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The complexity of financial markets arise from the strategic
interactions among agents trading stocks, which manifest in
the form of vibrant correlation patterns among stock prices.
Over the past few decades, complex financial markets have
often been represented as networks whose interacting pairs
of nodes are stocks, connected by edges that signify the
correlation strengths. However, we often have interactions
that occur in groups of three or more nodes, and these
cannot be described simply by pairwise interactions but we
also need to take the relations between these interactions into
account. Only recently, researchers have started devoting
attention to the higher-order architecture of complex financial
systems, that can significantly enhance our ability to
estimate systemic risk as well as measure the robustness of
financial systems in terms of market efficiency. Geometry-
inspired network measures, such as the Ollivier–Ricci
curvature and Forman–Ricci curvature, can be used to
capture the network fragility and continuously monitor
financial dynamics. Here, we explore the utility of such
discrete Ricci curvatures in characterizing the structure of
financial systems, and further, evaluate them as generic
indicators of the market instability. For this purpose, we
examine the daily returns from a set of stocks comprising the
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USA S&P-500 and the Japanese Nikkei-225 over a 32-year period, and monitor the changes in the
edge-centric network curvatures. We find that the different geometric measures capture well the
system-level features of the market and hence we can distinguish between the normal or ‘business-
as-usual’ periods and all the major market crashes. This can be very useful in strategic designing of
financial systems and regulating the markets in order to tackle financial instabilities.
lishing.org/journal/rsos
R.Soc.Open

Sci.8:201734
1. Introduction
For centuries, science had thrived on the method of reductionism—considering the units of a system in
isolation, and then trying to understand and infer about the whole system. However, the simple method
of reductionism has severe limitations [1], and fails to a large extent when it comes to the understanding
and modelling the collective behaviour of the components of a ‘complex system’. More and more systems
are now being identified as complex systems, and hence scientists are now embracing the idea of
complexity as one of the governing principles of the world we live in. Any deep understanding of a
complex system has to be based on a system-level description, since a key ingredient of any complex
system is the rich interplay of nonlinear interactions between the system components. The financial
market is truly a spectacular example of such a complex system, where the agents interact strategically
to determine the best prices of the assets. So new tools and interdisciplinary approaches are needed
[2,3], and already there has been an influx of ideas from econophysics and complexity theory [4–8] to
explain and understand economic and financial markets.

The traditional economic theories, based on axiomatic approaches and consequently less predictive
power, could not foresee an event like the sub-prime crisis of 2007–2008 or the long-lasting effects of
such a critical financial crash on the global economy. Researchers advocated that new concepts and
techniques [9] like tipping points, feedback, contagion, network analysis along with the use of
complexity models [10] could help in better understanding of highly interconnected economic and
financial systems, as well as monitoring them. There have been numerous papers in the past that have
addressed similar concerns and tried to adopt new approaches for studying financial systems. Since
the correlations among stocks change with time, the underlying market dynamics generate very
interesting correlation-based networks evolving over time. The study of empirical cross-correlations
among stock prices goes back to more than two decades [11–16]. One of commonly adopted
approaches for the modelling and analysis of complex financial systems has been correlation-based
networks, and it has emerged as an important tool [11,12,17–22].

A network or graph consists of nodes connected by edges. In real-world networks, nodes represent
the components or entities, while edges represent the interactions or relationships between nodes. In the
context of financial markets, the nodes represent the stocks and the edges characterize the correlation
strengths (or their transformations into distance measures). The network formed by connecting stocks
of highly correlated prices, price returns and trading volumes are all scale-free, with a relatively small
number of stocks influencing the majority of the stocks in the market [23]. Hierarchical clustering has
been used to cluster stocks into sectors and sub-sectors, and their network analysis provides
additional information on the interrelationships among the stocks [24,25]. The cross-correlations
among stock returns allow one to construct other correlation-based networks such as minimum
spanning tree (MST) [11,12,18,26] or a threshold network [27]. Another approach to monitor the
correlation-based networks over time, referred to as structural entropy, quantifies the structural
changes of the network as a single parameter. It takes into account the number of communities as
well as the size of the communities [28] to determine the structural entropy, which is then used to
continuously monitor the market. The thermodynamical entropy [29] can also be used to describe the
dynamics of stock market networks as it acts like an indicator for the financial system. Very recently,
based on the distribution properties of the eigenvector centralities of correlation matrices,
Chakraborti & Pharasi [30] have proposed a computationally cheap yet uniquely defined and non-
arbitrary eigen-entropy measure, to show that the financial market undergoes ‘phase separation’ and
there exists a new type of scaling behaviour (data collapse) in financial markets. Further, a recent
review by Kukreti et al. [31] critically examines correlation-based networks and entropy approaches in
evolving financial systems. To understand the topology of the correlation-based networks as well as to
define the complexity, a volume-based dimension has also been proposed by Nie et al. [32]. There
have also been some novel studies where the financial market has been considered as a quasi-
stationary system, and then the ensuing dynamics have been studied [33–37].
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Introduced long ago by Gauss & Riemann, curvature is a central concept in geometry that quantifies
the extent to which a space is curved [38]. In geometry, the primary invariant is curvature in its many
forms. While curvature has connections to several essential aspects of the underlying space, in a
specific case, curvature has a connection to the Laplacian, and hence, to the ‘heat kernel’ on a
network. Curvature also has connections to the Brownian motion and entropy growth on a network.
Moreover, curvature is also related to algebraic topological aspects, such as the homology groups and
Betti numbers, which are relevant, for instance, for persistent homology and topological data analysis
[39]. Recently, there has been immense interest in geometrical characterization of complex networks
[40–44]. Network geometry can reveal higher-order correlations between nodes beyond pairwise
relationships captured by edges connecting two nodes in a graph [45–47]. From the point of view of
structure and dynamics of complex networks, edges are more important than nodes, since the nodes
by themselves cannot constitute a meaningful network. Hence, it may be more important to develop
edge-centric measures rather than node-centric measures to characterize the structure of complex
networks [43,48].

