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Abstract

This paper analyzes the impact of climate change on particulate air pollution and applies this

exogenous causal effect to study the effect of air pollution on infant health. Using daily

weather data, daily data on PM10 from 1990-2013 and daily data on PM2:5 from 1997-2013,

I find the first causal estimates of the level of precipitation as well as the precipitation

frequency on particulate matter concentrations in ambient air. I utilize information on Clean

Air Act Nonattainment designations, to estimate differential impacts of lesser and infrequent

precipitation on air pollution in non-attainment counties vs counties compliant with the

federal regulations. I find that lower as well as less frequent rainfall will lead to larger

concentrations of particulates in ambient air. The effects are even larger in non-attainment

counties, potentially driven by the higher level of precursors and pollution sources. Using

my findings, I exploit exogenous rainfall variation in an instrumental variables approach to

also estimate the effect of increases in ambient particulate matter on the number of infant

deaths. My estimates suggest that a 1 µg/m3 decrease in ambient PM10 concentrations would

imply almost 27 fewer infant deaths per 100,000 live births.
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Introduction

Over the last 50 years, we have seen a huge environmental movement across the globe,

especially in the developed parts of the world such as the United States of America. In the

1970s, with the passage of the Clean Air Act, the Clean Water Act and the establishment

of the Environmental Protection Agency (EPA), the United States took a huge step

towards a cleaner environment and a more secure future. Today, as we approach the

48th Earth Day 1, the United States has seen substantial improvements in air and water

quality. However, we are now at a crucial juncture where we need to evaluate the past

and understand the costs and benefits of pollution, in an era of rapidly changing climate,

in order to implement effective policies for the future.

One of the major social costs of climate change is the resultant increase in air pollution

that it causes. Particulate matter is one of the air pollutants that have the most severe

health impacts, and interestingly, it is also directly affected by the climate system. The

EPA has designated six commonly found air pollutants, namely, ground level ozone,

particulate matter, sulphur dioxide, carbon monoxide, lead and nitrogen oxides as criteria

air pollutants. Concentrations of each of these pollutants is regularly monitored by the
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EPA, under the Clean Air Act and counties that fail to attain the federal thresholds

are categorized as being in \non-attainment", hence implying stringent regulation. As

mentioned by Dominici et al. (2014), The U.S. Office of Management and Budget (OMB)

is required to provide annual estimates of the benefits and costs of any major federal

regulation to the Congress, and interestingly, reduction in emissions of Particulate Matter

(PM) alone has accounted for about one-third of the monetized benefits of all significant

federal regulations. With these estimates playing such a crucial role in policy making, it is

of paramount importance to know if we are indeed achieving socially desirable reductions

in PM and also if we are under-estimating the costs of particulate pollution in the first

place.

In the presence of rapidly changing climate, ever increasing temperatures and changing

rainfall patterns, the costs of air pollution might be larger than in a counterfactual

world having no climate change. Jacob and Winner (2009) provide a detailed review of

the effects of climate change on various air pollutants and they propose that precipitation and

precipitation frequency are one of the key meteorological factors that can affect

PM levels in ambient air as increased rainfall leads to wet deposition and provides the

major atmospheric sink for PM. The effect of climate change on PM is more complicated

and hence fewer studies, as compared to ozone, have been performed on the same. Model

perturbation studies have also found an effect of temperature on particulate matter, especially

for sulphates, since higher temperatures lead to faster oxidation of sulphur dioxide.

Barmpadimos et al. (2011) perform another small scale study using data from 13 monitoring

stations in Switzerland, where they estimate the effects of various meteorological variables

on PM concentrations. They find that the most important variables affecting

PM concentrations in the winter, autumn and spring are wind gust and precipitation,

whereas in the summer, afternoon temperature also plays a critical role. Auffhammer

et al. (2009) examine the benefits of the 1990 Clean Air Act Amendments on PM10

concentrations in the United States from 1990-2005 and they find that in fact the Clean Air

Act did produce substantial improvements in air quality. The authors mention that the

actual contribution of the secondary PM10 precursor gases to total ambient PM10

concentrations depend critically on the atmospheric conditions including temperature, relative

humidity, rainfall, wind speed and direction. Temperature and precipitation not only

affect the formation of secondary PM but also affect the presence of primary particulate

matter in the air.

The question of how much precipitation might affect particulate pollution has economic

content because it is of central importance to guide more informed policy-making.

The main intuition behind regulating heavy emitters is that the emissions caused by such

activities (eg. industrial activity, vehicle use, construction etc.) implies a larger social

cost of production as compared to the private cost that is accounted for by the emitter.

Hence, as shown in Figure 1 below, the socially optimum level of production/consumption

of the commodity is lower than the private optimum and hence the government needs to

regulate such activities. However, the extent of this externality critically depends on

the ever changing climate system around us and how much and to what extent it affects

pollution. If drier weather implies higher concentrations of particulate matter, then in

the presence of changing rainfall patterns, the social costs might be larger, implying an even

lower socially optimal quantity of production.
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Figure 1: Costs of Climate Change on Air Pollution

Hence, estimates of the e ect of climate change on air pollution are needed to know the

socially optimal level of emissions which can then be implemented through regulations. Also,

with wide variations in the level and frequency of rainfall across the nation, we might need

different pollution thresholds for different climatic regions, internalizing their climate

patterns. For example, if we compare the Southwest (driest region in the U.S.) to the

Southeast or the Northeast (wetter regions of the U.S.), then the social costs of emitting the

same levels of pollution precursors will be much larger in the Southwest, because in the

absence of rainfall we will end up having more particulate matter in ambient air than in the

other regions. Hence, in order to achieve similar reductions in PM in the Southwest we might

need more stringent thresholds, so that lower levels of precursors are emitted into air. This

might also entail much larger costs of implementing these regulations which would also enter

the cost-bene t calculations in determining the feasibility and success of regulations on

particulate matter.

In this paper, I estimate one such cost of climate change on air pollution. Speci cally, I

estimate the causal e ect of the level and frequency of precipitation on particulate air

pollution (both PM10 ). Apart from the reasons mentioned above, these estimates

can also be used technically, to study the e ect of air pollution on health. The bene t from

public health, is the single most important reason for regulating air pollution and hence,

having accurate estimates of the same is crucial. However, the presence of various

confounding factors makes it econometrically challenging to estimate this e ect. In this paper

I propose that we can use the level of precipitation as an instrumental variable for particulate

matter and estimate its e ect on infant mortality. The rest of the paper proceeds as follows;

Section 2 provides a background on particulate matter, its formation, sources and health e

ects; Section 3 provides a detailed description of the data sources and construction of the

variables; Section 4 discusses the empirical methodology; Section 5 reports the main results;

Section 6 discusses the robustness of my main ndings; Section 7 discusses the application of

these results to study the e ect of particulate air pollution on infant mortality and Section 8

concludes.

and PM2:5
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Background on Particulate Matter

Particulate Matter (PM) is a complex mixture of solid and liquid particles, present in

ambient air 2. These particles often vary in their size, source, composition or method of

formation. Generally, these suspended particles are classi ed by their aerodynamic properties

because these characteristics govern the transport of particles from one place to another and

also their removal from the air. Moreover, these aerodynamic properties also determine the

deposition of particles within the human respiratory system. These properties are summarized

by the aerodynamic diameter of particles, i.e. the size of a unit-density sphere having

identical aerodynamic characteristics. Based on this aerodynamic diameter, particles are

characterized into the following three major categories:

1) Ultra- ne particles (< 0:1 m)

2) Fine particles (0:1 2:5 m)

3) Coarse particles (2:5 10 m)

where 1 m is 1 millionth of a meter. This paper studies P M2:5, which comprises of

particles having an aerodynamic diameter less than 2.5 m, and P M10, which includes

particles having an aerodynamic diameter less than 10 m. Figure 2 provides a size

comparison of PM10 to human hair and beach sand.

Figure 2: Size comparison of PM to human hair

and PM2:5

Particulate matter can be formed through four main processes:

1) Chemical Reaction- precursor gases can react to form particles.

2) Cloud or Fog processes- precursor gases might dissolve in water and then react chem

ically. When the water evaporates, particles are left behind.

