𝑥 and 𝑧 are both imputations 𝑧𝑖 < 𝑥𝑖 for at least some player 𝑖. 

Three cases arise: (i) the player 𝑖 ∈ 𝑆, (ii) the player 𝑖 ∉ 𝑆 and there is also a player 𝑖 ∉

𝑆,𝑖 ≠ 𝑖, and (iii) 𝑆 = 𝑁\𝑖. The dominance chains in the three cases are defined as follows: (i) 

𝑧→{𝑖} 𝑦→𝑆 𝑥, where 𝑦𝑗 = 0, for all 𝑖 ∈ 𝑆 including 𝑖 = 𝑖, (ii) 𝑧→{𝑖} 𝑦→𝑆 𝑥, where 𝑦𝑘 = 𝑣(𝑁) 

and 𝑦𝑗 = 0 for all 𝑖 ≠ 𝑖 including 𝑖, and (iii) 𝑧→{𝑖} 𝑦→{𝑘} 𝑦′ →𝑆 𝑥, where 𝑦𝑗 = 𝑣(𝑁) for some 

𝑖 ∈ 𝑆, 𝑖 ≠ 𝑖, 𝑦ℎ = 0 for all ℎ ≠ 𝑖 including 𝑖, 𝑦𝑖′ = 𝑣(𝑁), and 𝑦𝑗′ = 0 for all 𝑖 ∈ 𝑆. It is easily 

seen that the final payoff of every member of every deviating coalition in each dominance 

chain is higher than its payoff at the time of the deviation. This proves that {𝑥} is also 

externally stable and, thus, a Harsanyi stable set.     ■ 

 

                                                           
16 An alternative, but less instructive proof follows from Proposition 3 by noting that every interior imputation 
of a game with an empty core meets the required conditions of that proposition.    
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     The proof is quite instructive. Coalition 𝑆 is the deviating coalition at the last step in each 

of the three possible dominance chains and in each chain it chooses the imputation 𝑥 which 

results in the final payoffs 𝑥𝑖 , 𝑖 ∈ 𝑆, such that ∑ 𝑥𝑖 < 𝑣(𝑆)𝑖∈𝑆  despite the fact that it could 

have chosen instead an imputation 𝑥′ such that ∑ 𝑥𝑖′ = 𝑣(𝑆)𝑖∈𝑆  and 𝑥𝑖′ > 𝑥𝑖 for each 𝑖 ∈ 𝑆. 

This is odd, since it means that despite having the power to interfere in the affairs of others, 

coalition 𝑆 actually does not fully exercise even its own sovereignty and does not avail 

payoffs which are final and higher for its members. Instead, it acts as if its aim is to facilitate 

the final payoff desired by player 𝑖 rather than obtaining higher final payoffs for its members. 

Given such “benevolent” behavior on the part of coalitions, it is not surprising that there 

exists a dominance chain from any imputation to any interior imputation and, thus, at least 

every singleton set containing an interior imputation is a stable set.17 

     To conclude, in games with empty cores “almost” every singleton set containing an 

imputation is a Harsanyi stable set. In other words, despite the fact that each Harsanyi stable 

set is extremely exclusive, the Harsanyi stable sets as a solution concept lack predictive 

power because “almost” every imputation is a Harsanyi stable set. This comes directly from 

the fact that the dominance relation ≫ does not require a deviating coalition to aim for an 

imputation which is at least maximally feasible for it. As seen in the proof of Proposition 4, 

the deviating coalition 𝑆 in the last step of each dominance chain chooses an imputation 𝑥 

such that 𝑣(𝑆) < ∑ 𝑥𝑖∈𝑆  despite the fact that these payoffs are final and it could have chosen 

instead an imputation 𝑥′such that 𝑣(𝑆) = ∑ 𝑥𝑖′𝑖∈𝑆  and 𝑥𝑖′ > 𝑥𝑖 for each 𝑖 ∈ 𝑆.           

     Chwe (1994, p. 310) motivates and introduces another leading and influential farsighted 

stable solution concept-- called the largest consistent set -- by pointing out that the Harsanyi 

stable sets are too exclusive. But for games with empty cores it goes to the other extreme in 

the sense that it includes every interior imputation and, thus, it is “too” inclusive. This 

follows from the fact that every Harsanyi stable set is a subset of the largest consistent set 

(Chwe 1994) and Proposition 4 which implies that every singleton set containing an interior 

imputation is a Harsanyi stable set.18  

                                                           
17 It may be noted that the proposition does not rule out that a singleton set containing an imputation which is 
not interior may also be a Harsanyi stable set. 
18 This supplements a result in Bèal et al. (2008, Proposition 1) which shows that the largest consistent set 
includes every imputation if the game is strictly superadditive and has at least four players. Proposition 4 here 
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     As in the case of the largest consistent set, Ray and Vohra (2014) motivate and introduce 

their farsighted stable sets as a modification of the Harsanyi stable sets. Though it does not 

seem possible to compare the dominance relations underlying the definitions of an IFSS and a 

farsighted stable set in Ray and Vohra (2014), since the latter is defined over “states” rather 

than imputations, it might be possible to compare their outcomes. Since every IFSS contains 

the core and there exist farsighted stable sets which consist of single core imputations, the 

two may not be disjoint if the core is nonempty, but disjoint if the core is empty. Additional 

comparisons between the IFSSs and the farsighted stable sets are made in Examples 1-3 

below, after we have proved existence and further characterized the IFSSs.   

      

4. Existence and additional characterization of infinitely farsighted stable sets 

The purpose of this section is to prove existence and characterize an IFSS for general three-

player superadditive TUCF games with empty cores.19 Though the focus of the paper is on 

games with empty cores, our concepts and analysis might be considered unsatisfactory if 

existence of IFSSs for games with nonempty cores cannot be proved similarly. Accordingly, 

in this section we also prove existence and characterize IFSSs for general three-player 

superadditive TUCF games with nonempty cores. 

      Since, as shown in Section 3, the core is contained in every IFSS and imputations on the 

boundary of the core are deviations, proving existence of credible deviations in games with 

empty cores also demonstrates that credible deviations do not necessarily belong to the core. 

So that is where we begin and prove existence and characterize a set of credible deviations 

and an IFSS for three-player games with empty cores. 

 

4.1 Empty cores and credible deviations  

     Let (𝑁, 𝑣) be a three-player superadditive TUCF game with an empty core. Let the vector 

(𝑥1∗, 𝑥2∗, 𝑥3∗) denote a solution to the system of equations 

                              𝑥𝑖 + 𝑥𝑗 = 𝑣(𝑖𝑖), 𝑖, 𝑖 ∈ {1, 2, 3}.                                                              (1) 

                                                                                                                                                                                     
implies that every interior imputation belongs to the largest consistent set if the core is empty and the game 
has three or more players and not even superadditive. 
19Three-player games are minimally sufficient for studying coalitional stability. They have been previously 
studied in Moldovanu (1992), Binmore (1995), and (Maskin (2003) among others.   
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Then, each player 𝑖 would be indifferent between forming a two-member coalition with 

player 𝑖 or 𝑖 if division of the worth in coalitions 𝑖𝑖 and 𝑖𝑖 are (𝑥𝑖∗, 𝑥𝑗∗) and (𝑥𝑖∗, 𝑥𝑘∗), 

respectively. The vector (𝑥1∗, 𝑥2∗, 𝑥3∗) has the explicit form 

                       𝑥𝑖∗ = 1
2

[𝑣(𝑖𝑖) + 𝑣(𝑖𝑖) − 𝑣(𝑖𝑖)], {𝑖, 𝑖,𝑖} = {1,2,3}.                                  (2) 