Surprisingly, geometrical concepts, especially, discrete notions of Ricci curvature, have only very
recently been used as edge-centric network measures [42,43,48–51]. Furthermore, curvature has deep
connections to related evolution equations that can be used to predict the long-time evolution of
networks. Although the importance of geometric measures like curvature have been understood for
quite some time, yet there has been limited number of applications in the context of complex financial
networks. In particular, Sandhu et al. [50] studied the evolution of Ollivier–Ricci curvature [52,53] in
threshold networks for the USA S&P-500 market over a 15-year span (1998–2013) and showed that the
Ollivier–Ricci curvature is correlated to the increase in market network fragility. Consequently,
Sandhu et al. [50] suggested that the Ollivier–Ricci curvature can be employed as an indicator of
market fragility and study the designing of (banking) systems and framing regulation policies to
combat financial instabilities such as the sub-prime crisis of 2007–2008. In this paper, we expand the
study of geometry-inspired network measures for characterizing the structure of the financial systems
to four notions of discrete Ricci curvature, and evaluate the curvature measures as generic indicators
of the market instability.

It is noteworthy that in the present paper, the term ‘curvature’ refers to four notions of discrete Ricci
curvature investigated here, which are as such intrinsic curvatures, and not extrinsic curvatures as has
been considered elsewhere in the context of complex networks (e.g. [54]). Recall that extrinsic
geometry is given by embedding the networks in a suitable ambient space (which in practice is the
hyperbolic plane or space), and thereafter, the geometric properties induced by the embedding space
are studied (e.g. [55]). While this approach is intuitive and conducive to simple illustrations, such
network embeddings are distorting, except for the special case of isometric embeddings. By contrast,
the intrinsic approach to networks is independent of any specific embedding, and hence, of the
necessary additional computations and any distortion. Moreover, such an intrinsic approach allows for
the independent study of such powerful tools as the Ricci flow, without the vagaries associated with
the embedding in an ambient space of certain dimension (e.g. [56]). Furthermore, the Ollivier–Ricci
curvature has been employed to show that the ‘backbone’ of certain real-world networks is indeed
tree-like, hence intrinsically hyperbolic [49]. Specific to financial networks, Sandhu et al. [50] have
shown that Ollivier–Ricci curvature, which is of course an intrinsic curvature, presents a powerful tool
in the detection of financial market crashes. In this work, we have considered three additional notions
[43,55] of discrete Ricci curvature for the study of financial networks.

In the present paper, we examine the daily returns from a set of stocks comprising the USA S&P-500
and the Japanese Nikkei-225 over a 32-year period, and monitor the changes in the edge-centric
geometric curvatures. A major goal of this research is to evaluate different notions of discrete Ricci
curvature for their ability to unravel the structure of complex financial networks and serve as
indicators of market instabilities. Our study confirms that during a normal period the market is very
modular and heterogeneous, whereas during an instability (crisis) the market is more homogeneous,
highly connected and less modular [18,21,22,57]. Further, we find that the discrete Ricci curvature
measures, especially Forman–Ricci curvature [43,48], capture well the system-level features of the
market and hence we can distinguish between the normal or ‘business-as-usual’ periods and all the
major market crises (bubbles and crashes). Importantly, among four Ricci-type curvature measures,
the Forman–Ricci curvature of edges correlates highest with the traditional market indicators and acts
as an excellent indicator for the system-level fear (volatility) and fragility (risk) for both the markets.
We also find using these geometric measures that there are succinct and inherent differences in the
two markets, USA S&P-500 and Japan Nikkei-225. These new insights will help us to understand
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tipping points, systemic risk, and resilience in financial networks, and enable us to develop monitoring
tools required for the highly interconnected financial systems and perhaps forecast future financial crises
and market slowdowns.
 lsocietypublishing.org/journal/rsos

R.Soc.Open
Sci.8:201734
2. Ricci-type curvatures for edge-centric analysis of networks
The classical notion of Ricci curvature applies to smooth manifolds, and its classical definition requires
tensors and higher-order derivatives [38]. Thus, the classical definition of Ricci curvature is not
immediately applicable in the discrete context of graphs or networks. Therefore, in order to develop
any meaningful notion of Ricci curvature for networks, one has to inspect the essential geometric
properties captured by this curvature notion, and find their proper analogues for discrete networks.
To this end, it is essential to recall that Ricci curvature quantifies two essential geometric properties of
the manifold, namely, volume growth and dispersion of geodesics. See electronic supplementary
material, figure S1 for a schematic illustration of the Ricci curvature. Further, since classical Ricci
curvature is associated with a vector (direction) in smooth manifolds [38], in the discrete case of
networks, it is naturally assigned to edges [48]. Thus, notions of discrete Ricci curvatures are
associated with edges rather than vertices or nodes in networks [48]. Note that no discretization of
Ricci curvature for networks can capture the full spectrum of properties of the classical Ricci
curvature defined on smooth manifolds, and thus, each discretization can shed a different light on the
analysed networks [48]. In this work, we apply four notions of discrete Ricci curvature for networks
to study the correlation-based networks of stock markets.
2.1. Ollivier–Ricci curvature
Ollivier’s discretization [52,53] of the classical Ricci curvature has been extensively used to analyse
graphs or networks [42,48–51,58–62]. Ollivier’s definition is based on the following observation. In
spaces of positive curvature, balls are closer to each other on the average than their centres, while in
spaces of negative curvature, balls are farther away on the average than their centres (electronic
supplementary material, figure S2). Ollivier’s definition extends this observation from balls (volumes)
to measures (probabilities). More precisely, the Ollivier–Ricci (OR) curvature of an edge e between
nodes u and v is defined as

O(e) ¼ 1�W1(mu, mv)
d(u, v)

, (2:1)

where mu and mv represent measures concentrated at nodes u and v, respectively, W1 denotes the
Wasserstein distance [63] (also known as the earth mover’s distance) between the discrete probability
measures mu and mv, and the cost d(u, v) is the distance between nodes u and v, respectively.
Moreover, the Wasserstein distance W1(mu,mv), which gives the transportation distance between the
two measures mu and mv, is given by

W1(mu, mv) ¼ inf
mu,v[

Q
(mu,mv)

X
(u0 ,v0)[V�V

d(u0, v0)mu,v(u
0, v0), (2:2)

with ∏ (mu, mv) being the set of probability measures μu,v that satisfyX
v0[V

mu,v(u
0, v0) ¼ mu(u0),

X
u0[V

mu,v(u
0, v0) ¼ mv(v0) (2:3)

where V is the set of nodes in the graph. The above equation represents all the transportation possibilities
of the mass mu to mv. W1(mu, mv) is the minimal cost or distance to transport the mass of mu to that of mv.
Note that the distance d(u0, v0) in equation (2.2) is taken to be the path distance in the unweighted or
weighted graph. Furthermore, the probability distribution mu for u∈V has to be specified, and this is
chosen to be uniform over neighbouring nodes of u [59].