3) Condensation- gases condense on solid particles to form a liquid droplet.

4) Coagulation- two or more particles might collide and stick together to form larger

particles.
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Particulate matter can be either primary, such as suspended dust, sea salt, organic carbon

(OC), elemental carbon (EC) and metals from combustion, which are directly emitted into

ambient air; or it can be secondary, such as particles which are formed when precursor gases

undergo physical and chemical transformations in the atmosphere. For example, sulphur

dioxide (SO2) forms sulphate particles, nitrogen oxides (N Ox) form nitrate particles,

ammonia (NH3) forms ammonium compounds, and volatile organic compounds (VOCs) can

form organic carbon particles, often referred to as, secondary organic aerosol (SOA). Most of

the ambient sulphate particles are secondary in nature, formed from SO2 emissions. Half of

the SO2 oxidation to sulphates happens in the gas phase through photochemical oxidation in

the daytime. N Ox and hydrocarbons can enhance the photochemical oxidation rate. Some

SO2 oxidation also takes place in cloud droplets as air molecules react in clouds. Within

clouds, soluble pollutant gases, such as SO2, are scavenged by water droplets and rapidly

oxidize to sulfate. Most cloud droplets evaporate and leave a sulfate residue or \convective

debris". Typical rates for SO2-to-sulfate conversion are 1% to 10% per hour.

The rst step to formation of nitrates is the conversion of N O2 to nitric acid HNO3, by

reacting with hydroxyl (OH) radicals during the daytime. This conversion rate is generally

about 10% to 50% per hour. At night however, NO2 is converted to HNO3 following a series

of chemical reactions involving ozone and nitrate radicals. HN O3 reacts with ammonia to

form particulate ammonium nitrate, N H4N O3. Thus nitrate particles can be formed

throughout the day as well as night. The major components of PM are sulphate, nitrates,

organic carbon and ammonium and these components are mostly secondary in nature. Figure

3 provides a schematic view of the composition of particulate matter.

Gases as well as suspended particles can be transferred from the earth's atmosphere to the

ground by dry and wet deposition processes. Wet Deposition refers to the removal of species

from the atmosphere by precipitation, such as rain, fog and snow. Particulate matter

concentrations in ambient air are expected to decrease with increasing precipita-tion, as wet

deposition provides the main PM sink. Figure 4 provides an overview of the processes

leading to wet and dry deposition of particles.

Figure 3: Composition of Particulate Matter
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Figure 4: Wet Deposition of Particles

Particulate matter can cause serious health hazards. The EPA is particularly con-cerned

about particles less than 10 m in diameter (i.e. PM10 ) as they can enter through

our throat and nose and reach deep into our lungs and may also enter our bloodstream.

Particulate matter can cause a variety of problems such as irregular heart-beat, heart attacks,

aggravated asthma, decreased lung function, coughing or di culty in breathing etc. Long term

exposures to particle pollution might lead to problems such as chronic bronchitis and even

premature death. Whereas short term exposures (maybe hours or days) can aggravate lung

diseases, asthma and also increase susceptibility to respiratory infections.

and PM2:5

Data

In order to estimate the causal e ect of the level and frequency of precipitation on the

daily maximum values of PM10 I utilize information from three major sources, as

described below.

and PM2:5

Data on Particulate Matter: For data on particulate matter (PM) concentrations I have

used daily readings from the Environmental Protection Agency's (EPA) Air Quality Systems

(AQS) database which provides daily readings of various criteria air pollutants from a

nationwide network of air quality monitoring stations. These data were made available by a

Freedom of Information Act (FOIA) request. In my preferred speci cation, I have used an

unbalanced panel of PM monitors. I have eliminated monitor-days for which exceptional

events that might potentially a ect air quality, such as wild res, have been recorded. For P

M10, I have constructed an unbalanced panel of 3264 monitors, spread over 876 counties for

the years 1990-2013. Figure 5 depicts the geographical location of the nal sample of PM10

monitors and also the spatial distribution by the nine di erent climatic regions. Table 1

illustrates the PM10 monitoring network for the full sample, as well for each year, by the nine

di erent climatic regions. I have the daily maximum P M10 measurements for a total of

2,922,523 monitor-days , with su cient data from each climate region in the country. The

gradual drop in the number of PM10 monitors since 1998 is not surprising as the EPA started

regulating PM2:5 levels from 1997. Similarly, for PM2:5 I have constructed an unbalanced

sample of 2162 monitors spread over 713 counties over 1997-2013. Figure 6 illustrates the

geographical location of these P M2:5 monitors by the nine climate regions and Table 2
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illustrates the PM2:5 monitoring network by each year in the sample, segregated by the nine

climate regions. I have daily maximum measurements of P M2:5 for a total of 2,055,974

monitor-days, again with su cient representation from each climate region across the country.

Data on Precipitation: For meteorological data, I have utilized daily measurements of

total precipitation, as well as maximum daily temperature from the National Climatic Data

Center's Cooperative Station Data (NOAA 2008). This extensive dataset provides detailed

daily information on various meteorological variables, at over 20,000 weather stations across

the United States. I have acquired relevant data for the period from 1990-2013, to

complement my data on particulate matter. As a data completeness requirement, for every

weather station I have included data on years for which there are valid readings for total

precipitation, maximum temperature and minimum temperature for atleast 75% of the total

number of days.

However, the geographical location of these weather stations typically do not coincide

with the location of EPA's air pollution monitors and hence I use an algorithm (as described

below) to match weather stations to pollution monitors and eventually get the average

weather around each PM monitor in the sample. Firstly, using information on the

geographical location of pollution monitors and weather stations, I calculate the distance

between each pair of PM monitor and weather station using the Haversine formula. This

formula gives us the great circle distance between any two points on a sphere using their

latitude and longitude. Using this distance, for every pollution monitor, I then keep only the

closest two weather stations within a radius of 30 km from the monitor3. In order to be able

to estimate the e ect of precipitation frequency on particulate matter, I have utilized the daily

rainfall information to construct a new variable Prcp Freq, varying at the weather station-day

level, which is the number of consecutive days that a weather station had recorded positive

rainfall. For every weather station and day, Prcp Freq captures the repetitive incidence of

rainfall. Finally, I construct the weighted average, using inverse distance squares as weights,

to get the average level and frequency of precipitation at each pollution monitor. I use the

above algorithm to construct weather realizations for both P M10 and P M2:5 monitors

respectively. To illustrate the accuracy of this matching process, Figures 7 and 8 in depict the

matched weather stations for the P M10 monitors as well as for the PM2:5 monitors in the

nal sample.

Data on Non-Attainment Designations: Finally, I have used publicly available data on the

Clean Air Act Non-Attainment Designations to generate our measure of non-attainment

status for each county and year in the sample. This data is available from the EPA's Green

Book of Non-Attainment Areas of Criteria Pollutants. CAANAS, or the Clean Air Act Non

Attainment Status, is a binary variable that takes the value one for counties that fail to comply

with the federal pollution threshold as de ned by the EPA, in any given year. In my preferred

speci cation, I have used a three year lagged version of this variable, because EPA gives

heavy emitters at least this much time in order to comply with the regulation (i.e. all the

thresholds are based on 3 year moving averages rather than just the contemporaneous level of

particulate pollution). Figures 9 and 10 illustrate the daily maximum P M10 and P M2:5

concentrations, averaged across all monitor-days for each year and we can see that even

though there has been an overall decline in both PM10 and PM2:5 over the last 20 years, the

pollution levels in non-attainment counties, on average, are higher than that in attainment

counties.
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Having consolidated the data from the above three sources, I have constructed my nal

sample of PM10 monitors from 1990-2013 and PM2:5 monitors from 1997-2013, along with

weather realizations for each monitor-day and CAA attainment designation for each county

year. Table 3 and 4 provides a detailed description and summary statistics for the main

pollution and meteorological variables that are of interest in this paper, for the full sample, as

well as, broken down by the nine di erent climatic regions in US and the attainment status of

counties. Table 3 provides these statistics for the sample of PM10 monitors from 1990-2013

whereas, Table 4 provides the same information for the sample of P M2:5 monitors from

1997-2013.regions is aboutFrom25.5Tableg=m3,3, withwe seethethatSouthwestthe averageand WestP Maccounting10 across allformonitors,the highestyearsaverageand

levels of pollution. In terms of precipitation, the average level of precipitation is about 2mm

overall, whereas the average frequency of precipitation is 0.8 days. From Table 4, we see that

the average PM2:5 across all monitors, years and regions is 11.4 g=m3 with the West and

Ohio Valley accounting for the highest levels of pollution. The average level of precipitation

is 2.6mm whereas the average frequency is 1 day. From both our samples, we nd that the

Southeast and Ohio Valley are among the wettest regions whereas the Southwest is the driest.