Since the unique vector (𝑥1∗, 𝑥2∗, 𝑥3∗), by definition, is the von Neumann-Morgenstern vector, 

we shall refer to it as the vNM vector.20  

             

Proposition 5 Let (𝑁, 𝑣) be a three-player superadditive TUCF game. Then the core of the 

game is empty if and only if  1
2

[𝑣(𝑖𝑖) + 𝑣(𝑖𝑖) + 𝑣(𝑖𝑖)]  > 𝑣(123).21 

Proof: Suppose contrary to the assertion that 1
2

[𝑣(𝑖𝑖) + 𝑣(𝑖𝑖) + 𝑣(𝑖𝑖)]  > 𝑣(123) but the 

core is nonempty. Let (𝑥1, 𝑥2, 𝑥3) be a core payoff vector. Then, it must satisfy at least the 

inequalities  𝑥𝑖 + 𝑥𝑗 ≥ 𝑣(𝑖𝑖), 𝑖, 𝑖 ∈ {1, 2, 3}. But that implies 𝑥1 + 𝑥2 + 𝑥3 ≥  1
2

[𝑣(𝑖𝑖) +

𝑣(𝑖𝑖) + 𝑣(𝑖𝑖)]  > 𝑣(123), which contradicts our supposition that (𝑥1,𝑥2, 𝑥3) is a core 

payoff vector. Next, we show that the core is nonempty if 1
2

[𝑣(𝑖𝑖) + 𝑣(𝑖𝑖) + 𝑣(𝑖𝑖)]  ≤

𝑣(123). If (𝑥1∗, 𝑥2∗, 𝑥3∗) is such that 𝑥𝑖∗ ≥ 𝑣(𝑖), 𝑖 = 1,2,3, then any feasible payoff vector 

(𝑥1, 𝑥2, 𝑥3) such that 𝑥𝑖 ≥ 𝑥𝑖∗, 𝑖 = 1,2,3, and 𝑥1 + 𝑥2 + 𝑥3 = 𝑣(𝑁) is a core payoff vector and 

thus the core is nonempty. But if 𝑥𝑖∗ < 𝑣(𝑖) for some 𝑖, then 𝑥𝑗∗ ≥ 𝑣(𝑖) and 𝑥𝑘∗ ≥ 𝑣(𝑖) for 

𝑖,𝑖 ≠ 𝑖, since 𝑥𝑖∗ + 𝑥𝑗∗ = 𝑣(𝑖𝑖) ≥ 𝑣(𝑖) + 𝑣(𝑖) and  𝑥𝑖∗ + 𝑥𝑘∗ = 𝑣(𝑖𝑖) ≥ 𝑣(𝑖) + 𝑣(𝑖), by 

superadditivity. Let 𝑥𝑖 = 𝑣(𝑁) − 𝑣(𝑖𝑖) ≥ 𝑣(𝑖) > 𝑥𝑖∗, by superadditivity. Then, (𝑥𝑖, 𝑥𝑗∗, 𝑥𝑘∗) is 

a core payoff vector. This proves that the core is empty only if  1
2

[𝑣(𝑖𝑖) + 𝑣(𝑖𝑖) + 𝑣(𝑖𝑖)]  >

𝑣(123).   ■ 

 

     We shall say that a coalition 𝑖𝑖 divides its worth according to the vNM vector (𝑥1∗, 𝑥2∗, 𝑥3∗) 

if the division of its worth is (𝑥𝑖∗, 𝑥𝑗∗) and refer to 𝑥𝑖∗ as the vNM payoff of player 𝑖. Equalities 

                                                           
20 This vector is also referred to as the (endogenous) outside option vector (see e.g. Harsanyi, 1977) and it may 
be regarded as a normative solution concept for three-player characteristic function games. 
21 The proof of this proposition is both straight forward and standard, but included here for the sake of 
completeness. 
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(1) and (2) imply 𝑥𝑖∗ + 𝑣(𝑖𝑖) = 1
2

[𝑣(𝑖𝑖) + 𝑣(𝑖𝑖) + 𝑣(𝑖𝑖)]  > 𝑣(123) ≥ 𝑣(𝑖𝑖) + 𝑣(𝑖), since 

the core is empty and the game is superadditive. Therefore, 

                             𝑥𝑖∗ > 𝑣(𝑖), 𝑖 ∈ {1, 2, 3},                                                                               (3)           

and, by definition, 𝑥𝑖∗ + 𝑥𝑗∗ = 𝑣(𝑖𝑖). However, the payoff vector (𝑥1∗, 𝑥2∗, 𝑥3∗) is not feasible, 

since 𝑥1∗ + 𝑥2∗ + 𝑥3∗ = 1
2

[𝑣(𝑖𝑖) + 𝑣(𝑖𝑖) + 𝑣(𝑖𝑖)] > 𝑣(123). In fact, it should not be, since 

otherwise the core will be nonempty, in contradiction to our supposition. 

     Let 𝑍 denote the set of feasible payoff vectors (𝑥𝑖∗, 𝑥𝑗∗, 𝑥�𝑘 ) where 

                                𝑥�𝑘 = 𝑣(123) − 𝑥𝑖∗ − 𝑥𝑗∗ = 𝑣(123) − 𝑣(𝑖𝑖) ≥ 𝑣(𝑖),                     (4) 

by superadditivity of 𝑣, and (𝑧𝑖, 𝑧𝑗 , 𝑧𝑘∗) where 

                                     𝑧𝑘∗ = 𝑣(𝑖) and  𝑧𝑖 ≥ 𝑥𝑖∗, 𝑧𝑗 ≥ 𝑥𝑗∗, {𝑖, 𝑖,𝑖} = {1,2,3}.                   (5) 

As seen from (3)-(5), each feasible payoff vector (𝑥𝑖∗, 𝑥𝑗∗, 𝑥�𝑘 ) and (𝑧𝑖, 𝑧𝑗 , 𝑧𝑘∗) is a deviation. 

Thus,  

𝑍 = �(𝑥𝑖∗, 𝑥𝑗∗, 𝑥�𝑘�, �𝑧𝑖, 𝑧𝑗 , 𝑧𝑘∗�, 𝑧𝑖 ≥ 𝑥𝑖∗, 𝑧𝑗 ≥ 𝑥𝑗∗, {𝑖, 𝑖,𝑖} = {1,2,3}} 

is a set of deviations. 

 

Proposition 6 Let (𝑥1∗, 𝑥2∗, 𝑥3∗) be the unique vNM vector of a three-player superadditive 

TUCF game (𝑁, 𝑣) with an empty core. Then, 𝑍 = �(𝑥𝑖∗, 𝑥𝑗∗, 𝑥�𝑘�, �𝑧𝑖, 𝑧𝑗 , 𝑧𝑘∗�, 𝑧𝑖 ≥ 𝑥𝑖∗, 𝑧𝑗 ≥

𝑥𝑗∗, {𝑖, 𝑖,𝑖} = {1,2,3}} is a stable set of credible deviations. 