Simply stated, to determine the OR curvature of an edge e, in equation (2.1) one compares the average
distance between the neighbours of the nodes u and v anchoring the edge e in an optimal arrangement
with the distance between u and v itself. Importantly, the average distance between neighbours of u and v
is evaluated as an optimal transport problem wherein the neighbours of u are coupled with those of v in
such a manner that the average distance is as small as possible. In the setting of discrete graphs or
networks, OR curvature by definition captures the volume growth aspect of the classical notion for
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smooth manifolds (e.g. [48] for details). In this work, we have computed the average OR curvature of
edges (ORE) in undirected and weighted networks using equation (2.1).

2.2. Forman–Ricci curvature
Forman’s approach to the discretization of Ricci curvature [64] is more algebraic in nature and is based on
the relation between the Riemannian Laplace operator and Ricci curvature. While devised originally for a
much larger class of discrete geometric objects than graphs, an adaptation to network setting was
recently introduced by some of us [43]. The Forman–Ricci (FR) curvature F(e) of an edge e in an
undirected network with weights assigned to both edges and nodes is given by [43]

F(e) ¼ we
wv1

we
þ wv2

we
�

X
ev1� e, ev2� e

wv1ffiffiffiffiffiffiffiffiffiffiffiffiffiwewev1
p þ wv2ffiffiffiffiffiffiffiffiffiffiffiffiffiwewev2

p
" #0@ 1A, (2:4)

where e denotes the edge under consideration between nodes v1 and v2, we denotes the weight of the edge
e, wv1 and wv2 denote the weights associated with the nodes v1 and v2, respectively, ev1 � e and ev2 � e
denote the set of edges incident on nodes v1 and v2, respectively, after excluding the edge e under
consideration which connects the two nodes v1 and v2. Furthermore, some of us have also extended
the notion of FR curvature to directed networks [65]. In the case of discrete networks, FR curvature
captures the geodesic dispersal property of the classical notion [48]. In electronic supplementary
material, figure S3, we illustrate, using a simple example, the computation of FR curvature in an
undirected graph. In this work, we have computed the average FR curvature of edges (FRE) in
undirected and weighted networks using equation (2.4).

From a geometric perspective, the FR curvature quantifies the information spread at the ends of edges
in a network (figure 1; electronic supplementary material, figure S3). The higher the information spread at
the ends of an edge, the more negative will be the value of its FR curvature. Specifically, an edge with high
negative FR curvature is likely to have several neighbouring edges connected to both anchoring nodes, and
moreover, such an edge can be seen as a funnel at both ends, connecting many other nodes. Intuitively, such
an edge with high negative FR curvature can be expected to have high edge betweenness centrality, as
many shortest paths between other nodes, including those quite far in the network, are also likely to
pass through this edge. Previously, some of us have empirically shown a high statistical correlation
between FR curvature and edge betweenness centrality in diverse networks [48,66].

2.3. Menger–Ricci curvature
The remaining two curvatures studied here are adaptations of curvatures for metric spaces to discrete
graphs. Indeed, both unweighted and weighted graphs can be viewed as a metric space where the
distance between any two nodes can be specified by the path length between them. Among notions
of metric, and indeed, discrete curvature, Menger [67] has proposed the simplest and earliest
definition whereby he defines the curvature of metric triangles T formed by three points in the space
as the reciprocal 1/R(T ) of the radius R(T ) of the circumscribed circle of a triangle T. Recently,
some of us [55,68] have adapted Menger’s definition to networks. Let (M, d ) be a metric space and
T = T(a, b, c) be a triangle with sides a, b, c, then the Menger curvature of T is given by

KM(T) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(p� a)(p� b)(p� c)

p
a � b � c , (2:5)

where p = (a + b + c)/2. In the particular case of a combinatorial triangle with each side of length 1, the
above formula gives KM(T) ¼

ffiffiffi
3

p
=2. Furthermore, it is clear from the above formula that Menger

curvature is always positive. Following the differential geometric approach, the Menger–Ricci (MR)
curvature of an edge e in a network can be defined as [55,68]

kM(e) ¼
X
Te�e

kM(Te), (2:6)

where Te∼ e denote the triangles adjacent to the edge e. Intuitively, if an edge is part of several triangles in
the network, such an edge will have high positive MR curvature (figure 1). In electronic supplementary
material, figure S4, we illustrate, using a simple example, the computation of MR curvature in an
undirected graph. In this work, we have computed the average MR curvature of edges (MRE) in
undirected financial networks by ignoring the edge weights and using equation (2.6).
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Figure 1. Schematic diagram describing the evaluation of discrete Ricci curvatures in correlation-based networks constructed from log-
returns of USA S&P-500 market stocks. (a) Time series of log-returns over a 32-year period (1985–2016). (b) An arbitrarily chosen cross-
correlation matrix C τ (t) for epoch ending on 4 May 2011. (c) Corresponding distance matrix Dt(t) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1� Ct(t))