As expected, we nd that the average P M10 as well as PM2:5 levels are higher in non

attainment counties than in attainment counties, capturing the fact that counties in non

attainment have higher levels of pollution precursors. Interestingly, we also nd, that in both

the samples, both the level and the frequency of rainfall is higher in attainment counties than

in non-attainment counties. This draws attention to the fact that rainfall, through its e ect of

particulate matter concentrations, might indirectly have an e ect on the attainment

designations of counties. For example, out of two counties that are undertaking similar

adjustments in order to meet the federal pollution threshold, one might be pushed into non

attainment because of less rainfall or infrequent rainfall.

Figures 11 and 12 illustrate the strong negative correlation, observed in the data, between

the level of rainfall and P M10 and PM2:5 respectively. Figures 13 and 14 illus-trates the

negative correlation between the frequency of rainfall and particulate matter concentrations.

Lastly, Figures 15, 16 ,17 and 18 depict these correlations, by the nine di erent climatic

regions of USA and we can see that this negative association between the level/frequency of

rainfall and particulate matter, is present across all regions.

Empirical Methodology

I exploit plausibly random, daily variation in precipitation, precipitation frequency and

maximum temperature 4 in order to estimate the causal e ect of the level and frequency of

precipitation on the daily maximum concentrations of P M10 and PM2:5. To evaluate the

average e ect of precipitation and precipitation frequency across all counties, and the causale

ect of of the Clean Air Act Non-Attainment on particulate pollution levels, I estimate the

following specication:
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where i represents a PM monitor located in NOAA climate region r, and d stands for day,

m for month, t for trimester (January-March, April-June, July-September and October

December) and y for year. The dependent variable PM captures the daily maximum

concentrations of either PM10 or PM2:5 and I will separately estimate the e_ects for

each pollutant type. Prcp measures the total daily precipitation, i.e. the level of rainfall

recorded at pollution monitori. PrcpFreq measures the number of consecutive days

that monitori received positive rainfall and hence captures the precipitation frequency.

MaxTemp is the daily maximum temperature recorded at pollution monitor i. CAANAS

(Clean Air Act Non-Attainment Status) is a binary variable which equals one for counties

that fail to comply with the National Ambient Air Quality Standards (NAAQS) for

particulate matter. This variable is lagged by three years since the EPA gives heavy

emitters at least three years to adjust and comply with the federal standards. Since

emissions of particulate matter might be correlated with economic activity, I control for X,

which represents Population and Per Capita Income, varying at the county-year level. Z

represents time invariant covariates (latitude and longitude of PM monitors), which have

been interacted with trimester-by-year fixed effects in the econometric specification, η

represents PM monitor fixed effects, ϕ represents region-by-trimester-by-year fixed effects

and ε an idiosyncratic error term.

In order to evaluate the di erential e ects of the level and frequency of precipitation, in

attainment and non-attainment counties, I augment the speci cation in Equation (1) to get my

preferred econometric specication as described below.

Results

In this section I report my primary ndings regarding the impact of the level of

precipitation and the precipitation frequency on daily maximum concentrations of PM10 and

PM2:5.

Main Results

Table 5 presents the eects of the two di erent aspects of precipitation, namely, the level of

precipitation, as measured by the total daily precipitation, and the precipitation frequency, as

measured by the number of consecutive days having recorded positive rain-fall, on the daily

maximum concentrations of PM10 in the ambient air. These estimates are based on data from

3264 PM10 monitors over the years 1990-2013. Columns (1) through (4) report average e

ects of the level and frequency of precipitation, across all counties in the sample. Column (1)
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reports the estimates, when I just control for the level and frequency of precipitation. Ind that

a 1-mm decrease in total daily precipitation would lead to an increase of 0.23 g=m3 of daily

maximum P M10 concentration, which represents almost 1% of the average PM10 levels in

the sample. Also, if precipitation becomes less frequent, i.e. if there is one less consecutive

day having positive rainfall 6g=m3, which represents over 4%then the daily maximum P M10 levelof the average PM10 levels in sample.will increase by 1.04

Next, in Column (2),

I also control for the Clean Air Act Non-Attainment status of counties, lagged by three years.

This variable has been lagged by three years since the EPA gives emitters that much time to

bring down their pollution levels. We see that the inclusion of the CAAN AS does not alter

our estimates of the e ect of the level and frequency of precipitation on PM10. The coef-cient

of the CAAN AS gives us a measure of the bene ts of the Clean Air Act in terms of lower P

M10 levels.in PM10 The estimates suggest that a county that goes into non-attainment has a decrease

concentrations by 0.85 g=m3 7. In Columns (3) and (4), I have sequentially added

county population and per capita income, in order to control for eco-nomic and demographic

factors that might also have an eect on the air pollution levels. Column (4) reports the eects

that I get from estimating equation (1) and we can see that the magnitude and signi cance of

my estimates for the e ect of precipitation remain una ected by the addition of other controls.

Comparing these estimates with the causale ect of the Clean Air Act Non-Attainment Status,

Ind that a 1-mm decrease in daily precipitation can potentially oset over 30% of the bene ts

of the landmark regulation, through higher PM10 levels in ambient air.

Finally, in order to get the di erential eects of the level and frequency of precipita-tion on

P M10 between attainment and non-attainment counties, I estimate my preferred speci cation

given by Equation (2) and the results are reported in Column (5). The interaction terms now

give us the incremental e ects of lower or less frequent rainfall on PM10 concentrations in

non-attainment counties. I nd that a 1 mm decrease in total daily precipitation leads to an

increase of 0.2 g=m3counties there is an additionalof P M10increaselevels in attainment coun-ties whereas in non-attainment

of 0.18 g=m3. Hence, in totality, a 1-mm decrease in

daily precipitation level leads to 0.38 g=m3 higher daily maximum P M10 levels in non

attainment counties. Similarly, Ind that if there is one less consecutive day having recorded

rainfall (i.e.counties willaincrease1 unit bydecrease0.89 g=m3in precipitationwhereas in non-attainmentfrequency) thencountiesP M10 itlevelswill increasein attainment

by an

additional 0.41 g=m3, making it a cu-mulative increase of 1.3 g=m3. As has been illustrated

in the descriptive statistics, we know that pollution levels are higher in non-attainment

counties and it is reasonable to believe that non-attainment counties have more sources of

pollution and pollution pre-cursors. Hence, the estimates are aligned with economic intuition

that we should have larger eects on ambient air pollution levels, with the lack of rainfall or

less frequent rainfall in non-attainment counties, as opposed to counties in attainment.

Table 6 reports similar estimates, but for the daily maximum concentrations of PM2:5.

These estimates are based on data from 2162 PM2:5 monitors over the years 1997-2013.

From Column (4), we nd that a 1-mm decrease in total daily precipitation will lead to an

increase of 0.08 g=m3 of PM2:5, averaged across all counties in sample. Also, a decrease in

precipitation frequency, i.e. if there is one less consecutive day receiving positive rainfall, the

average PM2:5 concentration across all counties willcounty going into non-attainment will have a decreaseincrease by 0.39 g=m3. I also nd that a

of 0.21 g=m3 of PM2:5 which captures

the pure bene t from the Clean Air Act in terms of lower PM2:5 concentrations. Hence, a 1

mm decrease in precipitation o sets over 38% of the bene ts achieved due to the Clean Air

Act. Next, in Column (5), I again estimate the di erential impacts across attainment and non

attainment counties. Similar to P M10, even for PM2:5 concentrations, I nd larger e ects in

non-attainment counties, which follows economic intuition as has been explained above. The
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estimates suggest that a 1-mm decrease in total daily precipitation would lead to an increase

of 0.08 g=m3 of P M2:5 in attainment counties whereas an increase of 0.14 g=m3 in non

attainment counties. A one unit decrease in precipitation frequency on the other hand, would

lead to ang=m3 of Pincrease of 0.38 g=m3 of PM2:5 in attainment counties whereas an increase of 0.56

M2:5 in counties that are out of attainment.