Proof: Note that each imputation (𝑥𝑖∗, 𝑥𝑗∗, 𝑥�𝑘 ) is a deviation, since 𝑥𝑖∗ + 𝑥𝑗∗ = 𝑣(𝑖𝑖). Similarly, 

each (𝑧𝑖, 𝑧𝑗 , 𝑧𝑘∗) is a deviation, since 𝑧𝑘∗ = 𝑣(𝑖). We first prove internal stability of 𝑍, i.e., no 

deviation in 𝑍 is dominated by another deviation in 𝑍. Let 𝑥𝑖 ≡ (𝑥𝑖∗, 𝑥𝑗∗, 𝑥�𝑘 ) and 𝑧𝑖 ≡

(𝑧𝑖, 𝑧𝑗 , 𝑧𝑘∗). Then, for no coalition 𝑆 ⊂ 𝑁 and 𝑥𝑖 , 𝑥𝑗 ∈ 𝑍, we have ∑ 𝑥ℎ𝑖ℎ∈𝑆 = 𝑣(𝑆) and 

𝑥ℎ𝑖 > 𝑥ℎ
𝑗 ,ℎ ∈ 𝑆. Similarly, for no 𝑥𝑖 , 𝑧𝑗 ∈ 𝑍, we have a coalition 𝑆 such that ∑ 𝑥ℎ𝑖ℎ∈𝑆 = 𝑣(𝑆) 

and  𝑥ℎ𝑖 > 𝑧ℎ
𝑗 ,ℎ ∈ 𝑆 or  ∑ 𝑧ℎ

𝑗
ℎ∈𝑆 = 𝑣(𝑆) and 𝑧ℎ

𝑗 > 𝑥ℎ𝑖 ,ℎ ∈ 𝑆. Thus, for no 𝑥𝑖 , 𝑥𝑗 , we have 



 

18 
 

𝑥𝑖 ≻ 𝑥𝑗  and for no 𝑥𝑖 , 𝑧𝑗 ∈ 𝑍, we have 𝑥𝑖 ≻ 𝑧𝑗 or 𝑧𝑗 ≻ 𝑥𝑖 . Furthermore, for no 𝑧𝑖 , 𝑧𝑗 ∈

𝑍, 𝑧𝑖 ≻ 𝑧𝑗. Similarly, no dominance holds in the remaining cases.  

     We next prove external stability of 𝑍, i.e., if a deviation 𝑦 = �𝑦𝑖,𝑦𝑗 ,𝑦𝑘� ∉ 𝑍, then there is 

a coalition 𝑆 and an 𝑥𝑖 ∈ 𝑍 such that  ∑ 𝑥ℎ𝑖ℎ∈𝑆 = 𝑣(𝑆) and  𝑥ℎ𝑖 > 𝑦ℎ,ℎ ∈ 𝑆. Two cases arise: 

Since 𝑦 is a deviation either 𝑦𝑖 + 𝑦𝑗 = 𝑣(𝑖𝑖) for some 𝑖 and 𝑖 or 𝑦𝑘 = 𝑣(𝑖) for some 𝑖. In the 

former case, 𝑦𝑘 = 𝑥�𝑘 < 𝑥𝑘∗  (see (4) above), since 𝑣(𝑖𝑖) = 𝑥𝑖∗ + 𝑥𝑗∗ and 𝑦𝑖 + 𝑦𝑗 + 𝑦𝑘 =

𝑣(𝑖𝑖𝑖) < 𝑥𝑖∗ + 𝑥𝑗∗ + 𝑥𝑘∗ . Furthermore, either 𝑦𝑖 < 𝑥𝑖∗ or 𝑦𝑗 < 𝑥𝑗∗, since �𝑦𝑖 ,𝑦𝑗 ,𝑦𝑘� ∉ 𝑍. 

Without loss of generality, let 𝑦𝑗 < 𝑥𝑗∗. Therefore, 𝑦𝑘 < 𝑥𝑘∗  and 𝑦𝑗 < 𝑥𝑗∗ and 𝑥𝑗∗ + 𝑥𝑘∗ =

𝑣(𝑖𝑖). Thus, �𝑥�𝑖, 𝑥𝑗∗, 𝑥𝑘∗� ≻ 𝑦 for �𝑥�𝑖, 𝑥𝑗∗, 𝑥𝑘∗� ∈ 𝑍. In the latter case, 𝑦𝑘 = 𝑧𝑘∗ < 𝑥𝑘∗  (see (3) 

and (5) above) and since �𝑦𝑖,𝑦𝑗 ,𝑦𝑘� ∉ 𝑍, either 𝑦𝑖 < 𝑥𝑖∗ or 𝑦𝑗 < 𝑦𝑗∗. Without loss of 

generality, let 𝑦𝑗 < 𝑦𝑗∗. Therefore, 𝑦𝑘 < 𝑥𝑘∗ , 𝑦𝑗 < 𝑥𝑗∗, and 𝑥𝑗∗ + 𝑥𝑘∗ = 𝑣(𝑖𝑖). Thus, 

�𝑥�𝑘, 𝑥𝑗∗, 𝑥𝑘∗� ≻ 𝑦 for �𝑥�𝑘, 𝑥𝑗∗, 𝑥𝑘∗� ∈ 𝑍.    ■ 

      

It may be noted that, as postulated in footnote 10, the stable set 𝑍 contains for each 

coalition 𝑆 a deviation 𝑦 such that ∑ 𝑦𝑖𝑖∈𝑆 = 𝑣(𝑆). It is easily verified that for the motivating 

example in Section 2, 𝑥1∗ = $5,000, 𝑥2∗ = $10,000, and 𝑥3∗ = $26,000 are the vNM payoffs. 

Thus, (5000, 10000, 25000) is a credible deviation, but (4000, 11000, 25000) used in the 

argument against the stability of the grand coalition is not. 

 

4.1.1 Empty cores and infinitely farsighted stable sets  

     Given the stable set of credible deviations 𝑍, an IFSS, as Proposition 1 shows, is simply 

the set that includes 𝑍 and all imputations which are not dominated by deviations in 𝑍. 

 

Proposition 7 Let (𝑥1∗, 𝑥2∗, 𝑥3∗) be the unique vNM vector of  a three-player superadditive 

TUCF game, (𝑁, 𝑣), with an empty core. Then the set 𝑌 = {(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) ∈ 𝑋: 𝑥𝑖 ≥ 𝑥𝑖∗, 𝑥𝑗 ≥ 𝑥𝑗∗,

𝑥𝑘 ≥ 𝑣(𝑖), {𝑖, 𝑖,𝑖} = {1,2,3}} is an IFSS. 

Proof: Clearly, the stable set of credible deviations 𝑍 ⊂ 𝑌. For each 𝑥 = �𝑥𝑖, 𝑥𝑗 , 𝑥𝑘� ∈ 𝑌, 

there exists no credible deviation 𝑦 ∈ 𝑍 such that 𝑦 ≻ 𝑥, since 𝑥𝑖 ≥ 𝑥𝑖∗, 𝑥𝑗 ≥ 𝑥𝑗∗, and 𝑥𝑘 ≥

𝑣(𝑖). Furthermore, if an imputation 𝑥 = �𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘� ∉ 𝑌, then there must be at least two 
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players 𝑖 and 𝑖 such that 𝑥𝑖 < 𝑥𝑖∗ and 𝑥𝑗 < 𝑥𝑗∗. But that implies (𝑥𝑖∗, 𝑥𝑗∗, 𝑥�𝑘) ≻ �𝑥𝑖, 𝑥𝑗 , 𝑥𝑘� for 

(𝑥𝑖∗, 𝑥𝑗∗, 𝑥�𝑘) ∈ 𝑍.    ■ 

 

     In the motivating example in Section 2, each of the three payoff vectors (𝑥1∗, 𝑥2∗, 𝑥�3) = 

(5000, 10000, 25000), (𝑥1∗, 𝑥�2, 𝑥3∗) =    (5000, 9000, 26000), and (𝑥�1, 𝑥2∗, 𝑥3∗) = 

(4000, 10000, 26000) belongs to 𝑍 and, therefore, immune to credible deviations. In these 

imputations, two players receive their vNM payoffs and the third player receives the 

remainder of the worth of the grand coalition. The situation is similar to a game of musical 

chairs: three players compete for two positions. As a result any two players will rush in to 

form a coalition and afterwards form the grand coalition with the remaining player and share 

the resulting additional surplus according to some imputation in the set 𝑌.   