p
used for the

construction of the threshold network. (d ) MST Tτ(t) constructed using the distance matrix Dτ(t). (e) Threshold network Sτ(t)
constructed by adding edges with Cij(t)≥ 0.75 to the MST Tτ(t). ( f ) Evolution of the average of four discrete Ricci curvatures for
edges, namely, Ollivier–Ricci (ORE), Forman–Ricci (FRE), Menger–Ricci (MRE) and Haantjes–Ricci (HRE), computed using the
threshold networks Sτ(t) constructed from correlation matrices over time epochs of τ = 22 days and overlapping shift of Δτ = 5
days. In this figure, Cτ(t), Dτ(t), Tτ(t) and Sτ(t) shown in (b)–(e) correspond to the correlation frame denoted by vertical dashed
line in (a). (g) Evaluation of discrete Ricci curvatures on a toy example network which is undirected and unweighted. Here, the
edge between v27 and v30 has a highly negative FR curvature as it depends on the degree of the two nodes or number of
neighbouring edges. However, the edge between v27 and v30 has MR and HR curvature equal to zero as the edge under
consideration is not part of any triangles or cycles, respectively. Moreover, the edge between v1 and v2 also has a highly negative
FR curvature as the degree of both anchoring vertices is 4. By contrast, the edge between v1 and v2 has positive MR and HR
curvature as the edge is part of a triangle which contributes to MR curvature and the edge is part of a triangle, a pentagon and
a hexagon which contribute to HR curvature. For both the edges between v27 and v30 and between v1 and v2, one can compute
OR curvature; however, only triangles, quadrangles and pentagons make positive contribution to the OR curvature in unweighted
and undirected networks. Specifically, the edge between v1 and v2 is part of a triangle, a pentagon and a hexagon; however,
only the triangle and pentagon make positive contribution to OR curvature.
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2.4. Haantjes–Ricci curvature
We have also applied another notion of metric curvature to networks which is based on the suggestion of
Finsler and was developed by his student Haantjes [69]. Haantjes defined the curvature of a metric curve
as the ratio between the length of an arc of the curve and that of the chord it subtends. More precisely,
given a curve c in a metric space (M, d ), and given three points p, q, r on c, p between q and r, the Haantjes
curvature at the point p is defined as

k2H(p) ¼ 24 lim
q,r!p

l(bqr)� d(q, r)
(d(q, r))3

, (2:7)

where l(bqr) denotes the length, in the intrinsic metric induced by d, of the arc bqr. In networks, bqr can be
replaced by a path π = v0, v1,…, vn between two nodes v0 and vn, and the subtending chord by the edge
e = (v0, vn) between the two nodes. Recently, some of us [55,68] have defined the Haantjes curvature of
such a simple path π as

k2H(p) ¼
l(p)� l(v0, vn)

l(v0, vn)
3 , (2:8)

where, if the graph is a metric graph, l(v0, vn) = d(v0, vn), that is the shortest path distance between nodes
v0 and vn. In particular, for the combinatorial metric (or unweighted graphs), we obtain that
kH(p) ¼

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
, where π = v0, v1,…, vn is as above. Note that considering simple paths in graphs

concords with the classical definition of Haantjes curvature, since a metric arc is, by its very
definition, a simple curve. Thereafter, the Haantjes–Ricci (HR) curvature of an edge e [55,68] can be
defined as

kH(e) ¼
X
p�e

kH(p), (2:9)

where π∼ e denote the paths that connect the nodes anchoring the edge e. Note that while MR curvature
considers only triangles or simple paths of length 2 between two nodes anchoring an edge in unweighted
graphs, the HR curvature considers even longer paths between the same two nodes anchoring an edge
(figure 1). Moreover, for triangles endowed with the combinatorial metric, the two notions by Menger
and Haantjes coincide, up to a universal constant. In electronic supplementary material, figure S4, we
illustrate, using a simple example, the computation of HR curvature in an undirected graph. In this
work, we have computed the average HR curvature of edges (HRE) in undirected financial networks
by ignoring the edge weights and using equation (2.9). Moreover, due to computational constraints,
we only consider simple paths π of length less than or equal to 4 between the two vertices at the ends
of any edge while computing its HR curvature using equation (2.9) in analysed networks. Note that
both Menger and Haantjes curvature are positive in undirected networks, and they capture the
(absolute value of) geodesics dispersal rate of the classical Ricci curvature.
3. Data and methods
3.1. Data description
The data were collected from the public domain of Yahoo finance database [70] for two markets: USA
S&P-500 index and Japanese Nikkei-225 index. The investigation in this work spans a 32-year period
from 2 January 1985 to 30 December 2016. We analysed the daily closure price data of N = 194 stocks
for T = 8068 days for USA S&P-500 and N = 165 stocks for T = 7998 days for Japanese Nikkei-225
markets. Electronic supplementary material, tables S1 and S2 give the lists of 194 and 165 stocks
(along with their sectors) for the USA S&P-500 and Japanese Nikkei-225 markets, respectively, and
these stocks are present in the two markets for the entire 32-year period considered here.
3.2. Cross-correlation and distance matrices
We present a study of time evolution of the cross-correlation structures of return time series for N stocks
(figure 1). The daily return time series is constructed as rk(t) = lnPk(t)− lnPk(t− 1), where Pk(t) is the
adjusted closing price of the kth stock at time t (trading day). Then, the cross-correlation matrix is
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constructed using equal-time Pearson cross-correlation coefficients,

Cij(t) ¼
(hrir ji � hriihr ji)

sis j
,

where i, j = 1,…, N, t indicates the end date of the epoch of size τ days, and the means 〈 · · · 〉 as well as the
standard deviations σk are computed over that epoch.

Instead of working with the correlation coefficient Cij(t), we use the ‘ultrametric’ distance measure:

Dij(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1� Cij(t))

q
,

such that 0≤Dij(t)≤ 2, which can be used for the construction of networks [11,12,18,27].
Here, we computed daily return cross-correlation matrix Cτ(t) over the short epoch of τ = 22 days and

shift of the rolling epoch by Δτ = 5 days, for (i) N = 194 stocks of USA S&P-500 for a return series of T =
8068 days, and (ii) N = 165 stocks of Japan Nikkei-225 for T = 7998 days, during the 32-year period from
1985 to 2016. We use epochs of τ = 22 days (one trading month) to obtain a balance between choosing
short epochs for detecting changes and long ones for reducing fluctuations. In the main text, we show
results for networks constructed from correlation matrices with overlapping epochs of Δτ = 5 days,
while in the electronic supplementary material, we show results for networks constructed from
correlation matrices with non-overlapping epochs of Δτ = 22 days.
:201734
3.3. Network construction
For a given time epoch of τ days ending on trading day t, the distance matrix Dτ(t) constructed from the
correlation matrix between the 194 stocks in USA S&P-500 index or the 165 stocks in Japan Nikkei-225
index can be viewed as an undirected complete graph Gτ(t), where the weight of an edge between
stocks i and j is given by the distance Dij(t). For the time epoch of τ days ending on trading day t, we
start with this edge-weighted complete graph Gτ(t) and create the MST Tτ(t) using Prim’s algorithm
[71]. Thereafter, we add edges in Gτ(t) with Cij(t)≥ 0.75 to Tτ(t) to obtain the graph Sτ(t) (figure 1). We
will use the graph Sτ(t) to compute different discrete Ricci curvatures and other network measures.
We remark that the procedure used here to construct the graph Sτ(t) follows previous works [18,50]
on analysis of correlation-based networks of stock markets.