Application: Effect of Particulate Matter on Infant Mortality

There has been a consensus among economists, policy makers and governments of

various nations, on the e ect of air pollution on public health. In the United States, one of the

major goals in establishing the Environmental Protection Agency (EPA) as well as

implementing the Clean Air Act Amendments in 1970, was to protect public health.

However, the EPA did not include infant mortality in the primary cost-bene t analysis of the

1990 Clean Air Act amendments because of the lack of enough reliable scientic evidence

linking air pollution to infant health [Currie and Neidell (2004)]. Particulate matter is widely

accepted as being one of the most harmful air pollutant, and the EPA is particularly

concerned about the health e ects of particles that are under 10 g=m3 in diameter as these

particles can enter through the throat and nose and potentially reach our lungs. Scienti cally,

one of the leading theories behind the above mentioned impact of particulate pollution on

health is an in ammatory response which weakens the human immune system.

Even though quite a few studies have documented this statistical relationship between

particulate matter and human health [Holland et al. (1979), Wilson (1996), Wang et al.

(1997)], there are associated econometric concerns. There have been cross sectional anal-yses

of the correlation between air pollution in U.S. cities and adult mortality rates [Lave and

Seskin (1977), Pope and Dockery (1996)], time series analyses at a given location [Dockery

and Pope (1996)] and also cohort based longitudinal studies which indicates that particulate

pollution might lead to excess mortality [Dockery et al. (1993), Pope et al. (1995)]. However,

the reliability of such estimates have been questioned in the literature on air pollution and

health for several reasons. Firstly, air pollution is not randomly assigned to di erent regions,

i.e. there are a host of other factors a ecting pollution concentrations and also having a direct

e ect on health. Although some such factors, such as economic conditions, population etc.

might be controlled for, it can be argued that many of the above mentioned studies may not

be controlling for adequate number of such confounding factors. For example, parents who

are more aware about the environment and the harmful e ects of pollution, might be

relocating to less polluted areas which would bias the estimates upwards [Currie (2011)].

Secondly, if we are looking at adult mortality, current pollution exposure is not necessarily

equivalent to lifetime ex-posure and hence deaths today might actually re ect pollution

exposure that happened many years ago.

In recent years, there have been a few studies which have successfully analyzed this link

between air pollution and infant health and tackled some of the econometric issues mentioned

above. Examples of such work include the e ect of air pollution on infant mortality and birth

outcomes [Chay and Greenstone (2003), Currie and Neidell (2004), Currie et al. (2009),

Currie and Walker (2011), Knittel et al. (2016)], contemporaneous health factors [Chay et al.

(2003), Neidell (2001), Currie et al. (2008)] and life cycle outcomes [Sanders (2011)]. There

has also been a study, speci cally focusing on the developing country context and analyzing

this link between air pollution and infant mor-tality using data from Mexico City [Arceo

gomez et al. (2012)]. However, almost all of the above mentioned studies have either looked

at a speci c state or region for the analysis, or looked at a very short time frame which
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basically leads to the lack of either spatial or temporal variation in the data. This is potentially

driven by the di culty in nding large scale data on a variable which only a ects infant

mortality, through its e ect on air pollution levels and can be used as an instrument for air

pollution 12.

In this section, I utilize the exogenous causale ect of the level of rainfall on PM10, from the

previous sections, to establish that rainfall shocks can be used as an instrument to analyze the

statistical link between air pollution on infant mortality. As the importance of this question

has already been discussed in detail, I propose that the availability of rich daily data on

precipitation, ever since the 1950s, across more than 20,000 weather stations spread over the

entire country provides enough temporal as well as spatial variation to analyze this question

and get more general estimates for the entire nation. The key exclusion restriction here is the

fact that apart from extreme weather events, uctuations in rainfall do not directly a ect infant

mortality through factors other than particulate matter concentrations. Since I also explicitly

control for county and year xed eects, I believe that this is a plausible assumption. It should

be mentioned, that by looking at infant deaths, we can more surely link pollution to health as

the e ect is immediate versus adult mortality where the e ect might be driven by lifetime

exposure to pollution. Also, infants form the most vulnerable section of our society and

policy-makers as well as the general public are extremely motivated to protect them. I will

present this section, by rst describing the data sources, then the empirical methodology and

lastly, the results.

Data Sources

Mortality and Births Data: The mortality and live births data is obtained from the

Compressed Mortality Files (CMF) which is made available by the National Center for

Health Statistics (NCHS). It is composed of a county level national mortality le and a county

level national population le, spanning the years 1968-2014. I have used informa-tion from the

CMF for the years 1990-201313, in order to match it with the pollution and weather data. The

mortality le provides the number of deaths for each county, by the year of death, race, sex,

age group and the underlying cause of death. Firstly, since I am only interested in infant

mortality I have used data for the rst age group which is \deaths within one year of birth".

Then, for each county, I have created the total number of infant deaths by summing the death

counts in each category of race, sex and underlying cause. From the CMF population le, I

have used information on Total Births for each county and year 14, in order to calculate the

infant mortality rate, which is the number of infant deaths per 100,000 live births.

P M10 and Weather Data: I have used the same sample of PM10 monitors and asso-ciated

weather data, as in the rest of the paper. However, I have used the daily weather data on

rainfall, minimum and maximum temperature to construct measures of extreme weather

events at each pollution monitor and year. Namely, I have used daily rainfall data to construct

measures of Droughts, which I have de ned as more than 30 consecutive days of no rainfall

and Floods, de ned as more than 2 consecutive days recording more than 25mm (1 inch) of

rainfall. Similarly, I have de ned a Heat Wave to be more than 10 consecutive days recording

daily maximum temperatures higher than 35 C and a Cold Wave to be more than 10

consecutive days recording daily minimum temperatures less than -10 C 15. Finally, I have

created the number of such instances of extreme weather at each pollution monitor for each

year. Since the mortality data is at the county-year level, I have averaged the pollution and

weather variables, to get the average PM10, rainfall as well as extreme events at the county

year level which has then been merged with the mortality data to get my nal sample of 11,299
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county-years, comprising of an unbal-anced sample of 861 counties spread over 48 states in

contiguous United States. Table 13 illustrates the descriptive statistics for the three main

variables used in this analysis, based on the data averaged at the county-year level. The

average P M10 concentration across all years and counties is 23.2 g=m3 and the average

annual infant mortality rate is around 785 deaths per 100,000 live births. In looking at the

average levels by climate regions, we see that Ohio Valley, South, Southeast and Southwest

have very high levels of particulate pollution and also high infant mortality rates. The average

rainfall in the sample is 2.5 mm, with the Southwest and West being among the driest

regions. Figure 19 illustrates the close positive association between the average infant

mortality rate and the average concentrations of PM10. Figure 20 on the other hand illustrates

the close negative association between pollution levels and the instrument, which is rainfall

level.