     Ray and Vohra (2014, Theorem 5) show that farsighted stable sets exist in proper simple 

games with empty cores and have the structure of discriminatory sets.22  However, the IFSS 

for these games may be starkly different as the following example shows. 

 

Example 1 Let (𝑁, 𝑣) denote the game 𝑣(𝑆) = 1 if |𝑆| ≥ 2 and 𝑣(𝑆) = 0 otherwise.  

     This game is superadditive and the core is empty. It is easily seen that (𝑥1∗, 𝑥2∗, 𝑥3∗) =

(0.5,0.5,0.5) is the unique vNM vector and, thus, 

𝑍 = {(0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5)} is a stable set of credible deviations. Since there 

is no other imputation which is immune to every credible deviation, the set Z is also an IFSS 

as well as a vNM stable set, by Corollary to Proposition 2. As Ray and Vohra show, the set of 

imputations in which one player 𝑖 always receives a fixed payoff 𝑎𝑖 ∈ (0,0.5) and the other 

two players share the remaining surplus 1 − 𝑎𝑖 is a farsighted stable set. Suppose, for the 

sake of concreteness, that player 1 is the fixed-payoff player. Then, a farsighted stable set 

consists of imputations 𝑥 such that 𝑥1 ∈ (0, 0.5) and either 𝑥2 < 0.5 or 𝑥3 < 0.5. Thus, 

𝑥𝑖 < 0.5 for at least two players in every farsighted stable set and, therefore, for every 

imputation 𝑥 in the farsighted stable set, 𝑦 ≻ 𝑥 for some 𝑦 ∈ 𝑍. Since no imputation in a 

farsighted stable set is dominated by another and the stable set of credible deviations 𝑍 is 

itself an IFSS, it follows that an IFSS is disjoint from a farsighted stable set.  

                                                           
22 A discriminatory set is a set of the form 𝐷(𝐾, 𝑎) = {𝑥 ∈△: 𝑥𝑖 = 𝑎𝑖 for 𝑖 ∈ 𝐾}, where △ is the 𝑛-dimensional 
unit simplex and 𝑎𝑖 ≥ 0. 
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4.1.2 Empty cores and the vNM stable sets  

     Proposition 2 shows that every vNM stable set that contains a stable set of deviations is a 

subset of an IFSS and possibly equal. The following proposition shows that the infinitely 

farsighted stable set 𝑌 = {(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) ∈ 𝑋: 𝑥𝑖 ≥ 𝑥𝑖∗, 𝑥𝑗 ≥ 𝑥𝑗∗, 𝑥𝑘 ≥ 𝑣(𝑖), {𝑖, 𝑖,𝑖} = {1,2,3}} is 

not a traditional vNM stable set if the game is strictly superadditive. 

 

Proposition 8 Let (𝑁, 𝑣) be a three-player superadditive TUCF game with an empty core. 

Then the farsighted stable set 𝑌 = {(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) ∈ 𝑋: 𝑥𝑖 ≥ 𝑥𝑖∗, 𝑥𝑗 ≥ 𝑥𝑗∗, 𝑥𝑘 ≥ 𝑣(𝑖), {𝑖, 𝑖,𝑖} =

{1,2,3}}  is not a vNM stable set if and only if 𝑣(𝑖𝑖) + 𝑣(𝑖) < 𝑣(𝑖𝑖𝑖) for at least one 

𝑖 ∈ {1,2,3}. 

Proof: We first prove the “if” part. Without loss of generality, let 𝑣(12) + 𝑣(3) < 𝑣(123). 

Then, 𝑥1∗ + 𝑥2∗ + 𝑥3∗ > 𝑥1∗ + 𝑥2∗ + 𝑥�3 = 𝑣(123) > 𝑣(12) + 𝑣(3), since the core is empty. 

Therefore, 𝑥2∗ + 𝑥�3 < 𝑣(23) and 𝑥3∗ > 𝑥�3 > 𝑣(3), since 𝑥1∗ + 𝑥2∗ = 𝑣(12), by definition. 

Now consider (𝑦1,𝑦2,𝑦3) ≡ (𝑥1∗, 𝑥2∗ + 𝜖, 𝑥�3 − 𝜖) such that 𝑥�3 − 𝜀 > 𝑣(3).   

Then, (𝑦1,𝑦2,𝑦3) ∈ 𝑌 and , 𝑥2∗ + 𝜖 + 𝑥�3 − 𝜖 = 𝑥2∗ + 𝑥�3 < 𝑣(23) and there exists a 

(𝑧1, 𝑧2, 𝑧3∗) ∈ 𝑍 such that 𝑧3∗ = 𝑣(3) < 𝑦3 and 𝑥2∗ ≤ 𝑧2 < 𝑥2∗ + 𝜖, i.e., (𝑦1,𝑦2,𝑦3) ≻

�𝑧𝑖, 𝑧𝑗 , 𝑧𝑘∗�. This proves that 𝑌 does not satisfy internal stability and, therefore, it is not a vNM 

stable set.23 

     We now prove the “only if” part. Let 𝑣(𝑖𝑖) + 𝑣(𝑖) = 𝑣(𝑖𝑖𝑖) = 𝑥𝑖∗ + 𝑥𝑗∗ + 𝑥�𝑘 for all 𝑖, 𝑖,𝑖. 

Then, since 𝑣(𝑖𝑖) = 𝑥𝑖∗ + 𝑥𝑗∗, it follows that 𝑥�𝑘 = 𝑣(𝑖) for 𝑖 = 1,2,3 and the infinitely 

farsighted stable set 𝑌 consists of just three deviations, i.e., 𝑌 = 𝑍 = {(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘): 𝑥𝑖 =

𝑥𝑖∗, 𝑥𝑗 = 𝑥𝑗∗, 𝑥𝑘 = 𝑣(𝑖), {𝑖, 𝑖,𝑖} = {1,2,3}}. Hence, by the Corollary to Proposition 2, 𝑌 is a 

vNM stable set.     ■ 

 

4.2 Nonempty cores and credible deviations  

                                                           
23 It may be noted that the imputation (𝑥1∗, 𝑥2∗ + 𝜖, 𝑥�3 − 𝜖) used for the proof is not a credible deviation, since 
it is not maximally feasible for any coalition. 
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      We next prove existence of an IFSS for general three-player superadditive games with 

nonempty cores by first proving existence of a stable set of credible deviations. We will need 

the following lemma. 

 

Lemma Let (𝑁, 𝑣) be a three-player superadditive TUCF game with a nonempty core and let 

(𝑥1∗, 𝑥2∗, 𝑥3∗) be the vNM vector. Then, 𝑐 = 𝑣(123) − (𝑥1∗ + 𝑥2∗ + 𝑥3∗) ≥ 0 and 𝑥𝑖∗ + 𝑐 ≥ 𝑣(𝑖). 