Intuitively, the motivation behind the above method of graph construction can be understood as
follows. Firstly, the MST method gives a connected (spanning) graph between all nodes (stocks) in the
specific market. Secondly, the addition of edges between nodes (stocks) with correlation Cij(t)≥ 0.75
ensures that the important edges are also captured in the graph Sτ(t).
3.4. Common network measures
Given an undirected graph G(V, E) with the sets of vertices or nodes V and edges E, the number of edges
is given by the cardinality of set E, that is m = |E|, and the number of nodes is given by the cardinality of
set V, that is n = |V|. The edge density of such a graph is given by the ratio of the number of edges m
divided by the number of possible edges, that is, 2m/n(n− 1). The average degree 〈k〉 of the graph gives
the average number of edges per node, that is, 〈k〉 =m/n. In the case of an edge-weighted graph where aij
denotes the weight of the edge between nodes i and j, one can also compute its average weighted degree
〈kw〉 which gives the average of the sum of the weights of the edges connected to nodes, that is, hkwi ¼ mw

n
where mw ¼ P

i,j[V aij. For any pair of nodes i and j in the graph, one can compute the shortest path
length dij between them. Thereafter, the average shortest path length 〈L〉 is given by the average of the
shortest path lengths between all pairs of nodes in the graph, that is,

hLi ¼ 1
n(n� 1)

X
i=j[V

dij:

The diameter is given by the maximum of the shortest paths between all pairs of nodes in the graph, i.e.
max{dij 8i, j [ V}. The communication efficiency [72] of a graph is an indicator of its global ability to
exchange information across the network. The communication efficiency CE of a graph is given by

CE ¼ 1
n(n� 1)

X
i=j[V

1
dij

:
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Modularity measures the extent of community structure in the network and community detection
algorithms aim to partition the graph into communities such that the modularity Q attains the
maximum value [73]. The modularity Q is given by the equation [73,74]

Q ¼ 1
2mw

X
i=j[V

aij �
kik j
2mw

� �
d(ci, c j),

where ki and kj give the sum of weights of edges attached to nodes i and j, respectively, ci and cj give the
communities of i and j, respectively, and δ(ci, cj) is equal to 1 if ci = cj else 0. Here, we use Louvain method
[74] to compute the modularity of the edge-weighted networks. Network entropy is an average measure
of graph heterogeneity as it quantifies the diversity of edge distribution using the remaining degree
distribution qk [75]. qk denotes the probability of a node to have remaining (excess) degree k and is
given by qk = (k + 1)pk+1/〈k〉 where pk+1 denotes the probability of a node to have degree k + 1. The
network entropy H(q) of a graph is then given by

H(q) ¼ �
X
k

qklog(qk):

The above-mentioned network measures were computed in stock market networks using the Python
package NetworkX [76].

3.5. GARCH(p, q) process
The generalized ARCH process GARCH(p, q) was introduced by Bollerslev [77]. The variable xt, a strong
white noise process, can be written in terms of a time-dependent standard deviation σt, such that xt≡ ηtσt,
where ηt is a random Gaussian process with zero mean and unit variance.

The simplest GARCH process is the GARCH(1,1) process, with Gaussian conditional probability
distribution function

s2
t ¼ a0 þ a1x2t�1 þ b1s

2
t�1, (3:1)

where α0 > 0 and α1≥ 0; β1 is an additional control parameter. One can rewrite equation (3.1) as a random
multiplicative process

s2
t ¼ a0 þ (a1h

2
t�1 þ b1)s

2
t�1: (3:2)

For calculating this we have used an in-built function from Matlab garch (https://in.mathworks.com/
help/econ/garch.html).

3.6. Minimum risk portfolio
We calculated the minimum risk portfolio in the Markowitz framework, as a measure of risk-aversion of
each investor with maximized expected returns and minimized variance. In this model, the variance of a
portfolio shows the importance of effective diversification of investments to minimize the total risk of a
portfolio. The Markowitz model minimizes w0Ωw− ϕR0w with respect to the normalized weight vector w,
where Ω is the covariance matrix calculated from the stock log-returns, ϕ is the measure of risk appetite of
investor and R0 is the expected return of the assets. We set short-selling constraint, ϕ = 0 and wi≥ 0 which
entails a convex combination of stock return for finding the minimum risk portfolio. For calculating this
we have used an in-built function from Matlab (https://in.mathworks.com/help/finance/portfolio.
html).
4. Results and discussion
We analyse here the time series of the logarithmic returns of the stocks in the USA S&P-500 and Japanese
Nikkei-225 markets over a period of 32 years (1985–2016) by constructing the corresponding Pearson
cross-correlation matrices Cτ(t). We then use cross-correlation matrices Cτ(t) computed over time
epochs of size τ = 22 days with either overlapping or non-overlapping epochs (i.e. shifts of Δτ = 5 or 22
days, respectively) and ending on trading days t to study the evolution of the correlation-based
networks Sτ(t) and corresponding network properties, especially edge-centric geometric measures.
Figure 1 gives an overview of our evaluation of discrete Ricci curvatures in correlation-based

https://in.mathworks.com/help/econ/garch.html
https://in.mathworks.com/help/econ/garch.html
https://in.mathworks.com/help/econ/garch.html
https://in.mathworks.com/help/finance/portfolio.html
https://in.mathworks.com/help/finance/portfolio.html
https://in.mathworks.com/help/finance/portfolio.html
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threshold networks constructed from log-returns of market stocks. Figure 1a shows the daily log-returns
over the 32-year period (1985–2016). An arbitrarily chosen cross-correlation matrix Cτ(t) over time epoch
of τ = 22 days and Δτ = 5 days ending on 4 May 2011 and corresponding distance matrix
Dt(t) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1� Ct(t))

p
are shown in figure 1b,c, respectively. The MST Tτ(t) constructed from the

distance matrix Dτ(t) is shown in figure 1d. Thereafter, a threshold network Sτ(t) is constructed using
MST Tτ(t) and edges with Cij(t)≥ 0.75, as shown in figure 1e. The discrete Ricci curvatures are
computed from the threshold networks. In figure 1f , we show the evolution of the discrete curvatures
in threshold networks over the 32-year period. In figure 1g, we motivate the four discrete Ricci
curvatures considered here using a simple example network.