Empirical Methodology:

My
objective is to estimate the eect of PM10 pollution (P Mcy) on the number of deaths per

100,000 live births (Mortcy), in a county and year. Speci cally, I would like to estimate

β1 from the following specication:

However, as discussed above, there are reasons to believe that there will be confounding

factors that can potentially bias 1 upwards or downwards. I use the instrumental vari-ables

strategy to tackle this concern, and use rainfall levels as an instrument for PM10. As has been

established in this paper, rainfall has a negative and signi cant e ect on particulate matter, as it

provides the main atmospheric sink for suspended particles. Since, extreme weather events

can potentially have a direct e ect on infant mortality 16, I explicitly control for these in my

preferred speci cation described below:

where c represents a county in climate region r and year y. Mort is the total number of

infant deaths in county c and year y per 100,000 live births; PM represents the average

PM10 concentrations in county c and year y; W includes the four extreme weather events,

namely, the average number of Droughts, Floods, Heat Waves and Cold Waves in county c

and year y, which can have a direct e_ect on infant mortality rate Mort. I also include

Population and Per Capita Income for each county and year in order to control for economic

and demographic characteristics that may a_ect infant mortality. Z represents time-invariant

covariates (latitude and longitude varying at the county level) which has been interacted with

year fixed effects; ϕ represents climate region-by-year fixed effects, η represents county fixed

e_ects and ε is an idiosyncratic error term. PM being an endogenous regressor has been

instrumented by Prcp which is the average level of rainfall in county c and year y, using two

stage least squares. The first stage relationship has been estimated as follows:
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Results

Table 14 illustrates the results from the 2SLS estimation of Equation (3). Extreme

weather events, county and year xed eects have been controlled in all the speci cations. All

the other controls, as describes above, have been added sequentially moving from Column (1)

to Column (3). In Column (4) I have tried an alternative measure of Droughts, Heat Waves,

and Cold Waves 17. I have de ned them using deviations from the climate normal 18 Taking

an average of all four speci cation, Ind that a 1 g=m3 decrease in PM10 will lead to 27 fewer

infant deaths. The Cragg-Donald Wald F-statistic is su ciently large to reject the weak IV test,

meaning that the instrument is not weak. Table 15 illustrates the rst stage results from

estimating Equation (4) and we nd that precipitation always has a highly signi cant and

negative e ect on average P M10 concentrations. A 1-mm decrease in total precipitation leads

to an increase of 0.22 g=m3 of PM10 concentrations.

Conclusion

In this paper, I estimate the causal e ect of the level of precipitation as well as the

precipitation frequency on daily maximum concentrations of PM10 and PM2:5, which is the

most harmful air pollutant in terms of health e ects. Firstly, I nd that a 1 mm decrease in

rainfall level will lead to an increase of 0.23 g=m3g=m3 of PM2:5. Comparing these increase in PM10 and an increase of 0.08

estimates with the causale ect of the Clean Air Act Non

Attainment Status in Column (4) of Table 5, Ind that a 1-mm decrease in daily precipitation

can potentially oset over 30% of the bene ts of the land-mark regulation, through higher P

M10 levels in ambient air. The e ect is almost 38% of the bene ts of the Clean Air Act, when

we look at the estimates for P M2:5 from Table 6. On the other hand, if precipitation

frequencyincrease decreasesby 0.39 g=m3.by a Usingday, theninformationPM10 willonincreasethe by 1.04 g=m3 whereas P M2:5 will

county non-attainment status of the

National Ambient Air Quality Standards for par-ticulate matter, I also nd signi cantly di erent

e ects in attainment vs non-attainment counties. Non-attainment counties, having higher

stationary and non-stationary sources of pollution and higher levels of pollution precursors

have larger impacts of both the level and the frequency of precipitation on ambient

particulate matter concentrations. I also nd substantial spatial heterogeneity of my main

estimates. Finally, using these causal estimates, I analyze themortality and nd that a 1 g=m3 de-crease in PM10 would implye ect of P M10 on infant

approximately 27 fewer

infant deaths, per 100,000 live births in the United States. According to latest data from the

Centers for Disease Control and Prevention, we have around 580 infant deaths per 100,000

live births in United States. Hence, my estimates suggest that a 1 g=m3 decrease in P M10

would signify more than a 4.6% reduction in the number of infant deaths per 100,000 live

births.

This paper contributes to the literature on the linkages between air pollution and climate

change in the following ways. Firstly, by consolidating a large and detailed daily dataset at

the pollution monitor level, I provide the rst causal estimates of the e ect of precipitation as

well as precipitation frequency on PM10 and PM2:5. Secondly, by estimating this causale ect

of precipitation on particulate matter, I have taken a step towards calculating the social costs
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of climate change, in terms of higher air pollution. I have illustrated that in the presence of

changing rainfall patterns, pollution levels can be exacerbated, hence implying larger external

costs of pollution emissions. Thus, such estimates are needed to guide more informed policy

making and reaching the socially desirable level of emissions. Finally, I have also attempted

to illustrate the econometric or technical gains from this exogenous causale ect of precipitation

on particulate matter. To do so, I have used precipitation in an instrumental variables approach to

study the e ect of particulate matter on infant health. I propose that this exogenous link between

precipitation and particulate air pollution can be exploited to study various other impor-tant

economic questions because the availability of high frequency data having spatial and temporal

heterogeneity provides an ideal platform to get reliable estimates. A potential direction for further

research would be to design a methodology that could incorporate these estimates into designing

the air pollution thresholds. Also, we might look into var-ious mechanisms and adjustments made

by economic agents to adapt to climate change. Lastly, with this e ect of climate change on air

pollution understood, we might want to analyze whether and how rms, industries and other

pollution emitters internalize this linkage in deciding how much to produce.

Figure 5: PM10 Monitors from 1990-2013

Notes: Each shaded region represents a single climatic region as de ned by the NOAA. Figure 5

illustrates the geographic location of 3264 P M10 monitors in our sample, using the latitude and

longitude information as obtained from the EPA.

Figure 6: PM2:5 Monitors from 1997-2013

Notes: Each shaded region represents a single climatic region as de ned by the NOAA. Figure 6

illustrates the geographic location of 2162 PM2:5 monitors in our sample, using the latitude and

longitude information as obtained from the EPA.
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Monitors and Matched Weather Stations from 1990-2013Figure 7: PM10

Notes: Each shaded region represents a single climatic region as de ned by the NOAA. Figure 7 illustrates the

geographic location of 3264 PM10 monitors in our sample along with the weather stations matched to each

pollution monitor, using the latitude and longitude information as obtained from the EPA.

Figure 8: PM2:5 Monitors and Matched Weather Stations from 1997-2013

Notes: Each shaded region represents a single climatic region as de ned by the NOAA. Figure 8

illustrates the geographic location of 2162 PM2:5 monitors in our sample along with the weather stations

matched to each pollution monitor, using the latitude and longitude information as obtained from the EPA.
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by CAA Attainment StatusFigure 9: Mean Annual PM10

Notes: This gure represents the average annual PM10 concentrations across all monitors in attainment (blue line)

and all monitors in non-attainment (red line) for each year between 1990-2013.

Figure 10: Mean Annual PM2:5 by CAA Attainment Status

Notes: This gure represents the average annual PM2:5 concentrations across all monitors in attainment (blue line)

and all monitors in non-attainment (red line) for each year between 1997-2013.
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Figure 11: Level of Precipitation and PM10

Notes: This gure represents the daily maximum PM10 concentrations and daily total precipitation, averaged

across all monitor-days for each year. The variables have been detrended in order to eliminate the time trend.

Figure 12: Level of Precipitation and PM2:5

Notes: This gure represents the daily maximum PM2:5 concentrations and daily total precipitation, averaged

across all monitor-days for each year. The variables have been detrended in order to eliminate the time trend.

27



The 12th MAC 2018

Multidisciplinary Academic Conference

Figure 13: Precipitation Frequency and PM10

Notes: This gure represents the daily maximum PM10 concentrations and precipitation frequency, averaged

across all monitor-days for each year. The variables have been detrended in order to eliminate the time trend.

Figure 14: Precipitation Frequency and PM2:5

Notes: This gure represents the daily maximum PM2:5 concentrations and precipitation frequency, averaged

across all monitor-days for each year. The variables have been detrended in order to eliminate the time trend.
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- By Climate RegionsFigure 15: Level of Precipitation and PM10

Notes: This gure represents the daily maximum P M10 concentrations and daily total precipitation, averaged

across all monitor-days for each year and climate region. The variables have been detrended in order to

eliminate the time trend.

Figure 16: Level of Precipitation and PM2:5- By Climate Regions

Notes: This gure represents the daily maximum PM2:5 concentrations and daily total precipitation, averaged

across all monitor-days for each year and climate region. The variables have been detrended in order to

eliminate the time trend.
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- By Climate RegionsFigure 17: Precipitation Frequency and PM10

Notes: This gure represents the daily maximum PM10 concentrations and precipitation frequency, averaged

across all monitor-days for each year and climate region. The variables have been detrended in order to

eliminate the time trend.