Proof: Since 𝑥𝑖∗ + 𝑥𝑗∗ + 𝑥𝑘∗ = 1
2

[𝑣(𝑖𝑖) + 𝑣(𝑖𝑖) + 𝑣(𝑖𝑖)], it follows from Proposition 5 that  

𝑐 ≥ 0 if the core is nonempty. Clearly, 𝑥𝑖∗ + 𝑐 = 𝑥𝑖∗ + 𝑣(𝑖𝑖𝑖) − 𝑥𝑖∗ − 𝑥𝑗∗ − 𝑥𝑘∗ = 𝑣(𝑖𝑖𝑖) −

𝑣(𝑖𝑖) ≥ 𝑣(𝑖), by supaeradditivity of 𝑣.   ■ 

 

Proposition 9 Let (𝑁, 𝑣) be a three-player superadditive TUCF game with a nonempty core. 

Then, there exists a stable set of deviations which is not unique. 

Proof: Since the core is nonempty, 𝑐 = 𝑣(123) − (𝑥1∗ + 𝑥2∗ + 𝑥3∗) ≥ 0, by the Lemma. Let  

𝐸1 = {𝑥 ∈ 𝑋: 𝑥1 = 𝑥1∗ + 𝑐, 𝑥2 < 𝑥2∗, 𝑥3 > 𝑥3∗}; 

𝐸2 = {𝑥 ∈ 𝑋: 𝑥1 > 𝑥1∗, 𝑥2 = 𝑥2∗ + 𝑐, 𝑥3 < 𝑥3∗}; 

𝐸3 = {𝑥 ∈ 𝑋: 𝑥1 < 𝑥1∗, 𝑥2 > 𝑥2∗, 𝑥3 = 𝑥3∗ + 𝑐}; 

𝐹1 = {𝑥 ∈ 𝑋: 𝑥1 = 𝑥1∗ + 𝑐, 𝑥2 > 𝑥2∗, 𝑥3∗ − 𝑐 ≤ 𝑥3 < 𝑥3∗}; 

𝐹2 = {𝑥 ∈ 𝑋: 𝑥1∗ − 𝑐 ≤ 𝑥1 < 𝑥1∗, 𝑥2 = 𝑥2∗ + 𝑐, 𝑥3 > 𝑥3∗}; 

𝐹3 = {𝑥 ∈ 𝑋: 𝑥1 > 𝑥1∗, 𝑥2∗ − 𝑐 ≤ 𝑥2 < 𝑥2∗, 𝑥3 = 𝑥3∗ + 𝑐}; 

𝐹1′ = {𝑥 ∈ 𝑋: 𝑥1 = 𝑥1∗ + 𝑐, 𝑥2 > 𝑥2∗, 𝑥3 < 𝑥3∗ − 𝑐}; 

𝐹2′ = {𝑥 ∈ 𝑋: 𝑥1 < 𝑥1∗ − 𝑐, 𝑥2 = 𝑥2∗ + 𝑐, 𝑥3 > 𝑥3∗}; 

𝐹3′ = {𝑥 ∈ 𝑋: 𝑥1 > 𝑥1∗, 𝑥2 < 𝑥2∗ − 𝑐, 𝑥3 = 𝑥3∗ + 𝑐}; 

𝐴 = ��𝑣(𝑖), 𝑥𝑗 , 𝑥𝑘� ∈ 𝑋: 𝑥𝑗 ≤ 𝑥𝑗∗ + 𝑐, 𝑥𝑘 ≤ 𝑥𝑘∗ + 𝑐, 𝑖 = 1,2,3� ∪ {�𝑥𝑖∗ + 𝑐, 𝑥𝑗∗, 𝑥𝑘∗�, 𝑖 = 1,2,3} 

 

     Let 𝑍=∪𝑖=13 𝐸𝑖 ∪ 𝐹𝑖 ∪ 𝐴. We claim that 𝑍 is a stable set of deviations. To that end, let 

(𝑥1∗ + 𝑐, 𝑥2, 𝑥3) ∈ 𝐸1. Since every (𝑥1∗ + 𝑐, 𝑥2, 𝑥3) ∈ 𝐸1 is an imputation, 𝑥1∗ + 𝑐 + 𝑥2 + 𝑥3 =

𝑣(123) = 𝑥1∗ + 𝑐 + 𝑥2∗ + 𝑥3∗, i.e., 𝑥2 + 𝑥3 = 𝑥2∗ + 𝑥3∗ = 𝑣(23) and, thus, 𝐸1 is a set of 

deviations. Similarly, 𝐸2,𝐸3,𝐹𝑖 ,𝐹𝑖′, 𝑖 = 1,2,3, and 𝐴 are all sets of deviations and, thus, their 

union 𝑍 is a set of deviations. 
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     To prove internal stability of  𝑍, we first show that no deviation in 𝐸1 is dominated by a 

deviation in 𝑍. No deviation (𝑥1∗ + 𝑐, 𝑥2, 𝑥3) in 𝐸1 is dominated by a deviation in 𝐸2 or 𝐹1, 

since for every deviation  (𝑦1, 𝑥2∗ + 𝑐, 𝑦3) in 𝐸2 or (𝑥1∗ + 𝑐, 𝑧2, 𝑧3) in 𝐹1, 𝑦3, 𝑧3 < 𝑥3∗, but 

𝑥3 > 𝑥3∗. Thus, only a domination through coalition 12 is possible, but that is impossible, 

since 𝑦1 ≤ 𝑥1∗ − 𝑐 ≤ 𝑥1∗ + 𝑐, if 𝑦1 + 𝑥2∗ + 𝑐 ≤ 𝑣(12); no deviation(𝑥1∗ + 𝑐, 𝑥2, 𝑥3) in 𝐸1 is 

dominated by a deviation in 𝐸3 or 𝐹2, since  for every deviation (𝑦1,𝑦2, 𝑥3∗ + 𝑐) in 𝐸3 or 

(𝑧1,𝑥2∗ + 𝑐, 𝑧3) in 𝐹2,𝑦1, 𝑧1 < 𝑥1∗ + 𝑐, and, thus, only a domination through coalition 23  is 

possible, but that is impossible, since 𝑥2∗ + 𝑥3∗ = 𝑣(23); no deviation (𝑥1∗ + 𝑐, 𝑥2, 𝑥3) in 𝐸1is 

dominated by a deviation in 𝐹3, since for every deviation (𝑦1,𝑦2, 𝑥3∗ + 𝑐) ∈ 𝐹3, 𝑦1 + 𝑦2 =

𝑥1∗ + 𝑥2∗,𝑦2 ≥ 𝑥2∗ − 𝑐, and, therefore, 𝑦1 ≤ 𝑥1∗ + 𝑐, and no domination is possible through 

coalition 23 either, since 𝑥2 + 𝑥3 = 𝑥2∗ + 𝑥3∗ = 𝑣(23). Clearly, no deviation (𝑥1∗ + 𝑐, 𝑥2, 𝑥3) 

in 𝐸1 is dominated by another deviation in 𝐸1. 

     No deviation (𝑥1∗ + 𝑐, 𝑥2, 𝑥3) in 𝐸1 is dominated by a deviation (𝑣(1),𝑦2, 𝑦3) ∈ 𝐴, since 

𝑣(1) ≤ 𝑥1∗ + 𝑐 and  𝑥2 + 𝑥3 = 𝑥2∗ + 𝑥3∗ = 𝑣(23); no deviation (𝑥1∗ + 𝑐, 𝑥2, 𝑥3) in 𝐸1is 

dominated by a deviation (𝑦1,𝑣(2),𝑦3), since 𝑥2 ≥ 𝑣(2), 𝑦1 ≤ 𝑥1∗ + 𝑐, and  𝑥2 + 𝑥3 = 𝑥2∗ +

𝑥3∗ = 𝑣(23); no deviation (𝑥1∗ + 𝑐, 𝑥2, 𝑥3) in 𝐸1 is dominated by a deviation (𝑦1,𝑦2, 𝑣(3)), 

since 𝑥3 ≥ 𝑣(3),  𝑦1 ≤ 𝑥1∗ + 𝑐, and  𝑥2 + 𝑥3 = 𝑥2∗ + 𝑥3∗ = 𝑣(23). Clearly, no deviation 

(𝑥1∗ + 𝑐, 𝑥2, 𝑥3) in 𝐸1 is dominated by a deviation �𝑥𝑖∗ + 𝑐, 𝑥𝑗∗, 𝑥𝑘∗� ∈ 𝐴. 