A major goal of this research is to evaluate different notions of discrete Ricci curvature for their ability
to unravel the structure of complex financial networks and serve as indicators of market instabilities.
Previously, Sandhu et al. [50] have analysed the USA S&P-500 market over a period of 15 years (1998–
2013) to show that the average Ollivier–Ricci (OR) curvature of edges (ORE) in threshold networks
increases during periods of financial crisis. Here, we extend the analysis by Sandhu et al. [50] to
(i) two different stock markets, namely, USA S&P-500 and Japanese Nikkei-225, (ii) a span of 32 years
(1985–2016), (iii) four traditional market indicators (namely, index log-returns r, mean market
correlation μ, volatility of the market index r estimated using GARCH(1,1) process, and risk σP
corresponding to the minimum risk Markowitz portfolio of all the stocks in the market), and (iv) four
notions of discrete Ricci curvature for networks. Since discretizations of Ricci curvature are unable to
capture the entire properties of the classical Ricci curvature defined on continuous spaces, the four
discrete Ricci curvatures evaluated here can shed light on different properties of analysed networks
[48]. In particular, some of us have introduced another discretization, Forman–Ricci (FR) curvature, to
the domain of networks [43]. Note that OR curvature captures the volume growth property of
classical Ricci curvature while FR curvature captures the geodesic dispersal property [48].
Nevertheless, our empirical analysis has shown that the two discrete notions, OR and FR curvature,
are highly correlated in model and real-world networks [48]. Importantly, in large networks,
computation of the OR curvature is intensive while that of the FR curvature is simple as the latter
depends only on immediate neighbours of an edge [48]. Therefore, we started by investigating the
ability of FR curvature to capture the structure of complex financial networks.

Figure 2 shows the comparisons of threshold networks, as well as the behaviour of index log-returns
r and average FR curvature of edges (FRE), for (a) bubble and (b) crash periods, of the USA S&P-500
market. The upper panel of figure 2a shows the threshold networks near the US Housing bubble
period (2006–2007) at four distinct epochs of τ = 22 days ending on trading days t equal to 23 January
2006, 10 May 2006, 29 June 2006 and 6 November 2006, with threshold Cij(t)≥ 0.75. Number of edges
and communities in these four threshold networks are 251, 220, 996, 220 and 13, 16, 11, 14,
respectively. The colour of the nodes correspond to the different communities determined by Louvain
method [74] for community detection. The plots of log-returns of S&P-500 index r (blue colour line)
and FRE (sienna colour line) around the US Housing bubble period are shown in the lower panel of
figure 2a. Threshold networks show higher number (996) of edges and lower number (11) of
communities for high (negative) values of FRE, but there is not much variation of r. In electronic
supplementary material, figure S5, we show that the FRE captures the same features for three other
thresholds Cij(t)≥ 0.55, Cij(t)≥ 0.65 and Cij(t)≥ 0.85, and the numbers of edges and communities for
each threshold are listed in electronic supplementary material, table S3. The measure FRE is sensitive
to both local (sectoral) and global (market) fluctuations, and shows a local minimum during bubble.
Note that during a bubble, only a few sectors of the market perform well compared to the others (the
stocks within the well-performing sectors are highly correlated, but the inter-sectoral correlations are
low). It is hard to identify bubble by only monitoring the market index as the returns do not show
much volatility. Figure 2b shows the same for the period around the August 2011 stock markets fall at
four distinct epochs of τ = 22 days ending on trading days t equal to 7 January 2011, 4 May 2011,
2 September 2011 and 3 February 2012, with threshold Cij(t)≥ 0.75. Number of edges and
communities in these four threshold networks are 197, 245, 16 004, 198 and 14, 16, 4, 15, respectively.
During the crash, the threshold network shows sufficiently higher number of edges and extremely
low number of communities. In electronic supplementary material, figure S6, we show that the FRE
captures the same features for three other thresholds Cij(t)≥ 0.55, Cij(t)≥ 0.65 and Cij(t)≥ 0.85, and the
numbers of edges and communities for each threshold is listed in electronic supplementary material,
table S3. The plots of log-returns r of S&P-500 index (blue colour line) and FRE (sienna colour line)
are shown around the August 2011 stock markets fall period in the lower panel of figure 2b. Note
that during a market crash r displays high volatility and FRE shows a significant decrease (local
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Figure 2. (a) (Upper panel) Visualization of threshold networks for USA S&P-500 market around the US Housing bubble period (2006–
2007) at four distinct epochs of τ = 22 days ending on trading days 23 January 2006, 10 May 2006, 29 June 2006 and 6 November
2006, with threshold Cij(t)≥ 0.75. Here, the colour of the nodes corresponds to the different communities determined by Louvain
method for community detection. Threshold networks show higher number of edges and lower number of communities during a
bubble. (Lower panel) Plot shows the evolution of log-returns r of S&P-500 index (blue colour line) and average Forman–Ricci
curvature of edges (FRE) (sienna colour line) for the period around the US Housing bubble. The FRE measure, constructed from
threshold networks, is sensitive to both local (sectoral) and global fluctuations of the market, and shows a local minimum (more
negative) during the bubble, whereas not much variation is seen in r (low volatility). (b) (Upper panel) Visualization of threshold
networks for USA S&P-500 market around the August 2011 stock markets fall at four distinct epochs of τ = 22 days ending on
7 January 2011, 4 May 2011, 2 September 2011 and 3 February 2012 with threshold Cij(t)≥ 0.75. Here, the threshold network
shows significantly higher number of edges and lower number of communities during the crash. (Lower panel) Plot shows the
evolution of log-returns r of S&P 500 index (blue colour line) and FRE (sienna colour line) for the period around the August 2011
stock markets fall. During the crash r has high fluctuations (high volatility) and FRE decreases significantly (local minima).
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Figure 3. Evolution of the market indicators and edge-centric geometric curvatures for the USA S&P-500 market. From top to
bottom, we plot the index log-returns r, mean market correlation μ, volatility of the market index r estimated using
GARCH(1,1) process, risk σP corresponding to the minimum risk Markowitz portfolio of all the stocks in the market, network
entropy (NE), communication efficiency (CE), average of Ollivier–Ricci (ORE), Forman–Ricci (FRE), Menger–Ricci (MRE) and
Haantjes–Ricci (HRE) curvature of edges evaluated from the correlation matrices C τ (t) of epoch size τ = 22 days and an
overlapping shift of Δτ = 5 days. Four vertical dashed lines indicate the epochs of four important crashes: Black Monday 1987,
Lehman Brothers crash 2008, DJ Flash crash 2010 and August 2011 stock markets fall (table 1).
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minimum). Earlier Sandhu et al. [50] had focused on OR curvature as an indicator of crashes. Here, we
additionally show that discrete Ricci curvatures, especially FR curvature, are sensitive and can detect
both crash (market volatility high) and bubble (market volatility low).