Figure 18: Precipitation Frequency and PM2:5- By Climate Regions
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Notes: This gure represents the daily maximum PM2:5 concentrations and precipitation frequency, averaged

across all monitor-days for each year and climate region. The variables have been detrended in order to

eliminate the time trend.

Figure 19: Level of Precipitation and Infant Mortality Rate

Notes: This gure represents the average annual PM10 concentrations and annual infant mortality rate, averaged

across all counties for each year. The variables have been detrended in order to eliminate the time trend.

Figure 20: Level of Precipitation and PM10

Notes: This gure represents the average annual PM10 concentrations and the average level of precipitation,

averaged across all counties for each year. This shows the close association between the endogenous regressor

and the instrument used. The variables have been detrended in order to eliminate the time trend.
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Table 1: PM10 Monitoring Network by Year

Number of Monitors in

Ohio Upper

Year Counties Monitors Observations Valley Midwest Northeast Northwest South Southeast Southwest West Rockies

1990-2013 876 3624 2,922,523 566 240 510 237 274 405 406 531 455

1990 569 1366 96,309 246 92 282 85 104 126 131 171 129

1991 595 1405 101,718 270 83 271 92 113 142 131 171 132

1992 626 1533 114,322 280 91 280 101 126 188 145 170 152

1993 634 1555 121,045 279 77 281 89 130 206 142 189 162

1994 657 1638 131,199 288 80 276 90 132 209 154 237 172

1995 674 1671 138,078 290 75 273 100 134 219 156 245 179

1996 676 1643 140,897 290 80 256 102 129 221 157 244 164

1997 670 1622 142,655 280 89 245 99 122 220 168 237 162

1998 589 1456 126,033 272 78 217 100 74 196 156 247 116

1999 509 1256 110,954 231 68 132 99 68 189 145 226 98

2000 532 1250 115,726 216 65 150 83 73 183 159 228 93

2001 519 1231 122,664 205 57 157 77 80 174 159 211 111

2002 500 1164 124,295 187 47 140 72 83 170 148 206 111

2003 463 1084 120,579 176 46 125 55 87 150 148 198 99

2004 453 1058 125,082 167 43 113 55 78 140 151 201 110

2005 441 1052 130,301 143 47 105 58 75 138 167 202 117

2006 413 1022 129,542 140 36 89 59 66 144 167 204 117

2007 388 971 122,629 135 36 85 44 72 139 163 184 113

2008 362 942 125,098 125 33 85 33 75 129 148 195 119

2009 355 904 123,401 129 36 72 34 71 118 152 188 104

2010 349 887 123,291 125 36 72 32 73 103 142 189 115

2011 339 877 126,813 119 36 70 27 76 99 145 175 130

2012 333 850 131,360 113 40 60 25 73 96 146 175 122

2013 314 785 78,532 106 40 57 20 67 79 133 166 117

Table 2: PM2:5 Monitoring Network by Year

Number of Monitors in

Ohio Upper

Year Counties Monitors Observations Valley Midwest Northeast Northwest South Southeast Southwest West Rockies

1997-2013 713 2162 2,055,974 350 177 383 175 299 273 145 220 140

1997 3 3 128 0 3 0 0 0 0 0 0 0

1998 20 16 312 0 3 0 7 0 0 0 7 3

1999 974 520 93366 156 85 199 62 145 141 53 93 40

2000 1131 592 136417 177 98 224 75 179 155 72 98 53

2001 1178 604 148627 179 99 237 84 182 160 75 103 59

2002 1164 606 150265 183 96 235 86 184 156 67 102 55

2003 1137 589 132826 182 95 215 80 177 160 72 99 57

2004 1056 565 132067 179 88 190 62 140 174 68 98 57

2005 1082 557 127784 177 88 190 49 168 177 77 99 57

2006 1029 526 122141 186 86 178 40 131 184 78 97 49

2007 988 521 126428 184 82 179 42 105 179 73 97 47

2008 1011 519 127608 184 81 188 47 103 177 72 101 58

2009 1071 526 144160 201 85 192 48 104 178 73 121 69

2010 1081 524 158628 196 85 195 54 106 171 76 126 72

2011 1082 515 170128 200 90 190 49 102 167 83 128 73

2012 1064 506 173653 189 84 195 50 99 155 81 144 67

2013 1049 504 111436 192 88 208 46 95 148 73 138 61
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Table 3: PM10 Monitors-Summary Statistics by Climate Region and Attainment Status

Panel A: Particulate Matter (PM10) Panel B: Total Precipitation (mm) Panel C: Precipitation Frequency (days)

Mean SD Observations Mean SD Observations Mean SD Observations

Full Sample 25.5 43.2 2,922,523 2 6.6 2,919,730 0.8 1.8 2,922,523

By Climate Regions:

Ohio Valley 25.9 16.0 431,753 3.0 7.7 431,553 1.1 1.8 431,753

Upper Midwest 24.0 16.2 113,402 2.4 6.6 113,344 1.0 1.7 113,402

Northeast 21.7 14.5 342,964 3.1 7.7 342,852 1.2 2.0 342,964

Northwest 24.7 20.7 176,966 1.8 4.8 176,669 1.5 3.1 176,966

South 25.6 18.0 196,475 2.4 8.5 196,364 0.6 1.3 196,475

Southeast 23.0 13.4 346,581 3.5 9.7 346,399 1.0 2.2 346,581

Southwest 30.4 30.4 475,699 0.9 3.4 475,102 0.5 1.5 475,699

West 29.0 95.9 483,406 1.0 4.8 483,045 0.4 1.4 483,406

Rockies 20.8 17.6 355,277 1.1 3.8 354,402 0.8 1.7 355,277

By CAA Attainment Status:

Attainment Counties 22.7 15.6 1,900,404 2.4 7.3 1,898,346 0.9 1.9 1,900,404

Non-Attainment Counties 30.8 69.5 1,022,119 1.3 4.7 1,021,384 0.7 1.8 1,022,119
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Table 4: PM2:5 Monitors-Summary Statistics by Climate Region and Attainment Status

Panel A: Particulate Matter (PM2.5) Panel B: total Precipitation (mm) Panel C: Precipitation Frequency (days)

Mean SD Observations Mean SD Observations Mean SD Observations

Full Sample 11.4 7.7 2,055,974 2.6 7.7 2,054,495 1.0 1.9 2,055,974

By Climate Regions:

Ohio Valley 13.5 7.3 368,193 3.1 8.0 367,971 1.1 1.8 368,193

Upper Midwest 10.8 7.5 151,147 2.4 6.4 151,040 1.1 1.9 151,147

Northeast 11.5 7.5 405,797 3.2 8.4 405,628 1.1 1.8 405,797

Northwest 9.0 8.1 101,181 2.1 5.1 101,030 2.0 3.9 101,181

South 11.4 6.0 223,814 3.0 9.8 223,713 0.7 1.5 223,814

Southeast 11.7 6.7 346,889 3.4 9.3 346,756 1.0 2.0 346,889

Southwest 8.6 7.3 134,050 0.9 3.3 133,976 0.5 1.2 134,050

West 12.6 10.5 217,472 1.0 4.5 217,281 0.4 1.3 217,472

Rockies 7.8 6.5 107,431 1.3 4.3 107,100 0.8 1.7 107,431

By CAA Attainment Status:

Attainment Counties 11.4 7.3 1,620,713 2.8 8.1 1,619,562 1.0 1.9 1,620,713

Non-Attainment Counties 11.7 9.2 435,261 1.8 6.0 434,933 0.8 1.9 435,261
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Table 5: Main Estimates- Effect of Level & Frequency of Precipitation on PM10

VARIABLES (1) (2) (3) (4) (5)

Total Precipitation -0.2331*** -0.2331*** -0.2337*** -0.2337*** -0.2001***

(0.0055) (0.0055) (0.0056) (0.0056) (0.0052)

Precipitation Frequency -1.0427*** -1.0425*** -1.0436*** -1.0435*** -0.8905***

(0.0389) (0.0389) (0.0390) (0.0391) (0.0356)

Lag 3 of CAANAS -0.8489*** -0.8572*** -0.7582*** -0.3100

(0.2339) (0.2336) (0.2399) (0.4305)

Lag 3 of CAANAS x Prec -0.1794***

(0.0150)

Lag 3 of CAANAS x Prec Freq -0.4064***

(0.0994)

Max Temperature Y Y Y Y Y

Lag 3 of CAANAS x Max Temp N N N N Y

Population N N Y Y Y

Per Capita Income N N N Y Y

Observations 2,909,576 2,909,576 2,894,899 2,894,899 2,894,899

R-squared 0.0809 0.0810 0.0808 0.0809 0.0811

Notes: Precipitation Frequency is measured as the number of consecutive days having positive rainfall. Regressions

include xed eects for PM10 Monitors, Trimester*Yearx Climate Region, Trimester*Year x Monitor Latitude and

Trimester*Year x Monitor Longitude. Standard errors are clustered at the monitor level. ***, ** and * represent

statistical signi cance at the 1%, 5% and 10% level respectively.