     Similarly, no deviation in 𝐸2,𝐸3,𝐹1,𝐹2 or 𝐹3 is dominated by a deviation in 𝐸𝑖, 𝐹𝑖, 𝑖 =

1,2,3 or 𝐴. To complete the proof for internal stability of 𝑍 we also need to show that no 

deviation in 𝐴 is dominated by a deviation in 𝐸𝑖 or 𝐹𝑖 , 𝑖 = 1,2,3 or 𝐴.  

     To that end, no deviation (𝑣(1),𝑦2,𝑦3) ∈ 𝐴 is dominated by a deviation in 𝐸𝑖 or 𝐹𝑖, 𝑖 =

1,2,3 or 𝐴, since (i) by definition, 𝑦3 ≤ 𝑥3∗ + 𝑐 and, thus, 𝑣(1) + 𝑦2 ≥ 𝑥1∗ + 𝑥2∗ = 𝑣(12), (ii) 

similarly, 𝑦2 ≤ 𝑥2∗ + 𝑐 and, thus, 𝑣(1) + 𝑦3 ≥ 𝑥1∗ + 𝑥3∗ = 𝑣(13), and (iii) since 𝑣(1) ≤ 𝑥1∗ +

𝑐, we have 𝑦2 + 𝑦3 ≥ 𝑥2∗ + 𝑥3∗ = 𝑣(23). Similarly, no deviation (𝑦1,𝑣(2),𝑦3) or 

(𝑦1,𝑦2, 𝑣(3)) dominated by a deviation in 𝐸𝑖 or 𝐹𝑖 , 𝑖 = 1,2,3 or 𝐴. No deviation 

(𝑣(𝑖),𝑥𝑗 , 𝑥𝑘) ∈ 𝐴 is dominated by a deviation (𝑣(𝑖),𝑥𝑘 , 𝑥𝑖) or (𝑣(𝑖),𝑥𝑖 , 𝑥𝑗) in 𝐴, since (i) 

(𝑣(𝑖),𝑥𝑗 , 𝑥𝑘) is an imputation, i.e. 𝑥𝑗 ≥ 𝑣(𝑖) and 𝑥𝑘 ≥ 𝑣(𝑖), (ii) 𝑣(𝑖) + 𝑥𝑗 ≥ 𝑣(𝑖𝑖), since 

𝑥𝑘 ≤ 𝑥𝑘∗ + 𝑐, (iii) 𝑣(𝑖) + 𝑥𝑘 ≥ 𝑣(𝑖𝑖), since 𝑥𝑗 ≤ 𝑥𝑘∗ + 𝑐, and (iv) 𝑥𝑗 + 𝑥𝑘 ≥ 𝑣(𝑖𝑖), since 
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𝑣(𝑖) ≤ 𝑥𝑖∗ + 𝑐, by the Lemma. Clearly, no deviation (𝑥𝑖∗ + 𝑐, 𝑥𝑗∗, 𝑥𝑘∗) ∈ 𝐴 is dominated by a 

deviation in 𝐸𝑖 𝐹𝑖 , 𝑖 = 1,2,3 or 𝐴.   

    To prove external stability of 𝑍, note that 𝑍 includes all possible deviations in the game 

except those in 𝐹1′,𝐹2′, and 𝐹3′. We first show that each deviation in 𝐹3′ is dominated by a 

deviation in 𝐸1. Given a deviation (𝑥1, 𝑥2, 𝑥3∗ + 𝑐) in 𝐹3′, let 𝑦2 be such that 𝑥2 < 𝑦2 < 𝑥2∗ −

𝑐,𝑦3 > 𝑥3∗ + 𝑐, and 𝑦2 + 𝑦3 = 𝑥2∗ + 𝑥3∗. Then, (𝑥1∗ + 𝑐,𝑦2,𝑦3) is a deviation in 𝐸1 which 

dominates (𝑥1, 𝑥2, 𝑥3∗ + 𝑐). Similarly, deviations in 𝐹1′ (resp. 𝐹2′) are dominated by deviations 

in 𝐸2 (resp.𝐸3). 

     It remains to be shown that deviations by single-player coalitions not in the set 𝑍 are also 

dominated by deviations in 𝑍. A deviation (𝑣(1), 𝑥2, 𝑥3) by the single-player coalition {1} 

does not belong to the set 𝑍 only if either 𝑥3 < 𝑥3∗ + 𝑐 and 𝑥2 > 𝑥2∗ + 𝑐 or 𝑥3 > 𝑥3∗ + 𝑐 and 

𝑥2 ≥ (<)𝑥2∗ + 𝑐.24 Since 𝑣(1) + 𝑥2 + 𝑥3 = 𝑥1∗ + 𝑥2∗ + 𝑥3∗ + 𝑐, either 𝑣(1) + 𝑥3 < 𝑥1∗ + 𝑥3∗  

and/or 𝑣(1) + 𝑥2 < 𝑥1∗ + 𝑥2∗. Thus, (𝑣(1),𝑥2, 𝑥3) is dominated by a deviation in either 𝐸2 or 

𝐹2 and /or  𝐸3 or 𝐹3. Similarly, deviations (𝑥2, 𝑣(2),𝑥3) and (𝑥1,𝑥2, 𝑣(3)) by single player 

coalitions {2} and {3}, respectively, are also dominated by deviations in 𝑍.  

     Let 𝑍′ = ∪𝑖=13 𝐺𝑖 ∪ 𝐻𝑖 ∪ 𝐴, where  

𝐺1 = {𝑥 ∈ 𝑋: 𝑥1 = 𝑥1∗ + 𝑐, 𝑥2 > 𝑥2∗, 𝑥3 < 𝑥3∗}; 

𝐺2 = {𝑥 ∈ 𝑋: 𝑥1 < 𝑥1∗, 𝑥2 = 𝑥2∗ + 𝑐, 𝑥3 > 𝑥3∗}; 

𝐺3 = {𝑥 ∈ 𝑋: 𝑥1 > 𝑥1∗, 𝑥2 < 𝑥2∗, 𝑥3 = 𝑥3∗ + 𝑐}; 

𝐻1 = {𝑥 ∈ 𝑋: 𝑥1 = 𝑥1∗ + 𝑐, 𝑥2∗ − 𝑐 ≤ 𝑥2 < 𝑥2∗, 𝑥3 > 𝑥3∗}; 

𝐻2 = {𝑥 ∈ 𝑋: 𝑥1 > 𝑥1∗, 𝑥2 = 𝑥2∗ + 𝑐, 𝑥3∗ > 𝑥3 ≥ 𝑥3∗ − 𝑐}; 

𝐻3 = {𝑥 ∈ 𝑋: 𝑥1∗ − 𝑐 ≤ 𝑥1 < 𝑥1∗, 𝑥2∗ > 𝑥2, 𝑥3 = 𝑥3∗ + 𝑐}; 

𝐻1′ = {𝑥 ∈ 𝑋: 𝑥1 = 𝑥1∗ + 𝑐, 𝑥2 < 𝑥2∗ − 𝑐, 𝑥3 > 𝑥3∗}; 