It is often difficult to gauge the state of the market by simply monitoring the market index or its log-
returns. There exist no simple definitions of a market crash or a market bubble. The market becomes
extremely correlated and volatile during a crash, but a bubble is even harder to detect as the volatility
is relatively low and only certain sectors perform very well (stocks show high correlation) but the rest
of the market behaves like normal or ‘business-as-usual’. Traditionally, the volatility of the market
captures the ‘fear’ and the evaluated risk captures the ‘fragility’ of the market. Some of us showed in
our earlier papers that the mean market correlation and the spectral properties of the cross-correlation
matrices can be used to study the market states [20] and identify the precursors of market instabilities
[22]. A goal of this study is to show that the state of the market can be continuously monitored with
certain network-based measures. Thus, we next performed a comparative investigation of several
network measures, especially, the four discrete notions of Ricci curvature.

Figures 3 and 4 show for USA S&P-500 market and Japanese Nikkei-225 market, respectively, the
temporal evolution of the market indicators and network measures, mainly edge-centric Ricci
curvatures computed from the correlation matrices Cτ(t) of epoch size τ = 22 days and overlapping
shift of Δτ = 5 days, over a 32-year period (1985–2016). From top to bottom, the plots represent index
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Figure 4. Evolution of the market indicators and edge-centric geometric curvatures for the Japanese Nikkei-225 market. From top to
bottom, we plot the index log-returns r, mean market correlation μ, volatility of the market index r estimated using GARCH(1,1)
process, risk σP corresponding to the minimum risk Markowitz portfolio of all the stocks in the market, network entropy (NE),
communication efficiency (CE), average of Ollivier–Ricci (ORE), Forman–Ricci (FRE), Menger–Ricci (MRE) and Haantjes–Ricci
(HRE) curvature of edges evaluated from the correlation matrices Cτ(t) of epoch size τ = 22 days and an overlapping shift of
Δτ = 5 days. Four vertical dashed lines indicate the epochs of four important crashes: Black Monday 1987, Lehman Brothers
crash 2008, DJ Flash crash 2010, and August 2011 stock markets fall (table 1).

Table 1. List of major crashes and bubbles in stock markets of USA and Japan between 1985 and 2016 [78–83].

serial number major crashes and bubbles period affected region

1 Black Monday 19 Oct 1987 USA, Japan

2 Friday the 13th mini crash 13 Oct 1989 USA

3 Early 90s recession 1990 USA

4 Mini crash due to Asian financial crisis 27 Oct 1997 USA

5 Lost decade 2001–2010 Japan

6 9/11 financial crisis 11 Sep 2001 USA, Japan

7 Stock market downturn of 2002 9 Oct 2002 USA, Japan

8 US Housing bubble 2005–2007 USA

9 Lehman Brothers crash 16 Sep 2008 USA, Japan

10 Dow Jones (DJ) Flash crash 6 May 2010 USA, Japan

11 Tsunami and Fukushima disaster 11 Mar 2011 Japan

12 August 2011 stock markets fall 8 Aug 2011 USA, Japan

13 Chinese Black Monday and 2015–2016 sell off 24 Aug 2015 USA
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Figure 5. Correlogram plots of (a) USA S&P-500 and (b) Japan Nikkei-225 markets, for the traditional market indicators (index
returns r, mean market correlation μ, volatility, and minimum risk portfolio σP), global network properties (network entropy
NE and communication efficiency CE) and discrete Ricci curvatures for edges (ORE, FRE, MRE and HRE), computed for epochs of
size τ = 22 days and overlapping shift Δτ = 5 days.
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log-returns r, mean market correlation μ, volatility of the market index r estimated using GARCH(1,1)
process, risk σP corresponding to the minimum risk Markowitz portfolio of all the stocks in the
market, network entropy (NE), communication efficiency (CE), average of OR, FR, MR and HR
curvature of edges. We find that the four Ricci-type curvatures, namely, ORE, FRE, MRE and HRE,
along with the other important indicators of the markets, viz., the log-returns r, volatility, minimum
risk σP and mean market correlation μ, are excellent indicators of market instabilities (bubbles and
crashes). We highlight that the four discrete Ricci curvatures can capture important crashes and
bubbles listed in table 1 in the two markets during the 32-year period studied here.

In electronic supplementary material, figure S7, we show the temporal evolution of the four discrete
Ricci curvatures computed in threshold networks Sτ(t) obtained using three different thresholds, Cij(t)≥
0.65 (cyan colour), Cij(t)≥ 0.75 (dark blue colour) and Cij(t)≥ 0.85 (sienna colour), for the two markets. It
is seen that the absolute value of ORE, FRE, MRE and HRE decreases with the increase in the threshold
Cij(t) used to construct Sτ(t). Regardless of the three thresholds used to construct the threshold networks
Sτ(t), we show that the four discrete Ricci curvatures are fine indicators of market instabilities.