Table 6: Main Estimates- Effect of Level & Frequency of Precipitation on PM2:5

VARIABLES (1) (2) (3) (4) (5)

Total Precipitation -0.0840*** -0.0840*** -0.0838*** -0.0838*** -0.0796***

(0.0017) (0.0017) (0.0017) (0.0017) (0.0016)

Precipitation Frequency -0.3944*** -0.3944*** -0.3945*** -0.3946*** -0.3759***

(0.0108) (0.0108) (0.0108) (0.0108) (0.0105)

Lag 3 of CAANAS -0.2046** -0.2121** -0.2114** 2.4659***(0.0932) (0.0932) (0.0935) (0.3170)

Lag 3 of CAANAS x Prec -0.0609***

(0.0097)

Lag 3 of CAANAS x Prec Freq -0.1172***

(0.0393)

Max Temperature Y Y Y Y Y

Lag 3 of CAANAS x Max Temp N N N N Y

Population N N Y Y Y

Per Capita Income N N N Y Y

Observations 2,051,608 2,051,608 2,038,092 2,038,092 2,038,092

R-squared 0.2548 0.2549 0.2548 0.2548 0.2582

Notes: Precipitation Frequency is measured as the number of consecutive days having positive rainfall.

Regressions include xed eects for PM2:5 Monitors, Trimester*Year x Climate Region, Trimester*Year x

Monitor Latitude and Trimester*Year x Monitor Longitude. Standard errors are clustered at the monitor level.

***, ** and * represent statistical signi cance at the 1%, 5% and 10% level respectively.
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Table 7: Effect of Level and Frequency of Precipitation on PM10 by Climate Regions

Ohio Upper

VARIABLES Valley Midwest Northeast Northwest South Southeast Southwest West Rockies

Total Precipitation -0.2231*** -0.2246*** -0.1799*** -0.4599*** -0.1517*** -0.1649*** -0.4321*** -0.1839*** -0.3284***

(0.0085) (0.0147) (0.0106) (0.0357) (0.0057) (0.0124) (0.0353) (0.0153) (0.0179)

Lag 3 of CAANAS x Precipitation -0.0645*** -0.0272 -0.0430** -0.1079** -0.0627** 0.0144 -0.2720*** -0.1942*** -0.3158***

(0.0154) (0.0246) (0.0176) (0.0494) (0.0316) (0.0260) (0.0799) (0.0464) (0.0477)

Precipitation Frequency -1.0282*** -1.2296*** -0.7964*** -0.7508*** -1.2076*** -0.6256*** -1.2699*** -0.5410*** -1.1518***

(0.0468) (0.0707) (0.0352) (0.0805) (0.0915) (0.0833) (0.1129) (0.0745) (0.0923)

Lag 3 of CAANAS x Prec Freq -0.2480*** -0.2983*** -0.2074*** -0.0237 -2.2157*** -1.2395*** -0.1067 -2.4839*** -0.1311

(0.0656) (0.1034) (0.0566) (0.1148) (0.4079) (0.3632) (0.4492) (0.2261) (0.1274)

Monitors 566 240 510 237 274 405 406 531 455

Full Sample:
4
2

Additional Controls: Lag 3 of CAANAS, Maximum Temperature, Lag 3 of CAANAS x Max Temp, Population, Per Capita Income

Observations

R-squared

2,894,899

0.0819

Notes: Regressions include xed ectse for PM10 Monitors, Trimester*Year x Climate Region, Trimester*Year x Monitor Latitude and Trimester*Year x Monitor Longitude.

Standard errors are clustered at the monitor level. ***, ** and * represent statistical cancesigni at the 1%, 5% and 10% level respectively.
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Table 8: Effect of Level and Frequncy of Precipitation on PM2:5 by Climate Regions

Ohio Upper

VARIABLES Valley Midwest Northeast Northwest South Southeast Southwest West Rockies

Total Precipitation -0.0983*** -0.0373*** -0.0717*** -0.2239*** -0.0603*** -0.0785*** -0.1449*** -0.1690*** -0.0283***

(0.0033) (0.0046) (0.0029) (0.0187) (0.0019) (0.0033) (0.0201) (0.0126) (0.0052)

Lag 3 of CAANAS x Precipitation 0.0020 -0.0172** 0.0121 -0.0528** -0.0642*** 0.0238*** -0.0915*** -0.0428** -0.1662***

(0.0081) (0.0085) (0.0074) (0.0214) (0.0234) (0.0042) (0.0312) (0.0208) (0.0156)

Precipitation Frequency -0.4471*** -0.3790*** -0.2746*** -0.2830*** -0.5025*** -0.3964*** -0.4240*** -0.7116*** -0.2338***

(0.0121) (0.0195) (0.0111) (0.0191) (0.0154) (0.0362) (0.0891) (0.0664) (0.0323)

Lag 3 of CAANAS x Prec Freq -0.0587 0.0071 0.0299 -0.0212 -0.5889*** -0.0914 -0.6709*** -0.9645*** -0.2040**

(0.0388) (0.0415) (0.0252) (0.0331) (0.0933) (0.0623) (0.0979) (0.1533) (0.0855)

Monitors 350 177 383 175 299 273 145 220 140

Full Sample:
4
3

Additional Controls: Lag 3 of CAANAS, Maximum Temperature, Lag 3 of CAANAS x Max Temp, Population, Per Capita Income

Observations 2,038,092

R-squared 0.2749

Notes: Regressions include xed ectse for PM2:5 Monitors, Trimester*Year x Climate Region, Trimester*Year x Monitor Latitude and Trimester*Year x Monitor Longitude.

Standard errors are clustered at the monitor level. ***, ** and * represent statistical cancesigni at the 1%, 5% and 10% level respectively.
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Table 9: Robustness- Balanced Panel of PM10 Monitors

VARIABLES (1) (2) (3) (4) (5)

Total Precipitation -0.2632*** -0.2632*** -0.2657*** -0.2656*** -0.2028***

(0.0214) (0.0214) (0.0220) (0.0220) (0.0164)

Precipitation Frequency -1.3873*** -1.3869*** -1.3904*** -1.3903*** -0.9639***

(0.1421) (0.1419) (0.1431) (0.1430) (0.1051)

Lag 3 of CAANAS -0.7430 -0.8700 -0.6107 -0.1251

(0.7286) (0.7328) (0.7390) (1.0825)

Lag 3 of CAANAS x Prec -0.2095***

(0.0406)

Lag 3 of CAANAS x Prec Freq -0.9699***

(0.2826)

Max Temperature Y Y Y Y Y

Lag 3 of CAANAS x Max Temp N N N N Y

Population N N Y Y Y

Per Capita Income N N N Y Y

Observations 280,524 280,524 277,713 277,713 277,713

R-squared 0.3186 0.3187 0.3177 0.3178 0.3212

Notes: Regressions include xed eects for PM10 Monitors, Trimester*Year x Climate Region, Trimester*Year x

Monitor Latitude and Trimester*Year x Monitor Longitude. Regressions are based on observations from a

balanced panel of 125 PM10 monitors. Standard errors are clustered at the monitor level. ***, ** and *

represent statistical signi cance at the 1%, 5% and 10% level respectively.