𝐻2′ = {𝑥 ∈ 𝑋: 𝑥1 > 𝑥1∗, 𝑥2 = 𝑥2∗ + 𝑐, 𝑥3 < 𝑥3∗ − 𝑐}; 

𝐻3′ = {𝑥 ∈ 𝑋: 𝑥1 < 𝑥1∗ − 𝑐, 𝑥2 > 𝑥2∗, 𝑥3 = 𝑥3∗ + 𝑐}; 

𝐴 = ��𝑣(𝑖), 𝑥𝑗 , 𝑥𝑘� ∈ 𝑋: 𝑥𝑗 ≤ 𝑥𝑗∗ + 𝑐, 𝑥𝑘 ≤ 𝑥𝑘∗ + 𝑐, 𝑖 = 1,2,3� ∪ {�𝑥𝑖∗ + 𝑐, 𝑥𝑗∗, 𝑥𝑘∗�, 𝑖 = 1,2,3} 

                                                           
24 If 𝑥3 = 𝑥3

∗ + 𝑐, then (𝑣(1), 𝑥2, 𝑥3) belongs to either 𝐸3 or 𝐹3 and, thus, 𝑍, since 𝑣(1) ≤ 𝑥1∗ + 𝑐, by the 
Lemma. 
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Then, 𝑍′ is a stable set of credible deviations. The proof for this is analogous to the proof for 

the stability of 𝑍 and hence not included.   ■ 

 

4.2.1 Nonempty cores and infinitely farsighted stable sets 

     Let 𝑌 (resp. 𝑌′) denote the set of all imputations of a three-player superadiitive TUCF 

game (𝑁, 𝑣) with a nonempty core which are not dominated by the deviations in the stable set 

of deviations 𝑍 (resp.𝑍′) as defined in Proposition 9. Then, by Proposition 1,  𝑌 and 𝑌′are 

IFSSs of (𝑁, 𝑣). Furthermore, since 𝑍 ≠ 𝑍′, 𝑍 ⊂ 𝑌, and 𝑍′ ⊂ 𝑌′, neither 𝑌 is a subset of 𝑌′ 

nor 𝑌′is a subset of 𝑌.  

     At this point, it seems worth illustrating and contrasting the IFSSs, the vNM stable sets, 

and the farsighted stable sets by an example.25 In this example, 𝑌 = 𝑍 and 𝑌′ = 𝑍′ and, thus, 

the two IFSSs are vNM stable sets, but there is also a vNM stable set which is not an IFSS. 

         

Example 2 Let (𝑁, 𝑣) denote the three-player game: 𝑣(𝑖) = 0, 𝑣(23) = 0, 𝑣(12) = 𝑣(13) =

𝑣(𝑁) = 1. 

     It is easily seen that the core of this game is nonempty and consists of the unique vNM 

vector (𝑥1∗, 𝑥2∗, 𝑥3∗) = (1,0,0) which has player 1 receiving the entire surplus of the game. 

Since 𝑥1∗ + 𝑥2∗ + 𝑥3∗ = 𝑣(𝑁), i.e., 𝑐 = 0 and 𝑥2∗ = 𝑥3∗ = 𝑣(2) = 𝑣(3) = 0, the sets 𝐸1,𝐸2,𝐹1, 

𝐹2,𝐹3,𝐹1′, and 𝐹3′ are all empty. Only the sets 𝐸3 and 𝐹2′ are nonempty. Accordingly, the stable 

set of deviations 𝑍 = {(𝛼, 1 − 𝛼, 0): 0 ≤ 𝛼 ≤ 1}. Similarly, 𝑍′ = {(𝛼, 0,1 − 𝛼)}, since all but 

the sets 𝐺2 and 𝐻3′  are empty. Both 𝑍 and 𝑍′ are IFSSs, since there are no imputations outside 

𝑍(resp.  𝑍′) which are not dominated by a deviation in 𝑍 (resp.𝑍′). Player 1 (the veto 

player) receives a varying payoff in either of these two IFSSs. Since player 1 cannot get a 

positive payoff without the help of player 2 or 3, it makes sense that the entire surplus of the 

game does not accrue to player 1. However, competition between players 2 and 3 can drive 

their shares of the surplus to zero and the two IFSSs indeed include that possibility as the 

imputation (1,0,0) belongs to both 𝑍 and 𝑍′.   

     In contrast, as Ray and Vohra (2014) show, every imputation close to the unique core 

imputation (1,0,0) is a farsighted stable set, but no farsighted stable set actually includes 
                                                           
25 The example has previously appeared in Owen (1982, p.180), Lucas (1992), and Ray and Vohra (2014). 
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(1,0,0) and exhibits a varying payoff for the veto player. While in an IFSS either player 2 or 

3 is the fixed payoff player, in a farsighted stable set player 1 is the fixed payoff player and 

both players 2 and 3 receive varying payoffs. 

     By the Corollary to Proposition 2, the two IFSSs 𝑍 and 𝑍′ are (discriminatory) vNM 

stable sets. However, the set  𝑉 = {�1 − 𝑡, 𝑡𝛼, 𝑡(1 − 𝛼)�: 0 ≤ 𝑡 ≤ 1} for each fixed 0 ≤ 𝛼 ≤

1, is also a vNM stable set (see Owen, 1982), but not an IFSS except when 𝛼 = 0 or 𝛼 = 1. 

That is because if 𝛼 ≠ 0,1, then  𝑉 contains no stable set of credible deviations and, in fact, 

no deviation at all (except the lone core deviation (1,0,0)). A final important difference is 

that 𝑉 includes the imputation (0,𝛼, 1 − 𝛼) in which the two non-veto players extract the 

entire surplus of the game, despite the fact that their coalition can achieve nothing without 

player 1 (since 𝑣(23) = 0) and they have to compete with each other to form a coalition with 

player 1.   

 

4.2.2 Convex games and infinitely farsighted stable sets 

     Shapley (1971) shows that every convex game has a nonempty core and the core is the 

unique vNM stable set. Example 2 above shows that not every vNM stable set is an IFSS. But 

it is, if the game is convex, as the following proposition shows. 

 

Proposition 10 Let (𝑁, 𝑣) be a convex TUCF game. Then the imputations on the boundary 

of the core form a stable set of deviations and the core is the unique infinitely farsighted 

stable set. 

Proof: Since a deviation belongs to the core if and only if it belongs to the boundary of the 

core, we prove that the deviations belonging to the core form a stable set. This set is 

nonempty, since the core, by definition, is a closed set. The set satisfies internal stability, 

since no core imputation, by definition, is dominated by a core deviation. To prove external 

stability, let 𝑥 be a deviation which does not belong to the core. Then, by Theorem 8 in 

Shapley (1971), there exists a core imputation 𝑦 and a coalition 𝑆 such that ∑ 𝑦𝑖𝑖∈𝑆 = 𝑣(𝑆) 

and 𝑦𝑖 > 𝑥𝑖 for each 𝑖 ∈ 𝑆, i.e., there is a deviation 𝑦 in the set which dominates deviation 𝑥.  

Thus, the imputations on the boundary of the core form a stable set of deviations. 
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     Next, since every imputation outside the core is dominated by a core deviation and no core 

imputation, by definition, is dominated by a core deviation, the core imputations, by 

Proposition 1, form an IFSS. Finally, since every IFSS contains the core and no IFSS, by 

Proposition 2, is a proper subset of another, it follows that the core is the unique IFSS.   ■ 

 

     Propositions 2 and 10 together lead to a reinterpretation of Shapley’s (1971) result that if 

the game is convex, then the core coincides with the unique vNM stable set. Specifically, 

since every vNM stable set in general contains the core, every vNM stable set of a convex 

game, by Proposition 10, contains a stable set of deviations and, thus, by Proposition 2, 

contained in an IFSS, which, by Proposition 10, is unique and coincides with the core. Hence, 

if the game is convex, every vNM stable set is equal to the core. 