In previous work, Sandhu et al. [50] had contrasted the temporal evolution of ORE in threshold
networks for USA S&P-500 market with NE, graph diameter and average shortest path length. Here,
we have studied the temporal evolution of a larger set of network measures in threshold networks for
USA S&P-500 and Japanese Nikkei-225 markets computed from the correlation matrices Cτ(t) of epoch
size τ = 22 days and overlapping shift of Δτ = 5 days, over a 32-year period (1985–2016). From figures 3
and 4, it is seen that NE and CE are also excellent indicators of market instabilities. In fact, we find
that common network measures such as number of edges, edge density, average degree, average
shortest path length, graph diameter, average clustering coefficient and modularity are also good
indicators of market instabilities (electronic supplementary material, figure S8).

In electronic supplementary material, figures S9 and S10, we show the temporal evolution of the
market indicators and several network measures (including edge-centric Ricci curvatures) computed
from the correlation matrices Cτ(t) of epoch size τ = 22 days and non-overlapping shift of Δτ = 22 days,
over a 32-year period (1985–2016) in the two markets. It can be seen that our results are also not
dependent on the choice of overlapping or non-overlapping shift used to construct the cross-
correlation matrices and threshold networks.

Figure 5 shows the correlogram plots of (a) USA S&P-500 and (b) Japanese Nikkei-225 markets, for the
traditional market indicators (index returns r, mean market correlation μ, volatility, and minimum
portfolio risk σP), network properties (NE and CE) and discrete Ricci curvatures (ORE, FRE, MRE and
HRE), computed for epoch size τ = 22 days and overlapping shift of Δτ = 5 days. In electronic
supplementary material, figure S11, we show the correlogram plots for the traditional market
indicators and network properties including discrete Ricci curvatures computed for epoch size τ = 22
days and non-overlapping shift of Δτ = 22 days in the two markets. Notably, FRE shows the highest
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correlation among the four discrete Ricci curvatures with the four traditional market indicators in the two
markets, and thus, FRE is an excellent indicator for market risk that captures local to global system-level
fragility of the markets. Furthermore, both NE and CE also have high correlation with the four traditional
market indicators. Therefore, these measures can be used to monitor the health of the financial system
and forecast market crashes or downturns. Overall, we show that FRE is a simple yet powerful tool
for capturing the correlation structure of a dynamically changing network.
lishing.org/journal/rsos
R.Soc.Open

Sci.8:201734
5. Conclusion
In this paper, we have employed geometry-inspired network curvature measures to characterize the
correlation structures of the financial systems and used them as generic indicators for detecting
market instabilities (bubbles and crashes). We reiterate here that it is often difficult to gauge the state
of the market by simply monitoring the market index or its log-returns. There exist no simple
definitions of a market crash or a market bubble. The market becomes extremely correlated and
volatile during a crash, but a bubble is even harder to detect as the volatility is relatively low and
only certain sectors perform very well (stocks show high correlation) but the rest of the market
behaves like normal or ‘business-as-usual’. We have examined the daily returns from a set of stocks
comprising the USA S&P-500 and the Japanese Nikkei-225 over a 32-year period, and monitored the
changes in the edge-centric geometric curvatures. Our results are very robust as we have studied two
very different markets, and for a very long period of 32 years with several interesting market events
(bubbles and crashes; table 1). We showed that the results are not very sensitive to the choice of
overlapping or non-overlapping epochs used to construct the cross-correlation matrices and threshold
networks (figures 3–4; electronic supplementary material, figures S8–S10). Further, the choice of the
thresholds for constructing networks also has little influence on their behaviour as indicators
(electronic supplementary material, figures S5–S7). In addition, to test the robustness of our
methodology in the current paper, we have added small amounts of Gaussian noise to the empirical
correlation matrices for the USA S&P-500 market, and reproduced the evolution of the topological
properties as well as the geometric curvature measures over the 32-year period. Specifically, we have
found that the results are not sensitive to small amounts of noise or random reshuffling of data
(electronic supplementary material, figure S12). We found that the four different notions of discrete
Ricci curvature captured well the system-level features of the market and hence we were able to
distinguish between the normal or ‘business-as-usual’ periods and all the major market crises (bubbles
and crashes) using the network-centric indicators. Our studies confirmed that during a normal period
the market is very modular and heterogeneous, whereas during an instability (crisis) the market is
more homogeneous, highly connected and less modular.

Interestingly, our methodology picks up many peaks other than the major crashes and bubbles; these
are neither spurious nor false positives. Unlike the major crashes and bubbles which are well-
documented in the financial literature (or listed in Internet sources, see table 1), many of these peaks
correspond to interesting events that are not well understood or recorded in the literature. In fact the
financial markets are often driven by endogenous and exogenous factors. Moreover, there are often
multiple reasons leading to a market crash or a bubble burst. The study and characterization of such
market events, including exogenous shocks, bubble bursts and anomalies, corresponding to such
peaks has already been done in our earlier papers [20–22,30]. The findings of the present paper are in
concordance with the earlier ones.

It is important to note that partial correlations can detect direct as opposed to plausibly indirect
connections among components of the stock market. In the Econophysics literature (e.g. [30,84–87]),
researchers have used partial correlations for analysing the dynamics and constructing networks of
stock markets. Partial correlations are particularly relevant when people study eigenvalue spectra
(market, group and random modes), or network centrality measures, by first filtering out the spurious
correlations. However, it has been observed [30,86] that partial correlations are less successful in
picking the cluster or group dynamics, and the networks arising from partial correlations are also
less stable. In this contribution, we are more interested in the market indicators and the use of
discrete Ricci curvatures as generic indicators, for which we prefer to work with the more stable
correlation matrices.

Also, we find from these geometric measures that there are succinct and inherent differences in the
two markets, USA S&P-500 and Japan Nikkei-225. Importantly, among four Ricci-type curvature
measures, the Forman–Ricci curvature of edges (FRE) correlates highest with the traditional market
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indicators and acts as an excellent indicator for the system-level fear (volatility) and fragility (risk) for
both the markets. These new insights may help us in future to better understand tipping points,
systemic risk and resilience in financial networks, and enable us to develop monitoring tools required
for the highly interconnected financial systems and perhaps forecast future financial crises and market
slowdowns. These can be further generalized to study other economic systems, and may thus enable
us to understand the highly complex and interconnected economic-financial systems.
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