Table 10: Robustness- Balanced Panel of PM2:5 Monitors

VARIABLES (1) (2) (3) (4) (5)

Total Precipitation -0.0930*** -0.0930*** -0.0926*** -0.0926*** -0.0875***

(0.0032) (0.0032) (0.0032) (0.0032) (0.0030)

Precipitation Frequency -0.3792*** -0.3792*** -0.3814*** -0.3814*** -0.3322***

(0.0248) (0.0248) (0.0249) (0.0249) (0.0218)

Lag 3 of CAANAS 0.0394 0.0243 0.0358 3.5873***

(0.1546) (0.1530) (0.1556) (0.6891)

Lag 3 of CAANAS x Prec -0.0841***

(0.0152)

Lag 3 of CAANAS x Prec Freq -0.4682***

(0.1112)

Max Temperature Y Y Y Y Y

Lag 3 of CAANAS x Max Temp N N N N Y

Population N N Y Y Y

Per Capita Income N N N Y Y

Observations 280,524 280,524 277,713 277,713 277,713

R-squared 0.3186 0.3187 0.3177 0.3178 0.3212

Notes: Regressions include xed eects for PM2:5 Monitors, Trimester*Year x Climate Region, Trimester*Year

x Monitor Latitude and Trimester*Year x Monitor Longitude. Regressions are based on observations from a

balanced panel of 358 PM2:5 monitors. Standard errors are clustered at the monitor level. ***, ** and *

represent statistical signi cance at the 1%, 5% and 10% level respectively.
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Table 11: Robustness- Dependence on Wind Speed

VARIABLES PM10 PM

2:5

(1) (2) (3) (4)

Total Precipitation -0.2002*** -0.1749*** -0.0630*** -0.0604***

(0.0071) (0.0067) (0.0017) (0.0017)

Precipitation Frequency -1.0909*** -0.9222*** -0.1997*** -0.1592***

(0.0424) (0.0371) (0.0145) (0.0139)

Lag 3 of CAANAS x Prec -0.1546*** -0.0402***

(0.0175) (0.0110)

Lag 3 of CAANAS x Prec Freq -0.4875*** -0.3755***

(0.1056) (0.0671)

Wind Speed -0.5086*** -0.4979*** -1.2726*** -1.2670***

(0.1126) (0.1125) (0.0330) (0.0322)

Observations 1,376,429 1,376,429 1,266,539 1,266,539

R-squared 0.3064 0.3075 0.3027 0.3060

Notes: Regressions include xed eects for PM Monitors, Trimester*Year x Climate Region, Trimester*Year x

Monitor Latitude and Trimester*Year x Monitor Longitude. Average daily wind speed, measured in

meters/sec. Wind speed data is not available for many monitor-days and hence I have fewer observations

compared to Table 5. Standard errors are clustered at the monitor level. ***, ** and * represent statistical signi

cance at the 1%, 5% and 10% level respectively.
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Table 12: Robustness- Non-linear Effects of Level and Frequency of Precipitation on PM

VARIABLES PM10 PM

2:5

(1) (2) (3) (4)

Precipitation -0.3599*** -0.2970*** -0.1280*** -0.1227***

(0.0128) (0.0091) (0.0027) (0.0025)

Precipitation Sq 0.0028*** 0.0021*** 0.0007*** 0.0007***

(0.0002) (0.0001) (0.0000) (0.0000)

Precipitation Frequency -1.3831*** -1.2847*** -0.6996*** -0.5983***

(0.1179) (0.0595) (0.0323) (0.0280)

Prec Freq Sq 0.0324*** 0.0386*** 0.0797*** 0.0661***(0.0106) (0.0051) (0.0056) (0.0050)

Lag 3 of CAANAS x Precipitation -0.3003*** -0.0742***

(0.0305) (0.0127)

Lag 3 of CAANAS x Precipitation Sq 0.0039*** 0.0008***

(0.0005) (0.0002)

Lag 3 of CAANAS x Prec Freq -0.3371** -0.8728***

(0.1655) (0.1193)

Lag 3 of CAANAS x Prec Freq Sq -0.0094 0.1207***

(0.0134) (0.0183)

Observations 2,894,899 2,894,899 2,038,092 2,038,092

R-squared 0.0816 0.0818 0.2517 0.2555

Notes: Regressions include xed eects for PM Monitors, Trimester*Year x Climate Region, Trimester*Year x

Monitor Latitude and Trimester*Year x Monitor Longitude. Positive coe cients of the non-linear controls imply

a convex relationship. Standard errors are clustered at the monitor level. ***, ** and * represent statistical signi

cance at the 1%, 5% and 10% level respectively.

40



The 12th MAC 2018

Multidisciplinary Academic Conference

Table 13: Summary Statistics of Infant Mortality, PM10 and Precipitation, County/Year Level

Panel A: Particulate Matter P M10(g=m3) Panel B: Infant Mortality Rate Panel C: Precipitation (mm)

(number of deaths per 100,000 live births)

Mean SD Mean SD Mean SD

1990-2013 23.2 7.5 785.4 395.5 2.5 1.5

By Climate Regions:

Ohio Valley 24.4 5.7 814.0 340.2 3.1 1.2

Upper Midwest 21.5 7.0 725.9 328.2 2.3 0.9

Northeast 20.6 6.3 705.1 259.5 3.1 1.1

Northwest 23.8 8.7 721.4 440.6 1.9 1.6

South 24.2 5.2 869.1 375.8 2.9 1.6

Southeast 22.2 5.2 924.0 395.7 3.4 1.3

Southwest 24.4 9.8 704.2 367.8 1.0 0.5

West 26.4 10.9 622.6 295.8 1.5 1.3

Rockies 21.1 7.6 884.4 678.6 1.2 0.7

Notes: These descriptive statistics have been created from a sample of 11,299 observations at the county-year level. The means reported above are across all years in the

sample. The Total Births for each county and year has been used to compute the infant mortality rates. The average number of births across all counties and years is 5003.

Infant Mortality Rate for each county-year is nedde as [Total Deaths/Total Births]* 100,000.
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Table 14: Instrumental Variables Estimates- Effect of PM10 on Infant Mortality

VARIABLES (1) (2) (3) (4)

PM 10 25.7024* 25.8219* 28.2283* 27.1392*

(14.7490) (14.7027) (16.5082) (16.0963)

Extreme Prec and Temp Events Y Y Y Y

Per Capita Income Y Y Y Y

Population N Y Y Y

County Lat/Long-Year Fixed E ects N N Y Y

Alternative Measure of Extreme Events N N N Y

Cragg-Donald Wald F Statistic 28.85 29.06 23.87 24.84

Observations 11,104 11,104 11,104 11,104

Notes: Regressions include County and Year xed eects. Standard errors are estimated using the Eicker-White

formula to correct for heteroskedasticity. Extreme precipitation events (i.e. droughts and oods) and extreme

temperature events (i.e. heat waves and cold waves) have been controlled for. ***, ** and * represent statistical

signi cance at the 1%, 5% and 10% level respectively.

Table 15: First Stage Estimates- Effect of Precipitation on PM10

VARIABLES (1) (2) (3) (4)

Total Precipitation -0.2245*** -0.2253*** -0.2050*** -0.2094***

(0.0403) (0.0404) (0.0407) (0.0406)

Extreme Prec and Temp Events Y Y Y Y

Per Capita Income Y Y Y Y

Population N Y Y Y

County Lat/Long-Year Fixed Eects N N Y Y

Alternative Measure of Extreme Events N N N Y

Observations 11,104 11,104 11,104 11,104

Notes: Regressions include County and Year xed eects. Standard errors are estimated using the Eicker-White

formula to correct for heteroskedasticity. Extreme precipitation events (i.e. droughts and oods) and extreme

temperature events (i.e. heat waves and cold waves) have been controlled for. ***, ** and * represent statistical

signi cance at the 1%, 5% and 10% level respectively.
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