     Proposition 10 shows that convexity of a game is a sufficient condition for the existence 

and uniqueness of an IFSS. It is also sufficient for the existence of farsighted stable sets, 

since the core of a convex game has a nonempty interior and as Ray and Vohra (2014) show 

every imputation in the interior of the core is a farsighted stable set. However, as the 

following example illustrates, the farsighted stable sets and the IFSS may still differ, though 

not as sharply as they do in Examples 1 and 2 when the core is either empty or has no 

interior.26  

 

Example 3 Let (𝑁, 𝑣) denote the three-player game: 𝑣(𝑆) = 3 for every two-player coalition 

𝑆 and  𝑣(𝑁) = 6. 

      Clearly, the game is convex and, therefore, the core is the unique IFSS and, by 

Proposition 10, the imputations on the boundary of the core form a stable set of credible 

deviations.27 In contrast, as Ray and Vohra (2014) show, each imputation in the interior of 

the core and only an imputation in the interior of the core is a farsighted stable set. Thus, the 

union of all farsighted stable sets is a proper subset of the unique IFSS and excludes all 

imputations on the boundary of the core which form exactly the stable set of credible 

deviations contained in the IFSS.    
                                                           
26 The example has previously appeared in Ray and Vohra (2014). 
27 Since the game has three players, this can also be seen directly from Proposition 9. Since, as can be easily 
checked, convexity of the game implies 𝑥𝑖 − 𝑐 ≥ 0 and, therefore, the sets 𝐹𝑖′ or 𝐻𝑖′ , 𝑖 = 1,2,3 are all empty 
and the stable set  𝑍 or 𝑍′ is equal to the set of all core deviations. 



 

27 
 

 

5. Conclusion 

 In this paper, we introduced and studied a concept of a stable set which has powerful 

farsighted stability properties and accordingly named it an infinitely farsighted stable set 

(IFSS). Though motivated and defined differently, the IFSSs and vNM stable sets are closely 

related in that every vNM stable set which contains a stable set of credible deviations is 

contained in an IFSS and in some cases, as examples 1-3 show, actually an IFSS. This means 

that Harsanyi’s (1974) critique of vNM stable sets is not entirely valid, since at least a subset 

of the vNM stable sets also have powerful farsighted stability properties and we know the 

exact distinguishing feature of such vNM stable sets. Though the Harsanyi stable sets may 

exist even in games with empty cores, they do not have much predictive power – quite apart 

from their criticism already made in Ray and Vohra (2014). Similarly, the largest consistent 

set (Chwe, 1994) – another farsighted stability concept – includes at least all interior 

imputations if the core is empty and the game has three or more players and not necessarily 

strictly superadditive.  

     The general concept of credible deviations also motivated and introduced in this paper is 

of an independent interest and can be extended to define an analogous solution concept for 

strategic games (see Chander, 2015). The existence of a stable set of deviations is the key to 

the definition and existence of an IFSS. A set is infinitely farsighted stable if it can be 

decomposed into a stable set of deviations and a -- possibly empty -- set of imputations which 

are not dominated by any deviation in the stable set and, thus, are not deviations themselves. 

For this reason, a vNM stable set may differ from an IFSS, since, as Example 2 shows, the 

former may not include a stable set of credible deviations. Similarly, an IFSS may differ from 

the union of farsighted stable sets (Ray and Vohra, 2014), since the latter, as examples 1-3 

show, may also not include a stable set of credible deviations.  

     Except for a result in Ray and Vohra (2014), there is not much else in the previous 

literature on the outcomes of games with empty cores. Maskin (2003, p.3) provides an 

example of a three-player characteristic function game to assert that emptiness of the core is a 

necessary but not a sufficient condition for instability of the grand coalition. In this paper, we 

proved existence of IFSSs for general three-player superadditive transferable utility 

characteristic function games with empty cores and, thus, shown that emptiness of the core, in 
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fact, is not a sufficient condition for instability of the grand coalition in any general three-

player game. In addition, we showed that the core is the unique IFSS in every convex game 

with any number of players.  

     These positive existence and characterization results bring to the fore an important 

question regarding games with more than three players and empty cores: Do IFSSs generally 

exist for games with more than three-players and empty cores?28 It seems that strict 

superadditivity of the game (thus the grand coalition is uniquely efficient) with an empty core 

might be a sufficient condition for the existence of an IFSS.29 But a serious exploration of 

this question must be left open as a future research project. At stake is the Coase theorem. 

                                                           
28 It is worth noting that the game in Lucas (1968) does not have an empty core. 
29 Since convex games have nonempty cores, convexity cannot be a sufficient condition, 
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3. Béal, S., J. Durieu and P. Solal (2008), “Farsighted coalitional stability in TUCF-games”, 
Mathematical Social Sciences, 56, 303-313. 

4. Binmore, K. (1985), “Bargaining and coalitions”, in A. Roth (ed.) Game-theoretic models 
of bargaining, pp. 269-304.Cambridge: Cambridge University press. 

5. Chander, P. (2015), “Credible deviations and equilibria in strategic games”, mimeo, Jindal 
Global University.  

6. Chwe, M. (1994), “Farsighted coalitional stability”, Journal of Economic Theory, 63, 299-
325. 

7. Gillies, D.B. (1953), “Discriminatory and bargaining solutions to a class of symmetric n-
person games”, in H. W. Kuhn and A.W. Tucker (eds.) Contributions to Theory of 
games 2, pp. 325-342.  

8. Harsanyi, J. (1974), “An equilibrium-point interpretation of stable sets and a proposed 
alternative definition”, Management Science, 20, 1472-1495.  

9. Harsanyi, J. (1977), Rational Behavior and Bargaining Equilibrium in Games and Social 
Situations, Cambridge, Cambridge University Press. 

10. Koldstad, C. D. (2000), Environmental Economics, Oxford University Press.   

11. Lucas, W. (1968), “A game with no solution”, Bulletin of the American Mathematical 
Society, 74, 237-239. 

12. Lucas, W. (1992), “von-Neumann-Morgenstern stable sets”, in Handbook of Game 
Theory, Volume 1, ed. by R.J. Aumann  and S. Hart, 543-590, North Holland: 
Elsevier.   

13. Maskin, E. (2003), “Bargaining coalitions and externalities”, Presidential address to the     
Econometric Society, Working paper, Institute for Advanced Studies. 

14. Moldovanu, B. (1992), “Coalition-proof Nash equilibria and the core in three-player 
games”, Games and Economic Behavior,4, 565-581.  

15. Osborne, M. J. and A. Rubinstein (1994), A Course in Game Theory, the MIT Press. 

16. Owen, G. (1982), Game Theory, second edition, Academic Press, INC, California. 



 

30 
 

17. Ray, D. (1989), “Credible coalitions and the core”, International Journal of Game 
Theory, 18, 185-187. 

18. Ray, D. and R. Vohra (2014), “The farsighted stable set”, forthcoming in Econometrica.  

19. Shapley, L. (1971), “Cores of convex games”, International Journal of Game Theory, 1, 
11-26.  

20. von Neumann, J. and O. Morgenstern (1944), Theory of Games and Economic Behavior,   
Princeton , NJ: Princeton University Press.    


